Magnetic and radionuclide labeled nanostructured materials for medical applications

Link to this page

info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45015/RS//

Magnetic and radionuclide labeled nanostructured materials for medical applications (en)
Магнетни и радионуклидима обележени наноструктурни материјали за примене у медицини (sr)
Magnetni i radionuklidima obeleženi nanostrukturni materijali za primene u medicini (sr_RS)
Authors

Publications

Characterization of glycidyl methacrylate based magnetic nanocomposites

Marković, Bojana M.; Spasojević, Vojislav; Dapčević, Aleksandra; Vuković, Zorica M.; Pavlović, Vladimir B.; Ranđelović, Danijela; Nastasović, Aleksandra

(Savez hemijskih inženjera, Beograd, 2019)

TY  - JOUR
AU  - Marković, Bojana M.
AU  - Spasojević, Vojislav
AU  - Dapčević, Aleksandra
AU  - Vuković, Zorica M.
AU  - Pavlović, Vladimir B.
AU  - Ranđelović, Danijela
AU  - Nastasović, Aleksandra
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4179
AB  - Magnetic and non-magnetic macroporous crosslinked copolymers of glycidyl methacrylate and trimethylolpropane trimethacrylate were prepared by suspension copolymerization and functionalized with diethylenetriamine. The samples were characterized by mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy analysis (FTIR-ATR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SQUID magnetometry. The FTIR-ATR analysis of synthesized magnetic nanocomposites confirmed the presence of magnetite and successful aminofunctionalization. Non-functionalized and amino-functionalized nanocomposites exhibited superparamagnetic behavior at 300 K, with a saturation magnetization of 5.0 emu/g and 2.9 emu/g, respectively. TEM analysis of the magnetic nanocomposite has shown that magnetic nanoparticles were homogeneously dispersed in the polymer matrix. It was demonstrated that incorporation of magnetic nanoparticles enhanced the thermal stability of the magnetic nanocomposite in comparison to the initial non-magnetic macroporous copolymer.
PB  - Savez hemijskih inženjera, Beograd
T2  - Hemijska industrija
T1  - Characterization of glycidyl methacrylate based magnetic nanocomposites
EP  - 35
IS  - 1
SP  - 25
VL  - 73
DO  - 10.2298/HEMIND181113006M
ER  - 
@article{
author = "Marković, Bojana M. and Spasojević, Vojislav and Dapčević, Aleksandra and Vuković, Zorica M. and Pavlović, Vladimir B. and Ranđelović, Danijela and Nastasović, Aleksandra",
year = "2019",
abstract = "Magnetic and non-magnetic macroporous crosslinked copolymers of glycidyl methacrylate and trimethylolpropane trimethacrylate were prepared by suspension copolymerization and functionalized with diethylenetriamine. The samples were characterized by mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy analysis (FTIR-ATR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SQUID magnetometry. The FTIR-ATR analysis of synthesized magnetic nanocomposites confirmed the presence of magnetite and successful aminofunctionalization. Non-functionalized and amino-functionalized nanocomposites exhibited superparamagnetic behavior at 300 K, with a saturation magnetization of 5.0 emu/g and 2.9 emu/g, respectively. TEM analysis of the magnetic nanocomposite has shown that magnetic nanoparticles were homogeneously dispersed in the polymer matrix. It was demonstrated that incorporation of magnetic nanoparticles enhanced the thermal stability of the magnetic nanocomposite in comparison to the initial non-magnetic macroporous copolymer.",
publisher = "Savez hemijskih inženjera, Beograd",
journal = "Hemijska industrija",
title = "Characterization of glycidyl methacrylate based magnetic nanocomposites",
pages = "35-25",
number = "1",
volume = "73",
doi = "10.2298/HEMIND181113006M"
}
Marković, B. M., Spasojević, V., Dapčević, A., Vuković, Z. M., Pavlović, V. B., Ranđelović, D.,& Nastasović, A.. (2019). Characterization of glycidyl methacrylate based magnetic nanocomposites. in Hemijska industrija
Savez hemijskih inženjera, Beograd., 73(1), 25-35.
https://doi.org/10.2298/HEMIND181113006M
Marković BM, Spasojević V, Dapčević A, Vuković ZM, Pavlović VB, Ranđelović D, Nastasović A. Characterization of glycidyl methacrylate based magnetic nanocomposites. in Hemijska industrija. 2019;73(1):25-35.
doi:10.2298/HEMIND181113006M .
Marković, Bojana M., Spasojević, Vojislav, Dapčević, Aleksandra, Vuković, Zorica M., Pavlović, Vladimir B., Ranđelović, Danijela, Nastasović, Aleksandra, "Characterization of glycidyl methacrylate based magnetic nanocomposites" in Hemijska industrija, 73, no. 1 (2019):25-35,
https://doi.org/10.2298/HEMIND181113006M . .
3
2
5

The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution

Georgijević, Radovan; Vujković, Milica; Gutić, Sanjin J.; Aliefendić, Meho; Jugović, Dragana; Mitrić, Miodrag; Đokić, Veljko; Mentus, Slavko

(Elsevier Science Sa, Lausanne, 2019)

TY  - JOUR
AU  - Georgijević, Radovan
AU  - Vujković, Milica
AU  - Gutić, Sanjin J.
AU  - Aliefendić, Meho
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Đokić, Veljko
AU  - Mentus, Slavko
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4329
AB  - To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g(-1) at 5 mV s(-1)). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g(-1) at 1 mV s(-1).
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Alloys and Compounds
T1  - The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution
EP  - 485
SP  - 475
VL  - 776
DO  - 10.1016/j.jallcom.2018.10.246
ER  - 
@article{
author = "Georgijević, Radovan and Vujković, Milica and Gutić, Sanjin J. and Aliefendić, Meho and Jugović, Dragana and Mitrić, Miodrag and Đokić, Veljko and Mentus, Slavko",
year = "2019",
abstract = "To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g(-1) at 5 mV s(-1)). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g(-1) at 1 mV s(-1).",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Alloys and Compounds",
title = "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution",
pages = "485-475",
volume = "776",
doi = "10.1016/j.jallcom.2018.10.246"
}
Georgijević, R., Vujković, M., Gutić, S. J., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V.,& Mentus, S.. (2019). The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. in Journal of Alloys and Compounds
Elsevier Science Sa, Lausanne., 776, 475-485.
https://doi.org/10.1016/j.jallcom.2018.10.246
Georgijević R, Vujković M, Gutić SJ, Aliefendić M, Jugović D, Mitrić M, Đokić V, Mentus S. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. in Journal of Alloys and Compounds. 2019;776:475-485.
doi:10.1016/j.jallcom.2018.10.246 .
Georgijević, Radovan, Vujković, Milica, Gutić, Sanjin J., Aliefendić, Meho, Jugović, Dragana, Mitrić, Miodrag, Đokić, Veljko, Mentus, Slavko, "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution" in Journal of Alloys and Compounds, 776 (2019):475-485,
https://doi.org/10.1016/j.jallcom.2018.10.246 . .
8
8
8

Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains

Tadić, Marin; Kralj, Slavko; Kopanja, Lazar

(2019)

TY  - JOUR
AU  - Tadić, Marin
AU  - Kralj, Slavko
AU  - Kopanja, Lazar
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5911
AB  - We report monodisperse, chain-like particles (nanochains) consisted of silica-coated maghemite (γ-Fe2O3) nanoparticle clusters prepared by colloidal chemistry and magnetic field-induced self-assembly of nanoparticle clusters. In order to quantify the shapes of chain-like particles, we have used the measure for shape convexity which is also called solidity. We functionalize the surface of the nanochains with amino (–NH2) and carboxyl groups (–COOH) in order to modify surface charge. These surfaces of nanochains provide better colloidal stability and their potential for practical applications in biomedicine. The enhanced colloidal stability of the surface modified nanochains is confirmed by Zeta potential (ζ-potential) analysis. Magnetic properties of the nanochains show superparamagnetic state at room temperature since the nanochains are composed of tiny nanoparticles as their building blocks. The measured M(H) data at room temperature have been successfully fitted by the Langevin function and magnetic moment μp = 20,526 μB for sphere-like nanoparticle clusters and μp = 20,767 μB for nanochains are determined. The determined magnetic parameters have revealed that the nanochains show a magnetic moment of the nanoparticles higher than the one of individual nanoparticle clusters. These differences can be attributed to the collective magnetic properties of superparamagnetic iron oxide nanoparticles (SPION) assembled in different morphologies (isotropic and anisotropic morphology). © 2018
T2  - Materials Characterization
T1  - Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains
EP  - 133
SP  - 123
VL  - 148
DO  - 10.1016/j.matchar.2018.12.014
ER  - 
@article{
author = "Tadić, Marin and Kralj, Slavko and Kopanja, Lazar",
year = "2019",
abstract = "We report monodisperse, chain-like particles (nanochains) consisted of silica-coated maghemite (γ-Fe2O3) nanoparticle clusters prepared by colloidal chemistry and magnetic field-induced self-assembly of nanoparticle clusters. In order to quantify the shapes of chain-like particles, we have used the measure for shape convexity which is also called solidity. We functionalize the surface of the nanochains with amino (–NH2) and carboxyl groups (–COOH) in order to modify surface charge. These surfaces of nanochains provide better colloidal stability and their potential for practical applications in biomedicine. The enhanced colloidal stability of the surface modified nanochains is confirmed by Zeta potential (ζ-potential) analysis. Magnetic properties of the nanochains show superparamagnetic state at room temperature since the nanochains are composed of tiny nanoparticles as their building blocks. The measured M(H) data at room temperature have been successfully fitted by the Langevin function and magnetic moment μp = 20,526 μB for sphere-like nanoparticle clusters and μp = 20,767 μB for nanochains are determined. The determined magnetic parameters have revealed that the nanochains show a magnetic moment of the nanoparticles higher than the one of individual nanoparticle clusters. These differences can be attributed to the collective magnetic properties of superparamagnetic iron oxide nanoparticles (SPION) assembled in different morphologies (isotropic and anisotropic morphology). © 2018",
journal = "Materials Characterization",
title = "Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains",
pages = "133-123",
volume = "148",
doi = "10.1016/j.matchar.2018.12.014"
}
Tadić, M., Kralj, S.,& Kopanja, L.. (2019). Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains. in Materials Characterization, 148, 123-133.
https://doi.org/10.1016/j.matchar.2018.12.014
Tadić M, Kralj S, Kopanja L. Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains. in Materials Characterization. 2019;148:123-133.
doi:10.1016/j.matchar.2018.12.014 .
Tadić, Marin, Kralj, Slavko, Kopanja, Lazar, "Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains" in Materials Characterization, 148 (2019):123-133,
https://doi.org/10.1016/j.matchar.2018.12.014 . .
1
67
29
64

Origin of the Intrinsic Coercivity Field Variations of ε-Fe2O3

Nikolić, Violeta N.; Milić, Mirjana M.; Zdravković, Jelena D.; Spasojević, Vojislav

(2019)

