European Union’s Horizon 2020 research and innovation program under grant agreement No. 952033

Link to this page

European Union’s Horizon 2020 research and innovation program under grant agreement No. 952033

Authors

Publications

Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications

Jaćimović, Nevena; Đošić, Marija; Janković, Ana; Grujić, Svetlana; Matić Bujagić, Ivana; Stojanović, Jovica; Vukašinović-Sekulić, Maja; Kojić, Vesna; Mišković-Stanković, Vesna

(Society of Chemists and Technologists of Macedonia, 2023)

TY  - JOUR
AU  - Jaćimović, Nevena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Grujić, Svetlana
AU  - Matić Bujagić, Ivana
AU  - Stojanović, Jovica
AU  - Vukašinović-Sekulić, Maja
AU  - Kojić, Vesna
AU  - Mišković-Stanković, Vesna
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7260
AB  - Biocomposite hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coatings were fabricated on titanium by an electrophoretic deposition process (EPD) from an aqueous suspension using the constant voltage method. Characterization of the deposited coatings was performed by scanning electron micros-copy with field emission (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) after immersion in simulated body fluid (SBF) at 37 °C. The concentration of the released gentamicin was determined using high-performance liquid chromatography (HPLC) coupled with a mass spectrometer (MS). The release profile confirmed an initial “burst-release effect” with ~ 30 % of the gen-tamicin released in the first 48 h, which could be of assistance in the prevention of biofilm formation. An-tibacterial activity was proven by the agar diffusion method on Staphylococcus aureus TL and Escherich-ia coli ATCC 25922 bacterial strains. Cytotoxicity was tested by the dye exclusion test (DET) on MRC-5 and L929 fibroblast cell lines, with both coatings expressing nontoxicity. The results showed the high ap-plicability potential of a poly(vinyl alcohol)-based biocomposite coating for medical purposes.
PB  - Society of Chemists and Technologists of Macedonia
T2  - Macedonian Journal of Chemistry and Chemical Engineering
T1  - Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications
EP  - 262
IS  - 2
SP  - 249
VL  - 42
DO  - 10.20450/mjcce.2023.2775
ER  - 
@article{
author = "Jaćimović, Nevena and Đošić, Marija and Janković, Ana and Grujić, Svetlana and Matić Bujagić, Ivana and Stojanović, Jovica and Vukašinović-Sekulić, Maja and Kojić, Vesna and Mišković-Stanković, Vesna",
year = "2023",
abstract = "Biocomposite hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coatings were fabricated on titanium by an electrophoretic deposition process (EPD) from an aqueous suspension using the constant voltage method. Characterization of the deposited coatings was performed by scanning electron micros-copy with field emission (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) after immersion in simulated body fluid (SBF) at 37 °C. The concentration of the released gentamicin was determined using high-performance liquid chromatography (HPLC) coupled with a mass spectrometer (MS). The release profile confirmed an initial “burst-release effect” with ~ 30 % of the gen-tamicin released in the first 48 h, which could be of assistance in the prevention of biofilm formation. An-tibacterial activity was proven by the agar diffusion method on Staphylococcus aureus TL and Escherich-ia coli ATCC 25922 bacterial strains. Cytotoxicity was tested by the dye exclusion test (DET) on MRC-5 and L929 fibroblast cell lines, with both coatings expressing nontoxicity. The results showed the high ap-plicability potential of a poly(vinyl alcohol)-based biocomposite coating for medical purposes.",
publisher = "Society of Chemists and Technologists of Macedonia",
journal = "Macedonian Journal of Chemistry and Chemical Engineering",
title = "Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications",
pages = "262-249",
number = "2",
volume = "42",
doi = "10.20450/mjcce.2023.2775"
}
Jaćimović, N., Đošić, M., Janković, A., Grujić, S., Matić Bujagić, I., Stojanović, J., Vukašinović-Sekulić, M., Kojić, V.,& Mišković-Stanković, V.. (2023). Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications. in Macedonian Journal of Chemistry and Chemical Engineering
Society of Chemists and Technologists of Macedonia., 42(2), 249-262.
https://doi.org/10.20450/mjcce.2023.2775
Jaćimović N, Đošić M, Janković A, Grujić S, Matić Bujagić I, Stojanović J, Vukašinović-Sekulić M, Kojić V, Mišković-Stanković V. Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications. in Macedonian Journal of Chemistry and Chemical Engineering. 2023;42(2):249-262.
doi:10.20450/mjcce.2023.2775 .
Jaćimović, Nevena, Đošić, Marija, Janković, Ana, Grujić, Svetlana, Matić Bujagić, Ivana, Stojanović, Jovica, Vukašinović-Sekulić, Maja, Kojić, Vesna, Mišković-Stanković, Vesna, "Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications" in Macedonian Journal of Chemistry and Chemical Engineering, 42, no. 2 (2023):249-262,
https://doi.org/10.20450/mjcce.2023.2775 . .