TY  - JOUR
AU  - Nikolić, Violeta N.
AU  - Milić, Mirjana M.
AU  - Zdravković, Jelena D.
AU  - Spasojević, Vojislav
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5904
AB  - ε-Fe2O3 phase is recognized as an attractive material, in both technological and scientific point of view, since it can achieve very high room-temperature coercivity (10–20 kOe). In this paper, multi-phase samples Fe2O3/SiO2 with slightly different Fe/Si molar ratio were produced by sol–gel synthesis route. The obtained samples were characterized by various experimental techniques including XRD, TA, FTIR, and SQUID (DC and AC magnetic measurements). It was found that both samples consisted of α-Fe2O3 and ε‑Fe2O3 phases embedded in the silica matrix, and showed very similar structural and magnetic properties, except that displayed significantly different room-temperature intrinsic coercivity field values: HciS1 = 14.3 kOe and HciS2 = 7.5 kOe. We have discussed possible origin of thus high intrinsic coercivity field variation. © 2019, Pleiades Publishing, Ltd.
T2  - Russian Journal of Physical Chemistry A
T1  - Origin of the Intrinsic Coercivity Field Variations of ε-Fe2O3
EP  - 383
IS  - 2
SP  - 377
VL  - 93
DO  - 10.1134/S0036024419020316
ER  - 
@article{
author = "Nikolić, Violeta N. and Milić, Mirjana M. and Zdravković, Jelena D. and Spasojević, Vojislav",
year = "2019",
abstract = "ε-Fe2O3 phase is recognized as an attractive material, in both technological and scientific point of view, since it can achieve very high room-temperature coercivity (10–20 kOe). In this paper, multi-phase samples Fe2O3/SiO2 with slightly different Fe/Si molar ratio were produced by sol–gel synthesis route. The obtained samples were characterized by various experimental techniques including XRD, TA, FTIR, and SQUID (DC and AC magnetic measurements). It was found that both samples consisted of α-Fe2O3 and ε‑Fe2O3 phases embedded in the silica matrix, and showed very similar structural and magnetic properties, except that displayed significantly different room-temperature intrinsic coercivity field values: HciS1 = 14.3 kOe and HciS2 = 7.5 kOe. We have discussed possible origin of thus high intrinsic coercivity field variation. © 2019, Pleiades Publishing, Ltd.",
journal = "Russian Journal of Physical Chemistry A",
title = "Origin of the Intrinsic Coercivity Field Variations of ε-Fe2O3",
pages = "383-377",
number = "2",
volume = "93",
doi = "10.1134/S0036024419020316"
}
Nikolić, V. N., Milić, M. M., Zdravković, J. D.,& Spasojević, V.. (2019). Origin of the Intrinsic Coercivity Field Variations of ε-Fe2O3. in Russian Journal of Physical Chemistry A, 93(2), 377-383.
https://doi.org/10.1134/S0036024419020316
Nikolić VN, Milić MM, Zdravković JD, Spasojević V. Origin of the Intrinsic Coercivity Field Variations of ε-Fe2O3. in Russian Journal of Physical Chemistry A. 2019;93(2):377-383.
doi:10.1134/S0036024419020316 .
Nikolić, Violeta N., Milić, Mirjana M., Zdravković, Jelena D., Spasojević, Vojislav, "Origin of the Intrinsic Coercivity Field Variations of ε-Fe2O3" in Russian Journal of Physical Chemistry A, 93, no. 2 (2019):377-383,
https://doi.org/10.1134/S0036024419020316 . .
5
4
4

Origin of the Intrinsic Coercivity Field Variations and Magnetic Study of ε-Fe2O3

Nikolić, Violeta N.; Milić, Mirjana M.; Zdravković, Jelena D.; Spasojević, Vojislav

(2019)

TY  - JOUR
AU  - Nikolić, Violeta N.
AU  - Milić, Mirjana M.
AU  - Zdravković, Jelena D.
AU  - Spasojević, Vojislav
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5903
AB  - Origin of the intrinsic coercivity field variations observed by hysteretic measurements established by Nikolic et al. was investigated in detail by ZFC/FC measurements. In this study, magnetic behavior of the samples is further examined by calculation of the ZFC Mn(T) and Mn(H) first derivatives. Performed study showed that the main contribution to the measured coercivity comes from the ε-Fe2O3 particles, characterized by Hci = 24 kOe, although both samples posses SPM ε-Fe2O3 fraction. As a result, Hci values of the samples are differed dependent on the quantity of the SPM ε-Fe2O3 particles in the sample. Mechanism of the intrisic coercivity field variations is discussed. © 2019, Pleiades Publishing, Ltd.
T2  - Russian Journal of Physical Chemistry A
T1  - Origin of the Intrinsic Coercivity Field Variations and Magnetic Study of ε-Fe2O3
EP  - 593
IS  - 3
SP  - 588
VL  - 93
DO  - 10.1134/S0036024419030130
ER  - 
@article{
author = "Nikolić, Violeta N. and Milić, Mirjana M. and Zdravković, Jelena D. and Spasojević, Vojislav",
year = "2019",
abstract = "Origin of the intrinsic coercivity field variations observed by hysteretic measurements established by Nikolic et al. was investigated in detail by ZFC/FC measurements. In this study, magnetic behavior of the samples is further examined by calculation of the ZFC Mn(T) and Mn(H) first derivatives. Performed study showed that the main contribution to the measured coercivity comes from the ε-Fe2O3 particles, characterized by Hci = 24 kOe, although both samples posses SPM ε-Fe2O3 fraction. As a result, Hci values of the samples are differed dependent on the quantity of the SPM ε-Fe2O3 particles in the sample. Mechanism of the intrisic coercivity field variations is discussed. © 2019, Pleiades Publishing, Ltd.",
journal = "Russian Journal of Physical Chemistry A",
title = "Origin of the Intrinsic Coercivity Field Variations and Magnetic Study of ε-Fe2O3",
pages = "593-588",
number = "3",
volume = "93",
doi = "10.1134/S0036024419030130"
}
Nikolić, V. N., Milić, M. M., Zdravković, J. D.,& Spasojević, V.. (2019). Origin of the Intrinsic Coercivity Field Variations and Magnetic Study of ε-Fe2O3. in Russian Journal of Physical Chemistry A, 93(3), 588-593.
https://doi.org/10.1134/S0036024419030130
Nikolić VN, Milić MM, Zdravković JD, Spasojević V. Origin of the Intrinsic Coercivity Field Variations and Magnetic Study of ε-Fe2O3. in Russian Journal of Physical Chemistry A. 2019;93(3):588-593.
doi:10.1134/S0036024419030130 .
Nikolić, Violeta N., Milić, Mirjana M., Zdravković, Jelena D., Spasojević, Vojislav, "Origin of the Intrinsic Coercivity Field Variations and Magnetic Study of ε-Fe2O3" in Russian Journal of Physical Chemistry A, 93, no. 3 (2019):588-593,
https://doi.org/10.1134/S0036024419030130 . .
5
4
4

Nanoparticle shapes: Quantification by elongation, convexity and circularity measures

Kopanja, Lazar; Lončar, Boris B.; Žunić, Dragiša; Tadić, Marin

(2019)

TY  - JOUR
AU  - Kopanja, Lazar
AU  - Lončar, Boris B.
AU  - Žunić, Dragiša
AU  - Tadić, Marin
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5902
AB  - The goal of the nanoparticle synthesis is, first of all, the production of nanoparticles that will be more similar in size and shape. This is very important for the possibility of studying and applying nanomaterials because of their characteristics that are very sensitive to size and shape such as, for example, magnetic properties. In this paper, we propose the shape analysis of the nanoparticles using three shape descriptors – elongation, convexity and circularity. Experimental results were obtained by using TEM images of hematite nanoparticles that were, first of all, subjected to segmentation in order to obtain isolated nanoparticles, and then the values of elongation, convexity and circularity were measured. Convexity C x ( S ) is regarded as the ratio between shape’s area and area of the its convex hull. The convexity measure defines the degree to which a shape differs from a convex shape while the circularity measure defines the degree to which a shape differs from an ideal circle. The range of convexity and circularity values is (0, 1], while the range of elongation values is [1, ∞). The circle has lowest elongation (ε = 1), while it has biggest convexity and circularity values ( C x = 1; C = 1). The measures ε( S ), C x ( S ), C ( S ) proposed and used in the experiment have the few desirable properties and give intuitively expected results. None of the measures is good enough to describe all the shapes, and therefore it is suggested to use a variety of measures so that the shapes can be described better and then classify and control during the synthesis process.
T2  - Journal of Electrical Engineering
T1  - Nanoparticle shapes: Quantification by elongation, convexity and circularity measures
EP  - 50
IS  - 7
SP  - 44
VL  - 70
DO  - 10.2478/jee-2019-0040
ER  - 
@article{
author = "Kopanja, Lazar and Lončar, Boris B. and Žunić, Dragiša and Tadić, Marin",
year = "2019",
abstract = "The goal of the nanoparticle synthesis is, first of all, the production of nanoparticles that will be more similar in size and shape. This is very important for the possibility of studying and applying nanomaterials because of their characteristics that are very sensitive to size and shape such as, for example, magnetic properties. In this paper, we propose the shape analysis of the nanoparticles using three shape descriptors – elongation, convexity and circularity. Experimental results were obtained by using TEM images of hematite nanoparticles that were, first of all, subjected to segmentation in order to obtain isolated nanoparticles, and then the values of elongation, convexity and circularity were measured. Convexity C x ( S ) is regarded as the ratio between shape’s area and area of the its convex hull. The convexity measure defines the degree to which a shape differs from a convex shape while the circularity measure defines the degree to which a shape differs from an ideal circle. The range of convexity and circularity values is (0, 1], while the range of elongation values is [1, ∞). The circle has lowest elongation (ε = 1), while it has biggest convexity and circularity values ( C x = 1; C = 1). The measures ε( S ), C x ( S ), C ( S ) proposed and used in the experiment have the few desirable properties and give intuitively expected results. None of the measures is good enough to describe all the shapes, and therefore it is suggested to use a variety of measures so that the shapes can be described better and then classify and control during the synthesis process.",
journal = "Journal of Electrical Engineering",
title = "Nanoparticle shapes: Quantification by elongation, convexity and circularity measures",
pages = "50-44",
number = "7",
volume = "70",
doi = "10.2478/jee-2019-0040"
}
Kopanja, L., Lončar, B. B., Žunić, D.,& Tadić, M.. (2019). Nanoparticle shapes: Quantification by elongation, convexity and circularity measures. in Journal of Electrical Engineering, 70(7), 44-50.
https://doi.org/10.2478/jee-2019-0040
Kopanja L, Lončar BB, Žunić D, Tadić M. Nanoparticle shapes: Quantification by elongation, convexity and circularity measures. in Journal of Electrical Engineering. 2019;70(7):44-50.
doi:10.2478/jee-2019-0040 .
Kopanja, Lazar, Lončar, Boris B., Žunić, Dragiša, Tadić, Marin, "Nanoparticle shapes: Quantification by elongation, convexity and circularity measures" in Journal of Electrical Engineering, 70, no. 7 (2019):44-50,
https://doi.org/10.2478/jee-2019-0040 . .
3
6
3
6

Magnetic properties of hematite (α - Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution

Tadić, Marin; Panjan, Matjaž; Vučetić Tadić, Biljana; Lazović, Jelena; Damnjanović, Vesna; Kopani, Martin; Kopanja, Lazar

(De Gruyter Open Ltd, 2019)

TY  - JOUR
AU  - Tadić, Marin
AU  - Panjan, Matjaž
AU  - Vučetić Tadić, Biljana
AU  - Lazović, Jelena
AU  - Damnjanović, Vesna
AU  - Kopani, Martin
AU  - Kopanja, Lazar
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5897
AB  - Using the sol-gel method we synthesized hematite (α - Fe2O3) nanoparticles in a silica matrix with 60 wt % of hematite. X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the sample demonstrate the formation of the α - Fe2O3 phase and amorphous silica. A transmission electron microscopy (TEM) measurements show that the sample consists of two particle size distributions of the hematite nanoparticles with average sizes around 10 nm and 20 nm, respectively. Magnetic properties of hematite nanoparticles were measured using a superconducting quantum interference device (SQUID). Investigation of the magnetic properties of hematite nanoparticles showed a divergence between field-cooled (FC) and zero-field-cooled (ZFC) magnetization curves and two maxima. The ZFC magnetization curves displayed a maximum at around TB = 50 K (blocking temperature) and at TM = 83 K (the Morin transition). The hysteresis loop measured at 5 K was symmetric around the origin, with the values of coercivity, remanent and mass saturation magnetization HC10K ≈ 646 A/cm, (810 Oe), Mr10K = 1.34 emu/g and MS10K = 6.1 emu/g respectively. The absence of both coercivity (HC300K = 0) and remanent magnetization (Mr300K = 0) in M(H) curve at 300 K reveals super-paramagnetic behavior, which is desirable for application in biomedicine. The bimodal particle size distributions were used to describe observed magnetic properties of hematite nanoparticles. The size distribution directly influences the magnetic properties of the sample.
PB  - De Gruyter Open Ltd
T2  - Journal of Electrical Engineering
T1  - Magnetic properties of hematite (α - Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution
EP  - 76
IS  - 7
SP  - 71
VL  - 70
DO  - 10.2478/jee-2019-0044
ER  - 
@article{
author = "Tadić, Marin and Panjan, Matjaž and Vučetić Tadić, Biljana and Lazović, Jelena and Damnjanović, Vesna and Kopani, Martin and Kopanja, Lazar",
year = "2019",
abstract = "Using the sol-gel method we synthesized hematite (α - Fe2O3) nanoparticles in a silica matrix with 60 wt % of hematite. X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the sample demonstrate the formation of the α - Fe2O3 phase and amorphous silica. A transmission electron microscopy (TEM) measurements show that the sample consists of two particle size distributions of the hematite nanoparticles with average sizes around 10 nm and 20 nm, respectively. Magnetic properties of hematite nanoparticles were measured using a superconducting quantum interference device (SQUID). Investigation of the magnetic properties of hematite nanoparticles showed a divergence between field-cooled (FC) and zero-field-cooled (ZFC) magnetization curves and two maxima. The ZFC magnetization curves displayed a maximum at around TB = 50 K (blocking temperature) and at TM = 83 K (the Morin transition). The hysteresis loop measured at 5 K was symmetric around the origin, with the values of coercivity, remanent and mass saturation magnetization HC10K ≈ 646 A/cm, (810 Oe), Mr10K = 1.34 emu/g and MS10K = 6.1 emu/g respectively. The absence of both coercivity (HC300K = 0) and remanent magnetization (Mr300K = 0) in M(H) curve at 300 K reveals super-paramagnetic behavior, which is desirable for application in biomedicine. The bimodal particle size distributions were used to describe observed magnetic properties of hematite nanoparticles. The size distribution directly influences the magnetic properties of the sample.",
publisher = "De Gruyter Open Ltd",
journal = "Journal of Electrical Engineering",
title = "Magnetic properties of hematite (α - Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution",
pages = "76-71",
number = "7",
volume = "70",
doi = "10.2478/jee-2019-0044"
}
Tadić, M., Panjan, M., Vučetić Tadić, B., Lazović, J., Damnjanović, V., Kopani, M.,& Kopanja, L.. (2019). Magnetic properties of hematite (α - Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution. in Journal of Electrical Engineering
De Gruyter Open Ltd., 70(7), 71-76.
https://doi.org/10.2478/jee-2019-0044
Tadić M, Panjan M, Vučetić Tadić B, Lazović J, Damnjanović V, Kopani M, Kopanja L. Magnetic properties of hematite (α - Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution. in Journal of Electrical Engineering. 2019;70(7):71-76.
doi:10.2478/jee-2019-0044 .
Tadić, Marin, Panjan, Matjaž, Vučetić Tadić, Biljana, Lazović, Jelena, Damnjanović, Vesna, Kopani, Martin, Kopanja, Lazar, "Magnetic properties of hematite (α - Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution" in Journal of Electrical Engineering, 70, no. 7 (2019):71-76,
https://doi.org/10.2478/jee-2019-0044 . .
51
3
50

Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties

Tadić, Marin; Trpkov, Đorđe; Kopanja, Lazar; Vojnović, Sandra; Panjan, Matjaž

(2019)

TY  - JOUR
AU  - Tadić, Marin
AU  - Trpkov, Đorđe
AU  - Kopanja, Lazar
AU  - Vojnović, Sandra
AU  - Panjan, Matjaž
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5892
AB  - In this work, we present the magnetic and structural properties of α-Fe 2 O 3 nanoparticles synthesized by the hydrothermal synthesis method. XRD, FTIR and Raman spectroscopy indicate that the samples consist of single-phase α-Fe 2 O 3 nanoparticles. A microstructural analysis by TEM and SEM shows: (i) irregular nanoparticles (∼50 nm), (ii) plate-like nanoparticles (with thickness t∼10 nm and diameter d∼50–80 nm) and (iii) microsized ellipsoid 3D superstructures (with length l∼3.5 and diameter d∼1.5 μm) composed of nanosized building blocks (∼50 nm). We used circularity, elongation and convexity measures to quantitatively analyze the shape of the particles. Irregular hematite nanoparticles were synthesized using a water solution of ferric precursor and sodium acetate during the hydrothermal reaction (reaction conditions: T = 180 °C, t = 12 h). The same hydrothermal reaction temperature, reaction duration and ferric precursor (without sodium acetate) were used for synthesizing hematite ellipsoid 3D superstructures. Addition of urea and glycine surfactants in hydrothermal reaction resulted in the formation of nanoplate hematite particles. The role of these surfactants on the structure and morphology of the particles was also investigated. Magnetic measurements at the room temperature displayed a wide range of coercivities, from H C = 73 Oe for irregular nanoparticles, H C = 689 Oe for nanoplates to H C = 2688 Oe for hematite ellipsoid 3D superstructures. The measured coercivity for the ellipsoid superstructure was about 35 times higher than in the case of irregular hematite nanoparticles and about 4 times than the coercivity of hematite nanoplates. Magnetic properties of synthesized samples were related to their structure and morphology. We conclude that shape anisotropy influenced enhancement of the coercivity in hematite nanoplates whereas hematite ellipsoid 3D superstructure (nanoparticle clusters) induced the formation of multidomain magnetic structure and highest coercivity revealing its superior structure for enhanced magnetic properties. The synthesized hematite nanoparticle structures exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating a safe use of these nanoparticles for practical applications. © 2019 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties
EP  - 609
SP  - 599
VL  - 792
DO  - 10.1016/j.jallcom.2019.03.414
ER  - 
@article{
author = "Tadić, Marin and Trpkov, Đorđe and Kopanja, Lazar and Vojnović, Sandra and Panjan, Matjaž",
year = "2019",
abstract = "In this work, we present the magnetic and structural properties of α-Fe 2 O 3 nanoparticles synthesized by the hydrothermal synthesis method. XRD, FTIR and Raman spectroscopy indicate that the samples consist of single-phase α-Fe 2 O 3 nanoparticles. A microstructural analysis by TEM and SEM shows: (i) irregular nanoparticles (∼50 nm), (ii) plate-like nanoparticles (with thickness t∼10 nm and diameter d∼50–80 nm) and (iii) microsized ellipsoid 3D superstructures (with length l∼3.5 and diameter d∼1.5 μm) composed of nanosized building blocks (∼50 nm). We used circularity, elongation and convexity measures to quantitatively analyze the shape of the particles. Irregular hematite nanoparticles were synthesized using a water solution of ferric precursor and sodium acetate during the hydrothermal reaction (reaction conditions: T = 180 °C, t = 12 h). The same hydrothermal reaction temperature, reaction duration and ferric precursor (without sodium acetate) were used for synthesizing hematite ellipsoid 3D superstructures. Addition of urea and glycine surfactants in hydrothermal reaction resulted in the formation of nanoplate hematite particles. The role of these surfactants on the structure and morphology of the particles was also investigated. Magnetic measurements at the room temperature displayed a wide range of coercivities, from H C = 73 Oe for irregular nanoparticles, H C = 689 Oe for nanoplates to H C = 2688 Oe for hematite ellipsoid 3D superstructures. The measured coercivity for the ellipsoid superstructure was about 35 times higher than in the case of irregular hematite nanoparticles and about 4 times than the coercivity of hematite nanoplates. Magnetic properties of synthesized samples were related to their structure and morphology. We conclude that shape anisotropy influenced enhancement of the coercivity in hematite nanoplates whereas hematite ellipsoid 3D superstructure (nanoparticle clusters) induced the formation of multidomain magnetic structure and highest coercivity revealing its superior structure for enhanced magnetic properties. The synthesized hematite nanoparticle structures exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating a safe use of these nanoparticles for practical applications. © 2019 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties",
pages = "609-599",
volume = "792",
doi = "10.1016/j.jallcom.2019.03.414"
}
Tadić, M., Trpkov, Đ., Kopanja, L., Vojnović, S.,& Panjan, M.. (2019). Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. in Journal of Alloys and Compounds, 792, 599-609.
https://doi.org/10.1016/j.jallcom.2019.03.414
Tadić M, Trpkov Đ, Kopanja L, Vojnović S, Panjan M. Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. in Journal of Alloys and Compounds. 2019;792:599-609.
doi:10.1016/j.jallcom.2019.03.414 .
Tadić, Marin, Trpkov, Đorđe, Kopanja, Lazar, Vojnović, Sandra, Panjan, Matjaž, "Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties" in Journal of Alloys and Compounds, 792 (2019):599-609,
https://doi.org/10.1016/j.jallcom.2019.03.414 . .
159
67
152

Shape and aspect ratio analysis of anisotropic magnetic nanochains based on TEM micrographs

Kopanja, Lazar; Tadić, Marin; Kralj, Slavko; Žunić, Joviša

(2018)

TY  - JOUR
AU  - Kopanja, Lazar
AU  - Tadić, Marin
AU  - Kralj, Slavko
AU  - Žunić, Joviša
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5877
AB  - Due to advances in electron microscopy and to the development of novel nanoparticle structures with different morphologies and the dependence of physical properties on the nanoparticle morphology, there is a need for a more precise analysis of nanoparticle structure and morphology. That should provide a simple and unambiguous comparison of nanoparticles' shapes and of material properties that depend on the shape, which has been lacking thus far. Here we study nanochains consisting of silica-coated iron oxide (maghemite, gamma-Fe2O3) nanoparticle clusters covered by an additional layer of silica (core-shell structure). We have developed an algorithm for image segmentation and a quantitative analysis of nanochain shape from real TEM images. To that end we used two distinct measures of circularity and elongation measure (the aspect ratio measure). We show that the relative position and the area of the links, as well as the links' shape lead to significant differences in the measured aspect ratio of the entire nanochain (substantially influence the elongation of nanochains). We have also analyzed the core-shell structures in nanochains, and computed the shell's share in the overall area of observed nanochains. A Matlab code was developed and used for the computation of the elongation measure of shapes appearing in electron microscopy images. Here we have investigated magnetic properties of synthetic nanochains, that revealed superparamagnetic behavior at room temperature (SPION) with the possibility of tuning the magnetization values (approx. from 19 to 46 emu/g). We have compared of magnetization M(H) curves of the anisotropic nanochains and of isotropic nanoparticle (nanochain links), with the conclusion that the nanochains have a higher magnetic susceptibility, which fact can be understood as a consequence of their anisotropic shapes. The nanochains may be applied in biomedicine and magnetic separation, due to their morphology and magnetic properties.
T2  - Ceramics International
T1  - Shape and aspect ratio analysis of anisotropic magnetic nanochains based on TEM micrographs
EP  - 12351
IS  - 11
SP  - 12340
VL  - 44
DO  - 10.1016/j.ceramint.2018.04.021
ER  - 
@article{
author = "Kopanja, Lazar and Tadić, Marin and Kralj, Slavko and Žunić, Joviša",
year = "2018",
abstract = "Due to advances in electron microscopy and to the development of novel nanoparticle structures with different morphologies and the dependence of physical properties on the nanoparticle morphology, there is a need for a more precise analysis of nanoparticle structure and morphology. That should provide a simple and unambiguous comparison of nanoparticles' shapes and of material properties that depend on the shape, which has been lacking thus far. Here we study nanochains consisting of silica-coated iron oxide (maghemite, gamma-Fe2O3) nanoparticle clusters covered by an additional layer of silica (core-shell structure). We have developed an algorithm for image segmentation and a quantitative analysis of nanochain shape from real TEM images. To that end we used two distinct measures of circularity and elongation measure (the aspect ratio measure). We show that the relative position and the area of the links, as well as the links' shape lead to significant differences in the measured aspect ratio of the entire nanochain (substantially influence the elongation of nanochains). We have also analyzed the core-shell structures in nanochains, and computed the shell's share in the overall area of observed nanochains. A Matlab code was developed and used for the computation of the elongation measure of shapes appearing in electron microscopy images. Here we have investigated magnetic properties of synthetic nanochains, that revealed superparamagnetic behavior at room temperature (SPION) with the possibility of tuning the magnetization values (approx. from 19 to 46 emu/g). We have compared of magnetization M(H) curves of the anisotropic nanochains and of isotropic nanoparticle (nanochain links), with the conclusion that the nanochains have a higher magnetic susceptibility, which fact can be understood as a consequence of their anisotropic shapes. The nanochains may be applied in biomedicine and magnetic separation, due to their morphology and magnetic properties.",
journal = "Ceramics International",
title = "Shape and aspect ratio analysis of anisotropic magnetic nanochains based on TEM micrographs",
pages = "12351-12340",
number = "11",
volume = "44",
doi = "10.1016/j.ceramint.2018.04.021"
}
Kopanja, L., Tadić, M., Kralj, S.,& Žunić, J.. (2018). Shape and aspect ratio analysis of anisotropic magnetic nanochains based on TEM micrographs. in Ceramics International, 44(11), 12340-12351.
https://doi.org/10.1016/j.ceramint.2018.04.021
Kopanja L, Tadić M, Kralj S, Žunić J. Shape and aspect ratio analysis of anisotropic magnetic nanochains based on TEM micrographs. in Ceramics International. 2018;44(11):12340-12351.
doi:10.1016/j.ceramint.2018.04.021 .
Kopanja, Lazar, Tadić, Marin, Kralj, Slavko, Žunić, Joviša, "Shape and aspect ratio analysis of anisotropic magnetic nanochains based on TEM micrographs" in Ceramics International, 44, no. 11 (2018):12340-12351,
https://doi.org/10.1016/j.ceramint.2018.04.021 . .
14
10
14

Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures

Trpkov, Đorđe; Panjan, Matjaž; Kopanja, Lazar; Tadić, Marin

(2018)

TY  - JOUR
AU  - Trpkov, Đorđe
AU  - Panjan, Matjaž
AU  - Kopanja, Lazar
AU  - Tadić, Marin
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5874
AB  - We report on glycine-free and glycine-assisted hydrothermal synthesis of microsized superstructures composed of self-assembled hematite nanoparticles. An X-ray powder diffraction measurements of the samples confirm good crystallization of the hematite nanoparticles with hydrothermal reaction time-dependent crystallite sizes in a range from ∼15 nm (45 h) to ∼26 nm (90 h). The FTIR and Raman spectroscopy confirm hematite structure, whereas TEM measurements reveal nanoparticle sub-units (subparticles). The computational analyses of particle shape show that the addition of glycine surfactant in hydrothermal reaction leads to more spherical shape of hematite hierarchical structures and smaller sizes. We found strong coercivity increases (up to ∼3 times) in the samples synthesized in the presence of glycine. The coercivity values from HC = 1305 Oe (mushroom-like shape synthesized by glycine-free hydrothermal reaction) to HC = 3725 Oe (sphere-like shape synthesized by glycine-assisted hydrothermal reaction) were obtained at 300 K. These results and their comparison with other described in the literature (e.g. bulk, wires, urchin-like, rods, tubes, plates, star-like, dendrites, platelets, irregular, nanocolumns, spindles, disks hematites, etc.) reveal that the hematite superstructures possess good magnetic properties. We propose that the glycine, oriented subparticles, exchange and dipole-dipole interactions may play an important role in the development of magnetic properties.
T2  - Applied Surface Science
T1  - Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures
EP  - 438
SP  - 427
VL  - 457
DO  - 10.1016/j.apsusc.2018.06.224
ER  - 
@article{
author = "Trpkov, Đorđe and Panjan, Matjaž and Kopanja, Lazar and Tadić, Marin",
year = "2018",
abstract = "We report on glycine-free and glycine-assisted hydrothermal synthesis of microsized superstructures composed of self-assembled hematite nanoparticles. An X-ray powder diffraction measurements of the samples confirm good crystallization of the hematite nanoparticles with hydrothermal reaction time-dependent crystallite sizes in a range from ∼15 nm (45 h) to ∼26 nm (90 h). The FTIR and Raman spectroscopy confirm hematite structure, whereas TEM measurements reveal nanoparticle sub-units (subparticles). The computational analyses of particle shape show that the addition of glycine surfactant in hydrothermal reaction leads to more spherical shape of hematite hierarchical structures and smaller sizes. We found strong coercivity increases (up to ∼3 times) in the samples synthesized in the presence of glycine. The coercivity values from HC = 1305 Oe (mushroom-like shape synthesized by glycine-free hydrothermal reaction) to HC = 3725 Oe (sphere-like shape synthesized by glycine-assisted hydrothermal reaction) were obtained at 300 K. These results and their comparison with other described in the literature (e.g. bulk, wires, urchin-like, rods, tubes, plates, star-like, dendrites, platelets, irregular, nanocolumns, spindles, disks hematites, etc.) reveal that the hematite superstructures possess good magnetic properties. We propose that the glycine, oriented subparticles, exchange and dipole-dipole interactions may play an important role in the development of magnetic properties.",
journal = "Applied Surface Science",
title = "Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures",
pages = "438-427",
volume = "457",
doi = "10.1016/j.apsusc.2018.06.224"
}
Trpkov, Đ., Panjan, M., Kopanja, L.,& Tadić, M.. (2018). Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures. in Applied Surface Science, 457, 427-438.
https://doi.org/10.1016/j.apsusc.2018.06.224
Trpkov Đ, Panjan M, Kopanja L, Tadić M. Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures. in Applied Surface Science. 2018;457:427-438.
doi:10.1016/j.apsusc.2018.06.224 .
Trpkov, Đorđe, Panjan, Matjaž, Kopanja, Lazar, Tadić, Marin, "Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures" in Applied Surface Science, 457 (2018):427-438,
https://doi.org/10.1016/j.apsusc.2018.06.224 . .
88
62
94

The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Cvjetićanin, Nikola; Jokić, Bojan; Umićević, Ana; Uskoković, Dragan

(Elsevier, 2017)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Cvjetićanin, Nikola
AU  - Jokić, Bojan
AU  - Umićević, Ana
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5856
AB  - Low intrinsic electronic conductivity is the main disadvantage of LiFePO4 when used as a cathode material in lithium ion batteries. The paper offers experimental proofs of the theoretical prediction that fluorine doping of LiFePO4 can enhance its electrical conductivity. The LiFePO4 and fluorine-doped LiFePO4 olivine type, carbon-free powders are synthesized and examined. The crystal structure refinements in the Pnma space group reveal that doping with fluorine ions preserves the olivine structure, while reducing both the lattice parameters and the antisite defect, and increasing the crystallite size. A small amount of incorporated fluorine enhances the electrical conductivity from 4.6×10−7 S cm−1 to 2.3×10−6 S cm−1 and has a positive impact on the electrochemical performance. Several spectroscopy techniques (Mössbauer, FTIR, and Raman) reveal differences between the two powders and additionally support the findings of both the Rietveld refinement and the conductivity measurements.
PB  - Elsevier
T2  - Ceramics International
T1  - The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder
EP  - 3230
IS  - 3
SP  - 3224
VL  - 43
DO  - 10.1016/j.ceramint.2016.11.149
UR  - https://hdl.handle.net/21.15107/rcub_dais_2352
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Cvjetićanin, Nikola and Jokić, Bojan and Umićević, Ana and Uskoković, Dragan",
year = "2017",
abstract = "Low intrinsic electronic conductivity is the main disadvantage of LiFePO4 when used as a cathode material in lithium ion batteries. The paper offers experimental proofs of the theoretical prediction that fluorine doping of LiFePO4 can enhance its electrical conductivity. The LiFePO4 and fluorine-doped LiFePO4 olivine type, carbon-free powders are synthesized and examined. The crystal structure refinements in the Pnma space group reveal that doping with fluorine ions preserves the olivine structure, while reducing both the lattice parameters and the antisite defect, and increasing the crystallite size. A small amount of incorporated fluorine enhances the electrical conductivity from 4.6×10−7 S cm−1 to 2.3×10−6 S cm−1 and has a positive impact on the electrochemical performance. Several spectroscopy techniques (Mössbauer, FTIR, and Raman) reveal differences between the two powders and additionally support the findings of both the Rietveld refinement and the conductivity measurements.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder",
pages = "3230-3224",
number = "3",
volume = "43",
doi = "10.1016/j.ceramint.2016.11.149",
url = "https://hdl.handle.net/21.15107/rcub_dais_2352"
}
Jugović, D., Mitrić, M., Milović, M., Cvjetićanin, N., Jokić, B., Umićević, A.,& Uskoković, D.. (2017). The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder. in Ceramics International
Elsevier., 43(3), 3224-3230.
https://doi.org/10.1016/j.ceramint.2016.11.149
https://hdl.handle.net/21.15107/rcub_dais_2352
Jugović D, Mitrić M, Milović M, Cvjetićanin N, Jokić B, Umićević A, Uskoković D. The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder. in Ceramics International. 2017;43(3):3224-3230.
doi:10.1016/j.ceramint.2016.11.149
https://hdl.handle.net/21.15107/rcub_dais_2352 .
Jugović, Dragana, Mitrić, Miodrag, Milović, Miloš, Cvjetićanin, Nikola, Jokić, Bojan, Umićević, Ana, Uskoković, Dragan, "The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder" in Ceramics International, 43, no. 3 (2017):3224-3230,
https://doi.org/10.1016/j.ceramint.2016.11.149 .,
https://hdl.handle.net/21.15107/rcub_dais_2352 .
20
12
24

Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

Tadić, Marin; Kopanja, Lazar; Panjan, Matjaž; Kralj, Slavko; Nikodinović Runić, Jasmina; Stojanović, Zoran S.

(2017)

TY  - JOUR
AU  - Tadić, Marin
AU  - Kopanja, Lazar
AU  - Panjan, Matjaž
AU  - Kralj, Slavko
AU  - Nikodinović Runić, Jasmina
AU  - Stojanović, Zoran S.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5854
AB  - Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10–20 nm thickness, 80–100 nm landscape dimensions (aspect ratio ∼5) and 3–4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core–shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles’ for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.
T2  - Applied Surface Science
T1  - Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity
EP  - 634
SP  - 628
VL  - 403
DO  - 10.1016/j.apsusc.2017.01.115
UR  - https://hdl.handle.net/21.15107/rcub_dais_2349
ER  - 
@article{
author = "Tadić, Marin and Kopanja, Lazar and Panjan, Matjaž and Kralj, Slavko and Nikodinović Runić, Jasmina and Stojanović, Zoran S.",
year = "2017",
abstract = "Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10–20 nm thickness, 80–100 nm landscape dimensions (aspect ratio ∼5) and 3–4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core–shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles’ for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.",
journal = "Applied Surface Science",
title = "Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity",
pages = "634-628",
volume = "403",
doi = "10.1016/j.apsusc.2017.01.115",
url = "https://hdl.handle.net/21.15107/rcub_dais_2349"
}
Tadić, M., Kopanja, L., Panjan, M., Kralj, S., Nikodinović Runić, J.,& Stojanović, Z. S.. (2017). Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. in Applied Surface Science, 403, 628-634.
https://doi.org/10.1016/j.apsusc.2017.01.115
https://hdl.handle.net/21.15107/rcub_dais_2349
Tadić M, Kopanja L, Panjan M, Kralj S, Nikodinović Runić J, Stojanović ZS. Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. in Applied Surface Science. 2017;403:628-634.
doi:10.1016/j.apsusc.2017.01.115
https://hdl.handle.net/21.15107/rcub_dais_2349 .
Tadić, Marin, Kopanja, Lazar, Panjan, Matjaž, Kralj, Slavko, Nikodinović Runić, Jasmina, Stojanović, Zoran S., "Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity" in Applied Surface Science, 403 (2017):628-634,
https://doi.org/10.1016/j.apsusc.2017.01.115 .,
https://hdl.handle.net/21.15107/rcub_dais_2349 .
50
38
49

Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties

Nikolić, Violeta N.; Spasojević, Vojislav; Panjan, Matjaž; Kopanja, Lazar; Mraković, Ana Đ.; Tadić, Marin

(2017)

TY  - JOUR
AU  - Nikolić, Violeta N.
AU  - Spasojević, Vojislav
AU  - Panjan, Matjaž
AU  - Kopanja, Lazar
AU  - Mraković, Ana Đ.
AU  - Tadić, Marin
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5852
AB  - Several Fe2O3/SiO2 nanostructures were synthesized by the combination of the microemulsion and a sol-gel methods. Based on X-ray powder diffraction (XRD) and magnetic measurements (giant coercivity similar to 2.13 T) we identified epsilon-Fe2O3 (hard magnet) as the dominant crystalline phase. TEM analysis showed a wide size distribution of iron oxide nanoparticles (from 4 to 50 nm) with various morphologies (spherical, ellipsoidal and rod-like). We quantitatively described (computational analysis, MATLAB code) morphological properties of nanoparticles using the ellipticity of the shapes. The as-synthesized hard magnetic material was subjected to a post-annealing treatment at different temperatures (200, 500, 750, 1000 and 1100 degrees C) in order to investigate stability, formation and transformation of the epsilon-Fe2O3 polymorph. We found decreasing coercivity in the thermally treated samples up to the temperature of 750 degrees C (H-c=1245 Oe), followed by an observation of a surprising jump in coercivity H-c similar to 1.5 T after post-annealing at 1000 degrees C. We conclude that the re-formation of the epsilon-Fe2O3 structure during post-annealing at 1000 degrees C is the origin of the observed phenomena. The phase transformation epsilon-Fe2O3 - GT alpha-Fe2O3 and crystallization of amorphous silica in quartz and cristobalite were observed in the sample treated at 1100 degrees C.
T2  - Ceramics International
T1  - Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties
EP  - 7507
IS  - 10
SP  - 7497
VL  - 43
DO  - 10.1016/j.ceramint.2017.03.030
ER  - 
@article{
author = "Nikolić, Violeta N. and Spasojević, Vojislav and Panjan, Matjaž and Kopanja, Lazar and Mraković, Ana Đ. and Tadić, Marin",
year = "2017",
abstract = "Several Fe2O3/SiO2 nanostructures were synthesized by the combination of the microemulsion and a sol-gel methods. Based on X-ray powder diffraction (XRD) and magnetic measurements (giant coercivity similar to 2.13 T) we identified epsilon-Fe2O3 (hard magnet) as the dominant crystalline phase. TEM analysis showed a wide size distribution of iron oxide nanoparticles (from 4 to 50 nm) with various morphologies (spherical, ellipsoidal and rod-like). We quantitatively described (computational analysis, MATLAB code) morphological properties of nanoparticles using the ellipticity of the shapes. The as-synthesized hard magnetic material was subjected to a post-annealing treatment at different temperatures (200, 500, 750, 1000 and 1100 degrees C) in order to investigate stability, formation and transformation of the epsilon-Fe2O3 polymorph. We found decreasing coercivity in the thermally treated samples up to the temperature of 750 degrees C (H-c=1245 Oe), followed by an observation of a surprising jump in coercivity H-c similar to 1.5 T after post-annealing at 1000 degrees C. We conclude that the re-formation of the epsilon-Fe2O3 structure during post-annealing at 1000 degrees C is the origin of the observed phenomena. The phase transformation epsilon-Fe2O3 - GT alpha-Fe2O3 and crystallization of amorphous silica in quartz and cristobalite were observed in the sample treated at 1100 degrees C.",
journal = "Ceramics International",
title = "Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties",
pages = "7507-7497",
number = "10",
volume = "43",
doi = "10.1016/j.ceramint.2017.03.030"
}
Nikolić, V. N., Spasojević, V., Panjan, M., Kopanja, L., Mraković, A. Đ.,& Tadić, M.. (2017). Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties. in Ceramics International, 43(10), 7497-7507.
https://doi.org/10.1016/j.ceramint.2017.03.030
Nikolić VN, Spasojević V, Panjan M, Kopanja L, Mraković AĐ, Tadić M. Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties. in Ceramics International. 2017;43(10):7497-7507.
doi:10.1016/j.ceramint.2017.03.030 .
Nikolić, Violeta N., Spasojević, Vojislav, Panjan, Matjaž, Kopanja, Lazar, Mraković, Ana Đ., Tadić, Marin, "Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties" in Ceramics International, 43, no. 10 (2017):7497-7507,
https://doi.org/10.1016/j.ceramint.2017.03.030 . .
38
30
39

Influence of annealing treatment on magnetic properties of Fe2O3/SiO2 and formation of epsilon-Fe2O3 phase

Nikolić, Violeta N.; Tadić, Marin; Panjan, Matjaž; Kopanja, Lazar; Cvjetićanin, Nikola; Spasojević, Vojislav

(2017)

TY  - JOUR
AU  - Nikolić, Violeta N.
AU  - Tadić, Marin
AU  - Panjan, Matjaž
AU  - Kopanja, Lazar
AU  - Cvjetićanin, Nikola
AU  - Spasojević, Vojislav
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5822
AB  - Magnetic properties of Fe2O3/SiO2 samples were studied after being produced by sol-gel synthesis and formation of epsilon-Fe2O3 polymorph. Samples were thermally treated, using different annealing temperatures and annealing times. The size and morphological characteristics of the iron oxide nanoparticles were examined using a TEM microscope. We used the ellipticity of shapes, which is a measure of how much the shape of a nanoparticle differs from a perfect ellipse, in order to quantitatively describe morphological properties of nanoparticles. Coercivity measurements were used to identify and monitor the formation of the epsilon-iron oxide phase during the thermal treatments (annealing). Coercivity values were in the range from 1.2 to 15.4 kOe, which is in accordance with previous experience regarding the existence of epsilon-Fe2O3. We have determined the optimal formation conditions for the epsilon-Fe2O3 polymorph (t=1050 degrees C for 7 h, H-c=15.4 kOe), as well as the narrow temperature interval (1050-1060 C) in which the polymorph abruptly vanished (H-c=2300 Oe), on the basis of results of the magnetic properties. The threshold temperature for the epsilon-Fe2O3 phase transformation was measured as 1060 degrees C. We found that different annealing temperatures and annealing times significantly affected magnetic properties of the examined samples.
T2  - Ceramics International
T1  - Influence of annealing treatment on magnetic properties of Fe2O3/SiO2 and formation of epsilon-Fe2O3 phase
EP  - 3155
IS  - 3
SP  - 3147
VL  - 43
DO  - 10.1016/j.ceramint.2016.11.132
ER  - 
@article{
author = "Nikolić, Violeta N. and Tadić, Marin and Panjan, Matjaž and Kopanja, Lazar and Cvjetićanin, Nikola and Spasojević, Vojislav",
year = "2017",
abstract = "Magnetic properties of Fe2O3/SiO2 samples were studied after being produced by sol-gel synthesis and formation of epsilon-Fe2O3 polymorph. Samples were thermally treated, using different annealing temperatures and annealing times. The size and morphological characteristics of the iron oxide nanoparticles were examined using a TEM microscope. We used the ellipticity of shapes, which is a measure of how much the shape of a nanoparticle differs from a perfect ellipse, in order to quantitatively describe morphological properties of nanoparticles. Coercivity measurements were used to identify and monitor the formation of the epsilon-iron oxide phase during the thermal treatments (annealing). Coercivity values were in the range from 1.2 to 15.4 kOe, which is in accordance with previous experience regarding the existence of epsilon-Fe2O3. We have determined the optimal formation conditions for the epsilon-Fe2O3 polymorph (t=1050 degrees C for 7 h, H-c=15.4 kOe), as well as the narrow temperature interval (1050-1060 C) in which the polymorph abruptly vanished (H-c=2300 Oe), on the basis of results of the magnetic properties. The threshold temperature for the epsilon-Fe2O3 phase transformation was measured as 1060 degrees C. We found that different annealing temperatures and annealing times significantly affected magnetic properties of the examined samples.",
journal = "Ceramics International",
title = "Influence of annealing treatment on magnetic properties of Fe2O3/SiO2 and formation of epsilon-Fe2O3 phase",
pages = "3155-3147",
number = "3",
volume = "43",
doi = "10.1016/j.ceramint.2016.11.132"
}
Nikolić, V. N., Tadić, M., Panjan, M., Kopanja, L., Cvjetićanin, N.,& Spasojević, V.. (2017). Influence of annealing treatment on magnetic properties of Fe2O3/SiO2 and formation of epsilon-Fe2O3 phase. in Ceramics International, 43(3), 3147-3155.
https://doi.org/10.1016/j.ceramint.2016.11.132
Nikolić VN, Tadić M, Panjan M, Kopanja L, Cvjetićanin N, Spasojević V. Influence of annealing treatment on magnetic properties of Fe2O3/SiO2 and formation of epsilon-Fe2O3 phase. in Ceramics International. 2017;43(3):3147-3155.
doi:10.1016/j.ceramint.2016.11.132 .
Nikolić, Violeta N., Tadić, Marin, Panjan, Matjaž, Kopanja, Lazar, Cvjetićanin, Nikola, Spasojević, Vojislav, "Influence of annealing treatment on magnetic properties of Fe2O3/SiO2 and formation of epsilon-Fe2O3 phase" in Ceramics International, 43, no. 3 (2017):3147-3155,
https://doi.org/10.1016/j.ceramint.2016.11.132 . .
40
28
40

Selective magnetic GMA based potential sorbents for molybdenum and rhenium sorption

Marković, Bojana M.; Vuković, Zorica M.; Spasojević, Vojislav; Kusigerski, Vladan; Pavlović, Vladimir B.; Onjia, Antonije; Nastasović, Aleksandra

(Elsevier Science Sa, Lausanne, 2017)

TY  - JOUR
AU  - Marković, Bojana M.
AU  - Vuković, Zorica M.
AU  - Spasojević, Vojislav
AU  - Kusigerski, Vladan
AU  - Pavlović, Vladimir B.
AU  - Onjia, Antonije
AU  - Nastasović, Aleksandra
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3752
AB  - Magnetic macroporous crosslinked copolymer glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) samples with different magnetite content were prepared by suspension copolymerization and functionalized with diethylene triamine. Samples were characterized by elemental analysis, mercury porosimetry, Fourier transform infrared spectroscopy (FTIR) analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, SQUID magnetometry and X-ray photoelectron spectroscopy (XPS). The selected amino-functionalized sample was tested as a potential sorbent for the Mo(VI) and Re(VII) oxyanions from aqueous solutions. The influence of pH, ionic strength and possible interfering of cations and anions was investigated. Equilibrium data were analyzed with Langmuir, Freundlich and Tempkin adsorption isotherm models. Sorption studies were carried out in a batch competitive experiments, in the pH range 1-8, at 298 K. Obtained results indicate that 92% of Re(VII) and 98% of Mo(VI) were sorbed at pH 2.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Alloys and Compounds
T1  - Selective magnetic GMA based potential sorbents for molybdenum and rhenium sorption
EP  - 50
SP  - 38
VL  - 705
DO  - 10.1016/j.jallcom.2017.02.108
ER  - 
@article{
author = "Marković, Bojana M. and Vuković, Zorica M. and Spasojević, Vojislav and Kusigerski, Vladan and Pavlović, Vladimir B. and Onjia, Antonije and Nastasović, Aleksandra",
year = "2017",
abstract = "Magnetic macroporous crosslinked copolymer glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) samples with different magnetite content were prepared by suspension copolymerization and functionalized with diethylene triamine. Samples were characterized by elemental analysis, mercury porosimetry, Fourier transform infrared spectroscopy (FTIR) analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, SQUID magnetometry and X-ray photoelectron spectroscopy (XPS). The selected amino-functionalized sample was tested as a potential sorbent for the Mo(VI) and Re(VII) oxyanions from aqueous solutions. The influence of pH, ionic strength and possible interfering of cations and anions was investigated. Equilibrium data were analyzed with Langmuir, Freundlich and Tempkin adsorption isotherm models. Sorption studies were carried out in a batch competitive experiments, in the pH range 1-8, at 298 K. Obtained results indicate that 92% of Re(VII) and 98% of Mo(VI) were sorbed at pH 2.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Alloys and Compounds",
title = "Selective magnetic GMA based potential sorbents for molybdenum and rhenium sorption",
pages = "50-38",
volume = "705",
doi = "10.1016/j.jallcom.2017.02.108"
}
Marković, B. M., Vuković, Z. M., Spasojević, V., Kusigerski, V., Pavlović, V. B., Onjia, A.,& Nastasović, A.. (2017). Selective magnetic GMA based potential sorbents for molybdenum and rhenium sorption. in Journal of Alloys and Compounds
Elsevier Science Sa, Lausanne., 705, 38-50.
https://doi.org/10.1016/j.jallcom.2017.02.108
Marković BM, Vuković ZM, Spasojević V, Kusigerski V, Pavlović VB, Onjia A, Nastasović A. Selective magnetic GMA based potential sorbents for molybdenum and rhenium sorption. in Journal of Alloys and Compounds. 2017;705:38-50.
doi:10.1016/j.jallcom.2017.02.108 .
Marković, Bojana M., Vuković, Zorica M., Spasojević, Vojislav, Kusigerski, Vladan, Pavlović, Vladimir B., Onjia, Antonije, Nastasović, Aleksandra, "Selective magnetic GMA based potential sorbents for molybdenum and rhenium sorption" in Journal of Alloys and Compounds, 705 (2017):38-50,
https://doi.org/10.1016/j.jallcom.2017.02.108 . .
29
21
30

Quantifying shapes of nanoparticles using modified circularity and ellipticity measures

Kopanja, Lazar; Žunić, Dragiša; Lončar, Boris B.; Gyergyek, Sašo; Tadić, Marin

(2016)

TY  - JOUR
AU  - Kopanja, Lazar
AU  - Žunić, Dragiša
AU  - Lončar, Boris B.
AU  - Gyergyek, Sašo
AU  - Tadić, Marin
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5837
AB  - We propose using a new circularity measure, and an ellipticity measure. Observing an example of hematite (alpha-Fe2O3) nanoparticles, we compared and discussed a new circularity measure, with a standard measure. It has been shown that using the new measure gives better results when working with low-quality images or with low-resolution images. Using the same images modified ellipticity measure has also been discussed. We have analyzed the problems arising from computing the elongation of a shape. We have shown that the standard approach to compute elongation is not appropriate for some particles. We presented the application of the modified approach to solve this problem. (C) 2016 Elsevier Ltd. All rights reserved.
T2  - Measurement
T1  - Quantifying shapes of nanoparticles using modified circularity and ellipticity measures
EP  - 263
SP  - 252
VL  - 92
DO  - 10.1016/j.measurement.2016.06.021
ER  - 
@article{
author = "Kopanja, Lazar and Žunić, Dragiša and Lončar, Boris B. and Gyergyek, Sašo and Tadić, Marin",
year = "2016",
abstract = "We propose using a new circularity measure, and an ellipticity measure. Observing an example of hematite (alpha-Fe2O3) nanoparticles, we compared and discussed a new circularity measure, with a standard measure. It has been shown that using the new measure gives better results when working with low-quality images or with low-resolution images. Using the same images modified ellipticity measure has also been discussed. We have analyzed the problems arising from computing the elongation of a shape. We have shown that the standard approach to compute elongation is not appropriate for some particles. We presented the application of the modified approach to solve this problem. (C) 2016 Elsevier Ltd. All rights reserved.",
journal = "Measurement",
title = "Quantifying shapes of nanoparticles using modified circularity and ellipticity measures",
pages = "263-252",
volume = "92",
doi = "10.1016/j.measurement.2016.06.021"
}
Kopanja, L., Žunić, D., Lončar, B. B., Gyergyek, S.,& Tadić, M.. (2016). Quantifying shapes of nanoparticles using modified circularity and ellipticity measures. in Measurement, 92, 252-263.
https://doi.org/10.1016/j.measurement.2016.06.021
Kopanja L, Žunić D, Lončar BB, Gyergyek S, Tadić M. Quantifying shapes of nanoparticles using modified circularity and ellipticity measures. in Measurement. 2016;92:252-263.
doi:10.1016/j.measurement.2016.06.021 .
Kopanja, Lazar, Žunić, Dragiša, Lončar, Boris B., Gyergyek, Sašo, Tadić, Marin, "Quantifying shapes of nanoparticles using modified circularity and ellipticity measures" in Measurement, 92 (2016):252-263,
https://doi.org/10.1016/j.measurement.2016.06.021 . .
32
25
30

Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis

Kopanja, Lazar; Kralj, Slavko; Žunić, Dragiša; Lončar, Boris B.; Tadić, Marin

(Elsevier, 2016)

TY  - JOUR
AU  - Kopanja, Lazar
AU  - Kralj, Slavko
AU  - Žunić, Dragiša
AU  - Lončar, Boris B.
AU  - Tadić, Marin
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5810
AB  - For the first time, particle shape analysis of silica coated iron oxide (maghemite/magnetite) nanoparticle clusters (core-shell nanostructures) is discussed using computational methods. We analyzed three samples of core-shell nanostructures synthesized with different thickness of the silica shell. A new computational method is presented and successfully applied to the segmentation of the core-shell nanoparticles, as one of the main problems in image analysis of the TEM micrographs. We have introduced the circularity coefficient, marked with k(circ) and defined as the ratio of circularity measure C-2(S) of nanoparticles core and circularity measure core-shell nanoparticles in order to answer the question how the shell affects the overall shape of the final core-shell structure, with respect to circularity. More precisely, the circularity coefficient determines whether the circularity of the core-shell nanoparticle is higher, lower or equal to the circularity of the core. We have also determined the shells share in the overall area of the core-shell nanoparticle. The core-shell nanoparticle clusters here investigated exhibit superparamagnetic properties at room temperature, thus emphasizing their potential for use in practical applications such as in biomedical and particle separation. We show that the saturation magnetization strength can be easily adjusted by controlling the thickness of the silica shell. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
PB  - Elsevier
T2  - Ceramics International
T1  - Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis
EP  - 10984
IS  - 9
SP  - 10976
VL  - 42
DO  - 10.1016/j.ceramint.2016.03.235
ER  - 
@article{
author = "Kopanja, Lazar and Kralj, Slavko and Žunić, Dragiša and Lončar, Boris B. and Tadić, Marin",
year = "2016",
abstract = "For the first time, particle shape analysis of silica coated iron oxide (maghemite/magnetite) nanoparticle clusters (core-shell nanostructures) is discussed using computational methods. We analyzed three samples of core-shell nanostructures synthesized with different thickness of the silica shell. A new computational method is presented and successfully applied to the segmentation of the core-shell nanoparticles, as one of the main problems in image analysis of the TEM micrographs. We have introduced the circularity coefficient, marked with k(circ) and defined as the ratio of circularity measure C-2(S) of nanoparticles core and circularity measure core-shell nanoparticles in order to answer the question how the shell affects the overall shape of the final core-shell structure, with respect to circularity. More precisely, the circularity coefficient determines whether the circularity of the core-shell nanoparticle is higher, lower or equal to the circularity of the core. We have also determined the shells share in the overall area of the core-shell nanoparticle. The core-shell nanoparticle clusters here investigated exhibit superparamagnetic properties at room temperature, thus emphasizing their potential for use in practical applications such as in biomedical and particle separation. We show that the saturation magnetization strength can be easily adjusted by controlling the thickness of the silica shell. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis",
pages = "10984-10976",
number = "9",
volume = "42",
doi = "10.1016/j.ceramint.2016.03.235"
}
Kopanja, L., Kralj, S., Žunić, D., Lončar, B. B.,& Tadić, M.. (2016). Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis. in Ceramics International
Elsevier., 42(9), 10976-10984.
https://doi.org/10.1016/j.ceramint.2016.03.235
Kopanja L, Kralj S, Žunić D, Lončar BB, Tadić M. Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis. in Ceramics International. 2016;42(9):10976-10984.
doi:10.1016/j.ceramint.2016.03.235 .
Kopanja, Lazar, Kralj, Slavko, Žunić, Dragiša, Lončar, Boris B., Tadić, Marin, "Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis" in Ceramics International, 42, no. 9 (2016):10976-10984,
https://doi.org/10.1016/j.ceramint.2016.03.235 . .
61
43
54

The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite

Kuzmanović, Maja; Jugović, Dragana; Mitrić, Miodrag; Jokić, Bojan; Cvjetićanin, Nikola; Uskoković, Dragan

(Elsevier Ltd., 2015)

TY  - JOUR
AU  - Kuzmanović, Maja
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Jokić, Bojan
AU  - Cvjetićanin, Nikola
AU  - Uskoković, Dragan
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5807
AB  - Olivine-type LiFePO4 composite powders with carbon were synthesized by freeze drying and subsequent thermal annealing. The main purpose of the research is to explore how various dicarboxylic acids as carbon sources influence the electrochemical properties of the resulting composites. Three dicarboxylic acids (oxalic, malonic, and adipic) were used as a carbon source. The synthesis was followed by X-ray powder diffraction, scanning electron microscopy, particle-size analysis, and electrochemical experiments. It is shown that the amount of the in situ formed carbon depends on the thermal behaviour of the acids in inert atmosphere rather than on their carbon content. Cyclic voltammetry experiments and galvanostatic cycling illustrate the behaviour of different powders: the powder obtained with oxalic acid yields the highest discharge capacity at small currents, while the one obtained with adipic acid shows better high-current response. Malonic acid has turned out to be a poor carbon source and it consequently yields powder with poor electrochemical performance. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
PB  - Elsevier Ltd.
T2  - Ceramics International
T1  - The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite
EP  - 6758
IS  - 5
SP  - 6753
VL  - 41
DO  - 10.1016/j.ceramint.2015.01.121
UR  - https://hdl.handle.net/21.15107/rcub_dais_2590
ER  - 
@article{
author = "Kuzmanović, Maja and Jugović, Dragana and Mitrić, Miodrag and Jokić, Bojan and Cvjetićanin, Nikola and Uskoković, Dragan",
year = "2015",
abstract = "Olivine-type LiFePO4 composite powders with carbon were synthesized by freeze drying and subsequent thermal annealing. The main purpose of the research is to explore how various dicarboxylic acids as carbon sources influence the electrochemical properties of the resulting composites. Three dicarboxylic acids (oxalic, malonic, and adipic) were used as a carbon source. The synthesis was followed by X-ray powder diffraction, scanning electron microscopy, particle-size analysis, and electrochemical experiments. It is shown that the amount of the in situ formed carbon depends on the thermal behaviour of the acids in inert atmosphere rather than on their carbon content. Cyclic voltammetry experiments and galvanostatic cycling illustrate the behaviour of different powders: the powder obtained with oxalic acid yields the highest discharge capacity at small currents, while the one obtained with adipic acid shows better high-current response. Malonic acid has turned out to be a poor carbon source and it consequently yields powder with poor electrochemical performance. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.",
publisher = "Elsevier Ltd.",
journal = "Ceramics International",
title = "The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite",
pages = "6758-6753",
number = "5",
volume = "41",
doi = "10.1016/j.ceramint.2015.01.121",
url = "https://hdl.handle.net/21.15107/rcub_dais_2590"
}
Kuzmanović, M., Jugović, D., Mitrić, M., Jokić, B., Cvjetićanin, N.,& Uskoković, D.. (2015). The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite. in Ceramics International
Elsevier Ltd.., 41(5), 6753-6758.
https://doi.org/10.1016/j.ceramint.2015.01.121
https://hdl.handle.net/21.15107/rcub_dais_2590
Kuzmanović M, Jugović D, Mitrić M, Jokić B, Cvjetićanin N, Uskoković D. The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite. in Ceramics International. 2015;41(5):6753-6758.
doi:10.1016/j.ceramint.2015.01.121
https://hdl.handle.net/21.15107/rcub_dais_2590 .
Kuzmanović, Maja, Jugović, Dragana, Mitrić, Miodrag, Jokić, Bojan, Cvjetićanin, Nikola, Uskoković, Dragan, "The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite" in Ceramics International, 41, no. 5 (2015):6753-6758,
https://doi.org/10.1016/j.ceramint.2015.01.121 .,
https://hdl.handle.net/21.15107/rcub_dais_2590 .
15
15
16

The porosity and roughness of electrodeposited calcium phosphate coatings in simulated body fluid

Đošić, Marija; Mitrić, Miodrag; Mišković-Stanković, Vesna

(Srpsko hemijsko društvo, Beograd, 2015)

TY  - JOUR
AU  - Đošić, Marija
AU  - Mitrić, Miodrag
AU  - Mišković-Stanković, Vesna
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3010
AB  - Calcium phosphate coatings were electrochemically deposited on titanium from an aqueous solution of Ca(NO3)(2) and NH4H2PO4 at a current density of 10 mA cm(-2) for a deposition time of 15 mm. The obtained brushite coatings (CaHPO4 center dot 2H(2)O), were converted to hydroxyapatite (HA) by soaking in simulated body fluid (SBF) for 2, 7 and 14 days. The brushite and hydroxyapatite coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was shown that increasing the soaking time increased the porosity, roughness and crystallite domain size of the HA coatings and decreased the unit cell parameters and unit cell volume, while the mean pore area of HA was unaffected. The calcium and phosphorus ions concentrations in SBF were determined by atomic absorption spectroscopy (AAS) and UV-Vis spectroscopy, respectively, and a mechanism of HA growth based on dissolution-precipitation was proposed.
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - The porosity and roughness of electrodeposited calcium phosphate coatings in simulated body fluid
EP  - 251
IS  - 2
SP  - 237
VL  - 80
DO  - 10.2298/JSC140626098D
ER  - 
@article{
author = "Đošić, Marija and Mitrić, Miodrag and Mišković-Stanković, Vesna",
year = "2015",
abstract = "Calcium phosphate coatings were electrochemically deposited on titanium from an aqueous solution of Ca(NO3)(2) and NH4H2PO4 at a current density of 10 mA cm(-2) for a deposition time of 15 mm. The obtained brushite coatings (CaHPO4 center dot 2H(2)O), were converted to hydroxyapatite (HA) by soaking in simulated body fluid (SBF) for 2, 7 and 14 days. The brushite and hydroxyapatite coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was shown that increasing the soaking time increased the porosity, roughness and crystallite domain size of the HA coatings and decreased the unit cell parameters and unit cell volume, while the mean pore area of HA was unaffected. The calcium and phosphorus ions concentrations in SBF were determined by atomic absorption spectroscopy (AAS) and UV-Vis spectroscopy, respectively, and a mechanism of HA growth based on dissolution-precipitation was proposed.",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "The porosity and roughness of electrodeposited calcium phosphate coatings in simulated body fluid",
pages = "251-237",
number = "2",
volume = "80",
doi = "10.2298/JSC140626098D"
}
Đošić, M., Mitrić, M.,& Mišković-Stanković, V.. (2015). The porosity and roughness of electrodeposited calcium phosphate coatings in simulated body fluid. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 80(2), 237-251.
https://doi.org/10.2298/JSC140626098D
Đošić M, Mitrić M, Mišković-Stanković V. The porosity and roughness of electrodeposited calcium phosphate coatings in simulated body fluid. in Journal of the Serbian Chemical Society. 2015;80(2):237-251.
doi:10.2298/JSC140626098D .
Đošić, Marija, Mitrić, Miodrag, Mišković-Stanković, Vesna, "The porosity and roughness of electrodeposited calcium phosphate coatings in simulated body fluid" in Journal of the Serbian Chemical Society, 80, no. 2 (2015):237-251,
https://doi.org/10.2298/JSC140626098D . .
1
12
8
13

Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap

Validžić, I.Lj.; Mitrić, M.; Abazović, N.D.; Jokić, B.M.; Milošević, A.S.; Popović, Z.S.; Vukajlović, F.R.

(IOP Publishing Ltd., 2014)

TY  - JOUR
AU  - Validžić, I.Lj.
AU  - Mitrić, M.
AU  - Abazović, N.D.
AU  - Jokić, B.M.
AU  - Milošević, A.S.
AU  - Popović, Z.S.
AU  - Vukajlović, F.R.
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5801
AB  - We report a simple colloidal synthesis of two types of Sb2S 3 nanowires with small band gap and high aspect ratio. Field-emission scanning electron and transmission electron microscopies confirmed formation of high aspect ratio Sb2S3 nanowires, separated in the form of bundles and coalesced with each other in long bars. Diffuse reflectance and absorption spectroscopies revealed that the optical band-gap energies of the synthesized nanowires separated in the form of bundles are 1.56 and 1.59 eV, and coalesced with each other in long bars are 1.36 and 1.28 eV, respectively. The structure refinement showed that Sb2S3 powders belong to the orthorhombic structure with space group Pnma (no. 62). It was found that Sb2S3 nanowires separated in the form of bundles predominantly grow along the [0 1 0] direction being in the needle-like shape. The nanowires coalesced with each other in long bars rise in the form of long bars, are ribbon-like in shape and have expressed {1 0 1} facets which grow along the [0 1 0] direction. No peaks in photoluminescence spectra were observed in the spectral range from 250 to 600 nm. In order to shed more light on the experimental results concerning the band-gap energies and, in the literature generally poorly investigated electronic properties of the synthesized material, we performed theoretical calculations of the electronic structure and optical properties of the Sb2S3 samples synthesized here. This was done on the basis of density functional theory with the generalized gradient approximation, and also with an improved version of the exchange potential suggested recently by Tran and Blaha. The main characteristic is the significant improvement of the band gap value.
PB  - IOP Publishing Ltd.
T2  - Semiconductor Science and Technology
T1  - Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap
IS  - 3
SP  - 035007
VL  - 29
DO  - 10.1088/0268-1242/29/3/035007
ER  - 
@article{
author = "Validžić, I.Lj. and Mitrić, M. and Abazović, N.D. and Jokić, B.M. and Milošević, A.S. and Popović, Z.S. and Vukajlović, F.R.",
year = "2014",
abstract = "We report a simple colloidal synthesis of two types of Sb2S 3 nanowires with small band gap and high aspect ratio. Field-emission scanning electron and transmission electron microscopies confirmed formation of high aspect ratio Sb2S3 nanowires, separated in the form of bundles and coalesced with each other in long bars. Diffuse reflectance and absorption spectroscopies revealed that the optical band-gap energies of the synthesized nanowires separated in the form of bundles are 1.56 and 1.59 eV, and coalesced with each other in long bars are 1.36 and 1.28 eV, respectively. The structure refinement showed that Sb2S3 powders belong to the orthorhombic structure with space group Pnma (no. 62). It was found that Sb2S3 nanowires separated in the form of bundles predominantly grow along the [0 1 0] direction being in the needle-like shape. The nanowires coalesced with each other in long bars rise in the form of long bars, are ribbon-like in shape and have expressed {1 0 1} facets which grow along the [0 1 0] direction. No peaks in photoluminescence spectra were observed in the spectral range from 250 to 600 nm. In order to shed more light on the experimental results concerning the band-gap energies and, in the literature generally poorly investigated electronic properties of the synthesized material, we performed theoretical calculations of the electronic structure and optical properties of the Sb2S3 samples synthesized here. This was done on the basis of density functional theory with the generalized gradient approximation, and also with an improved version of the exchange potential suggested recently by Tran and Blaha. The main characteristic is the significant improvement of the band gap value.",
publisher = "IOP Publishing Ltd.",
journal = "Semiconductor Science and Technology",
title = "Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap",
number = "3",
pages = "035007",
volume = "29",
doi = "10.1088/0268-1242/29/3/035007"
}
Validžić, I.Lj., Mitrić, M., Abazović, N.D., Jokić, B.M., Milošević, A.S., Popović, Z.S.,& Vukajlović, F.R.. (2014). Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap. in Semiconductor Science and Technology
IOP Publishing Ltd.., 29(3), 035007.
https://doi.org/10.1088/0268-1242/29/3/035007
Validžić I, Mitrić M, Abazović N, Jokić B, Milošević A, Popović Z, Vukajlović F. Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap. in Semiconductor Science and Technology. 2014;29(3):035007.
doi:10.1088/0268-1242/29/3/035007 .
Validžić, I.Lj., Mitrić, M., Abazović, N.D., Jokić, B.M., Milošević, A.S., Popović, Z.S., Vukajlović, F.R., "Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap" in Semiconductor Science and Technology, 29, no. 3 (2014):035007,
https://doi.org/10.1088/0268-1242/29/3/035007 . .
45
38
49

Synthesis, characterization and crystal structure of Cu(II) complex with a diimine-dioxime ligand, [Cu-2(LH)(2)](ClO4)(2). Influence of the weak Cu center dot center dot center dot O(perchlorate) interaction on the structure of the Cu2N2O2 metallocycle

Mirković, Marija D.; Nikolić, Nadežda S.; Mijin, Dušan; Avramov-Ivić, Milka; Kapor, Agneš; Tomić, Zoran D.

(Srpsko hemijsko društvo, Beograd, 2014)

TY  - JOUR
AU  - Mirković, Marija D.
AU  - Nikolić, Nadežda S.
AU  - Mijin, Dušan
AU  - Avramov-Ivić, Milka
AU  - Kapor, Agneš
AU  - Tomić, Zoran D.
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2808
AB  - The diimine dioxime ligand, 3,3'-(1,4-butanediyl-dinitrilo)bis-2-pentanone, 2,2'-dioxime (LH2), containing a N-4 donor set was prepared by the Schiff base condensation of 2-hydroxyimino-3-pentanone and 1,4-diaminobutane in two ways: in a protic and in an aprotic solvent. A higher yield of the (LH2) imine was obtained when the synthesis was performed using a protic solvent (C2H5OH) instead of aprotic benzene (78 and 30 %, respectively). The Cu(II) metal complex of diimine dioxime was synthesized in CH3OH from the perchlorate salt of LH2 in a 1:1 mole ratio. The isolated complex was characterized by the elemental analysis, IR spectroscopy and cyclic voltammetry. The structure of [Cu-2(LH)(2)](ClO4)(2) was determined by single-crystal X-ray diffraction analysis. Comparison with structurally related diimine dioxime Cu(II) complexes revealed the influence of a weak Cu center dot center dot center dot O(perchlorate) interaction on the geometry of the metallocycle.
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Synthesis, characterization and crystal structure of Cu(II) complex with a diimine-dioxime ligand, [Cu-2(LH)(2)](ClO4)(2). Influence of the weak Cu center dot center dot center dot O(perchlorate) interaction on the structure of the Cu2N2O2 metallocycle
EP  - 556
IS  - 5
SP  - 545
VL  - 79
DO  - 10.2298/JSC130910120M
ER  - 
@article{
author = "Mirković, Marija D. and Nikolić, Nadežda S. and Mijin, Dušan and Avramov-Ivić, Milka and Kapor, Agneš and Tomić, Zoran D.",
year = "2014",
abstract = "The diimine dioxime ligand, 3,3'-(1,4-butanediyl-dinitrilo)bis-2-pentanone, 2,2'-dioxime (LH2), containing a N-4 donor set was prepared by the Schiff base condensation of 2-hydroxyimino-3-pentanone and 1,4-diaminobutane in two ways: in a protic and in an aprotic solvent. A higher yield of the (LH2) imine was obtained when the synthesis was performed using a protic solvent (C2H5OH) instead of aprotic benzene (78 and 30 %, respectively). The Cu(II) metal complex of diimine dioxime was synthesized in CH3OH from the perchlorate salt of LH2 in a 1:1 mole ratio. The isolated complex was characterized by the elemental analysis, IR spectroscopy and cyclic voltammetry. The structure of [Cu-2(LH)(2)](ClO4)(2) was determined by single-crystal X-ray diffraction analysis. Comparison with structurally related diimine dioxime Cu(II) complexes revealed the influence of a weak Cu center dot center dot center dot O(perchlorate) interaction on the geometry of the metallocycle.",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Synthesis, characterization and crystal structure of Cu(II) complex with a diimine-dioxime ligand, [Cu-2(LH)(2)](ClO4)(2). Influence of the weak Cu center dot center dot center dot O(perchlorate) interaction on the structure of the Cu2N2O2 metallocycle",
pages = "556-545",
number = "5",
volume = "79",
doi = "10.2298/JSC130910120M"
}
Mirković, M. D., Nikolić, N. S., Mijin, D., Avramov-Ivić, M., Kapor, A.,& Tomić, Z. D.. (2014). Synthesis, characterization and crystal structure of Cu(II) complex with a diimine-dioxime ligand, [Cu-2(LH)(2)](ClO4)(2). Influence of the weak Cu center dot center dot center dot O(perchlorate) interaction on the structure of the Cu2N2O2 metallocycle. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 79(5), 545-556.
https://doi.org/10.2298/JSC130910120M
Mirković MD, Nikolić NS, Mijin D, Avramov-Ivić M, Kapor A, Tomić ZD. Synthesis, characterization and crystal structure of Cu(II) complex with a diimine-dioxime ligand, [Cu-2(LH)(2)](ClO4)(2). Influence of the weak Cu center dot center dot center dot O(perchlorate) interaction on the structure of the Cu2N2O2 metallocycle. in Journal of the Serbian Chemical Society. 2014;79(5):545-556.
doi:10.2298/JSC130910120M .
Mirković, Marija D., Nikolić, Nadežda S., Mijin, Dušan, Avramov-Ivić, Milka, Kapor, Agneš, Tomić, Zoran D., "Synthesis, characterization and crystal structure of Cu(II) complex with a diimine-dioxime ligand, [Cu-2(LH)(2)](ClO4)(2). Influence of the weak Cu center dot center dot center dot O(perchlorate) interaction on the structure of the Cu2N2O2 metallocycle" in Journal of the Serbian Chemical Society, 79, no. 5 (2014):545-556,
https://doi.org/10.2298/JSC130910120M . .
1
1
1

Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition

Eraković, Sanja; Janković, Ana; Veljović, Đorđe; Palcevskis, Eriks; Mitrić, Miodrag; Stevanović, Tatjana; Janaćković, Đorđe; Mišković-Stanković, Vesna

(Amer Chemical Soc, Washington, 2013)

TY  - JOUR
AU  - Eraković, Sanja
AU  - Janković, Ana
AU  - Veljović, Đorđe
AU  - Palcevskis, Eriks
AU  - Mitrić, Miodrag
AU  - Stevanović, Tatjana
AU  - Janaćković, Đorđe
AU  - Mišković-Stanković, Vesna
PY  - 2013
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2509
AB  - Hydroxyapatite is the most suitable biocompatible material for bone implant coatings. However, its brittleness is a major obstacle, and that is why, recently, research focused on creating composites with various biopolymers. In this study, hydroxyapatite coatings were modified with lignin in order to attain corrosion stability and surface porosity that enables osteogenesis. Incorporating silver, well known for its antimicrobial properties, seemed the best strategy for avoiding possible infections. The silver/hydroxyapatite (Ag/HAP) and silver/hydroxyapatite/lignin (Ag/HAP/Lig) coatings were cathaphoretically deposited on titanium from ethanol suspensions, sintered at 900 degrees C in Ar, and characterized by X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, attenuated total reflection Fourier transform infrared, and X-ray photoelectron spectroscopy. The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubo's simulated body fluid (SBF) at 37 degrees C using electrochemical impedance spectroscopy. Bioactivity was estimated by immersion in SBF to evaluate the formation of hydroxyapatite on the coating surface. A microcrystalline structure of newly formed plate-shaped carbonate-hydroxyapatite was detected after only 7 days, indicating enhanced bioactive behavior. Both coatings had good corrosion stability during a prolonged immersion time. Among the two, the Ag/HAP/Lig coating had a homogeneous surface, less roughness, and low values of contact angle.
PB  - Amer Chemical Soc, Washington
T2  - Journal of Physical Chemistry B
T1  - Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition
EP  - 1643
IS  - 6
SP  - 1633
VL  - 117
DO  - 10.1021/jp305252a
ER  - 
@article{
author = "Eraković, Sanja and Janković, Ana and Veljović, Đorđe and Palcevskis, Eriks and Mitrić, Miodrag and Stevanović, Tatjana and Janaćković, Đorđe and Mišković-Stanković, Vesna",
year = "2013",
abstract = "Hydroxyapatite is the most suitable biocompatible material for bone implant coatings. However, its brittleness is a major obstacle, and that is why, recently, research focused on creating composites with various biopolymers. In this study, hydroxyapatite coatings were modified with lignin in order to attain corrosion stability and surface porosity that enables osteogenesis. Incorporating silver, well known for its antimicrobial properties, seemed the best strategy for avoiding possible infections. The silver/hydroxyapatite (Ag/HAP) and silver/hydroxyapatite/lignin (Ag/HAP/Lig) coatings were cathaphoretically deposited on titanium from ethanol suspensions, sintered at 900 degrees C in Ar, and characterized by X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, attenuated total reflection Fourier transform infrared, and X-ray photoelectron spectroscopy. The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubo's simulated body fluid (SBF) at 37 degrees C using electrochemical impedance spectroscopy. Bioactivity was estimated by immersion in SBF to evaluate the formation of hydroxyapatite on the coating surface. A microcrystalline structure of newly formed plate-shaped carbonate-hydroxyapatite was detected after only 7 days, indicating enhanced bioactive behavior. Both coatings had good corrosion stability during a prolonged immersion time. Among the two, the Ag/HAP/Lig coating had a homogeneous surface, less roughness, and low values of contact angle.",
publisher = "Amer Chemical Soc, Washington",
journal = "Journal of Physical Chemistry B",
title = "Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition",
pages = "1643-1633",
number = "6",
volume = "117",
doi = "10.1021/jp305252a"
}
Eraković, S., Janković, A., Veljović, Đ., Palcevskis, E., Mitrić, M., Stevanović, T., Janaćković, Đ.,& Mišković-Stanković, V.. (2013). Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition. in Journal of Physical Chemistry B
Amer Chemical Soc, Washington., 117(6), 1633-1643.
https://doi.org/10.1021/jp305252a
Eraković S, Janković A, Veljović Đ, Palcevskis E, Mitrić M, Stevanović T, Janaćković Đ, Mišković-Stanković V. Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition. in Journal of Physical Chemistry B. 2013;117(6):1633-1643.
doi:10.1021/jp305252a .
Eraković, Sanja, Janković, Ana, Veljović, Đorđe, Palcevskis, Eriks, Mitrić, Miodrag, Stevanović, Tatjana, Janaćković, Đorđe, Mišković-Stanković, Vesna, "Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition" in Journal of Physical Chemistry B, 117, no. 6 (2013):1633-1643,
https://doi.org/10.1021/jp305252a . .
89
73
95

Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Jokić, Bojan M.; Vukomanovic, Marija; Suvorov, Danilo; Uskoković, Dragan

(2013)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Jokić, Bojan M.
AU  - Vukomanovic, Marija
AU  - Suvorov, Danilo
AU  - Uskoković, Dragan
PY  - 2013
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5712
AB  - In this study, nanocrystalline LiFePO4/C composite powder has been synthesized via a cellulose matrix-assisted method. In an experiment conducted under extreme conditions involving rapid heating, short high-temperature delay, and subsequent quenching, well-ordered 35-nm crystallites have been obtained within 5 min. A quantitative filter paper has served both as a template and carbon source. It degrades pyrolytically through fragmentation reactions and formation of volatiles when exposed to rapid heating, which further has an impact on powder morphology, as revealed by electron microscopy studies. The electrochemical measurements in terms of galvanostatic cycling have shown that the approach presented in this study may enable to reach good rate capability and excellent cycling stability. (C) 2013 Elsevier B.V. All rights reserved.
T2  - Powder Technology
T1  - Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method
EP  - 544
SP  - 539
VL  - 246
DO  - 10.1016/j.powtec.2013.06.021
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Jokić, Bojan M. and Vukomanovic, Marija and Suvorov, Danilo and Uskoković, Dragan",
year = "2013",
abstract = "In this study, nanocrystalline LiFePO4/C composite powder has been synthesized via a cellulose matrix-assisted method. In an experiment conducted under extreme conditions involving rapid heating, short high-temperature delay, and subsequent quenching, well-ordered 35-nm crystallites have been obtained within 5 min. A quantitative filter paper has served both as a template and carbon source. It degrades pyrolytically through fragmentation reactions and formation of volatiles when exposed to rapid heating, which further has an impact on powder morphology, as revealed by electron microscopy studies. The electrochemical measurements in terms of galvanostatic cycling have shown that the approach presented in this study may enable to reach good rate capability and excellent cycling stability. (C) 2013 Elsevier B.V. All rights reserved.",
journal = "Powder Technology",
title = "Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method",
pages = "544-539",
volume = "246",
doi = "10.1016/j.powtec.2013.06.021"
}
Jugović, D., Mitrić, M., Milović, M., Jokić, B. M., Vukomanovic, M., Suvorov, D.,& Uskoković, D.. (2013). Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method. in Powder Technology, 246, 539-544.
https://doi.org/10.1016/j.powtec.2013.06.021
Jugović D, Mitrić M, Milović M, Jokić BM, Vukomanovic M, Suvorov D, Uskoković D. Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method. in Powder Technology. 2013;246:539-544.
doi:10.1016/j.powtec.2013.06.021 .
Jugović, Dragana, Mitrić, Miodrag, Milović, Miloš, Jokić, Bojan M., Vukomanovic, Marija, Suvorov, Danilo, Uskoković, Dragan, "Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method" in Powder Technology, 246 (2013):539-544,
https://doi.org/10.1016/j.powtec.2013.06.021 . .
7
7
9

Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites

Nikolić, Aleksandar S.; Jović, Nataša G.; Rogan, Jelena; Kremenović, Aleksandar; Ristić, Mira; Meden, A.; Antić, Bratislav

(Elsevier Sci Ltd, Oxford, 2013)

TY  - JOUR
AU  - Nikolić, Aleksandar S.
AU  - Jović, Nataša G.
AU  - Rogan, Jelena
AU  - Kremenović, Aleksandar
AU  - Ristić, Mira
AU  - Meden, A.
AU  - Antić, Bratislav
PY  - 2013
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2403
AB  - Different synthesis methods for the preparation of nanocrystalline nickel ferrites are reported: the thermal decomposition of precursors, made of: (i) metal-nitrate salts with carboxylic acids (citric, malonic and tartaric), and (ii) metal-nitrate salts and polyethylene glycol (PEG), in the presence of potassium chloride as a capping agent. The as-prepared gel precursors were characterized by TGA/DTA, while the samples obtained after annealing at 450 degrees C were investigated by FTIR, FESEM, XRD and Mossbauer spectroscopy. Regardless of the type of carboxylic acid used, nanocrystallites prepared by (i) method are similar in size (11-16 nm), while the method (ii) gives crystallites similar to 33 nm in size with negligible microstrain. The differences in the lattice parameter, ranging from 8.3369(2) to 8.3574(2) angstrom, result from cation distribution, nonstoichiometry and structural imperfections in the nickel ferrite nanoparticles. The Mossbauer spectra analysis indicates existence of large distortions of tetrahedral and octahedral sites in these spinel compounds.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites
EP  - 6688
IS  - 6
SP  - 6681
VL  - 39
DO  - 10.1016/j.ceramint.2013.01.106
ER  - 
@article{
author = "Nikolić, Aleksandar S. and Jović, Nataša G. and Rogan, Jelena and Kremenović, Aleksandar and Ristić, Mira and Meden, A. and Antić, Bratislav",
year = "2013",
abstract = "Different synthesis methods for the preparation of nanocrystalline nickel ferrites are reported: the thermal decomposition of precursors, made of: (i) metal-nitrate salts with carboxylic acids (citric, malonic and tartaric), and (ii) metal-nitrate salts and polyethylene glycol (PEG), in the presence of potassium chloride as a capping agent. The as-prepared gel precursors were characterized by TGA/DTA, while the samples obtained after annealing at 450 degrees C were investigated by FTIR, FESEM, XRD and Mossbauer spectroscopy. Regardless of the type of carboxylic acid used, nanocrystallites prepared by (i) method are similar in size (11-16 nm), while the method (ii) gives crystallites similar to 33 nm in size with negligible microstrain. The differences in the lattice parameter, ranging from 8.3369(2) to 8.3574(2) angstrom, result from cation distribution, nonstoichiometry and structural imperfections in the nickel ferrite nanoparticles. The Mossbauer spectra analysis indicates existence of large distortions of tetrahedral and octahedral sites in these spinel compounds.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites",
pages = "6688-6681",
number = "6",
volume = "39",
doi = "10.1016/j.ceramint.2013.01.106"
}
Nikolić, A. S., Jović, N. G., Rogan, J., Kremenović, A., Ristić, M., Meden, A.,& Antić, B.. (2013). Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites. in Ceramics International
Elsevier Sci Ltd, Oxford., 39(6), 6681-6688.
https://doi.org/10.1016/j.ceramint.2013.01.106
Nikolić AS, Jović NG, Rogan J, Kremenović A, Ristić M, Meden A, Antić B. Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites. in Ceramics International. 2013;39(6):6681-6688.
doi:10.1016/j.ceramint.2013.01.106 .
Nikolić, Aleksandar S., Jović, Nataša G., Rogan, Jelena, Kremenović, Aleksandar, Ristić, Mira, Meden, A., Antić, Bratislav, "Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites" in Ceramics International, 39, no. 6 (2013):6681-6688,
https://doi.org/10.1016/j.ceramint.2013.01.106 . .
16
16
16

Structural and optical characterization of hemimorphite with flower-like morphology synthesized by a novel low-temperature method

Validžić, Ivana Lj.; Mitrić, Miodrag; Jokić, Bojan M.; Čomor, Mirjana

(2012)

TY  - JOUR
AU  - Validžić, Ivana Lj.
AU  - Mitrić, Miodrag
AU  - Jokić, Bojan M.
AU  - Čomor, Mirjana
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5739
AB  - We report on novel, low temperature synthesis of well crystallized hemimorphite zinc silicate Zn4Si2O7(OH)(2)(H2O) (ZSO) with flower-like morphology, via one-pot method that includes the assistance of a non-ionic block copolymer. The morphology of the synthesized ZSO powder was observed by SEM and FESEM. The structure of the ZSO sample was refined down to the R-factor of 8.6%. The refinement revealed the ZSO powder that belongs to the orthorhombic system with space group Imm2, and ZnO nanoparticles as a minor phase in the synthesized powder. The photoluminescence (PL) and diffuse reflectance spectroscopy (DRS) measurements demonstrated optical properties of the minor ZnO phase. (C) 2012 Elsevier B.V. All rights reserved.
T2  - Materials Letters
T1  - Structural and optical characterization of hemimorphite with flower-like morphology synthesized by a novel low-temperature method
EP  - 141
SP  - 138
VL  - 85
DO  - 10.1016/j.matlet.2012.06.111
ER  - 
@article{
author = "Validžić, Ivana Lj. and Mitrić, Miodrag and Jokić, Bojan M. and Čomor, Mirjana",
year = "2012",
abstract = "We report on novel, low temperature synthesis of well crystallized hemimorphite zinc silicate Zn4Si2O7(OH)(2)(H2O) (ZSO) with flower-like morphology, via one-pot method that includes the assistance of a non-ionic block copolymer. The morphology of the synthesized ZSO powder was observed by SEM and FESEM. The structure of the ZSO sample was refined down to the R-factor of 8.6%. The refinement revealed the ZSO powder that belongs to the orthorhombic system with space group Imm2, and ZnO nanoparticles as a minor phase in the synthesized powder. The photoluminescence (PL) and diffuse reflectance spectroscopy (DRS) measurements demonstrated optical properties of the minor ZnO phase. (C) 2012 Elsevier B.V. All rights reserved.",
journal = "Materials Letters",
title = "Structural and optical characterization of hemimorphite with flower-like morphology synthesized by a novel low-temperature method",
pages = "141-138",
volume = "85",
doi = "10.1016/j.matlet.2012.06.111"
}
Validžić, I. Lj., Mitrić, M., Jokić, B. M.,& Čomor, M.. (2012). Structural and optical characterization of hemimorphite with flower-like morphology synthesized by a novel low-temperature method. in Materials Letters, 85, 138-141.
https://doi.org/10.1016/j.matlet.2012.06.111
Validžić IL, Mitrić M, Jokić BM, Čomor M. Structural and optical characterization of hemimorphite with flower-like morphology synthesized by a novel low-temperature method. in Materials Letters. 2012;85:138-141.
doi:10.1016/j.matlet.2012.06.111 .
Validžić, Ivana Lj., Mitrić, Miodrag, Jokić, Bojan M., Čomor, Mirjana, "Structural and optical characterization of hemimorphite with flower-like morphology synthesized by a novel low-temperature method" in Materials Letters, 85 (2012):138-141,
https://doi.org/10.1016/j.matlet.2012.06.111 . .
3
1
3