Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172054/RS//

Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (en)
Развој, карактеризација и примена наноструктуираних композитних катализатора и интерактивних носача у горивним спреговима и електролизи воде (sr)
Razvoj, karakterizacija i primena nanostruktuiranih kompozitnih katalizatora i interaktivnih nosača u gorivnim spregovima i elektrolizi vode (sr_RS)
Authors

Publications

A novel type of building material derived from the by-products of steel making industry

Nikolić, Irena; Milašević, Ivana; Cupara, Nevena; Ivanović, Ljubica; Đurović, Dijana; Marković, Smilja; Veselinović, Ljiljana; Radmilović, Vuk; Radmilović, Velimir R.

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Nikolić, Irena
AU  - Milašević, Ivana
AU  - Cupara, Nevena
AU  - Ivanović, Ljubica
AU  - Đurović, Dijana
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4178
AB  - Electric arc furnace slag (EAFS) and electric arc furnace dust (EAFD) are the waste materials generated during the iron and steel scrap remelting in electric arc furnace. EAFS is non-hazardous material which has found its application in different field of civil engineering. On the other hand, EAFD is classified as hazardous matreials due to the presence of heavy metals (Zn, Pb, Cu Cr and Cd) and their potential leaching into environment. Stabilization/solidification (S/S) of toxic waste is a widely investigated as simply method for production of stable product. Cement binder was mainly used for this purpose but important shift in the use of different waste materials as a cement replacement was observed. The aim of this study was to investigate the possibility of S/S of heavy metals from EAFD using the alkali activated binders based on EAFS. The alkali activated slag with a different content of EAFS was synthesised and characterized using the SEM/EDS, XRDP, FTIR. The binding of Zn into the reaction product of slag alkali activation was founded. The immobilization efficacy was evaluated using TCLP Method No. 1311 (USEPA) and EN 12457-2 (EULFD) leaching tests.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R
T1  - A novel type of building material derived from the by-products of steel making industry
SP  - 84
VL  - 84
UR  - https://hdl.handle.net/21.15107/rcub_technorep_4178
ER  - 
@conference{
author = "Nikolić, Irena and Milašević, Ivana and Cupara, Nevena and Ivanović, Ljubica and Đurović, Dijana and Marković, Smilja and Veselinović, Ljiljana and Radmilović, Vuk and Radmilović, Velimir R.",
year = "2019",
abstract = "Electric arc furnace slag (EAFS) and electric arc furnace dust (EAFD) are the waste materials generated during the iron and steel scrap remelting in electric arc furnace. EAFS is non-hazardous material which has found its application in different field of civil engineering. On the other hand, EAFD is classified as hazardous matreials due to the presence of heavy metals (Zn, Pb, Cu Cr and Cd) and their potential leaching into environment. Stabilization/solidification (S/S) of toxic waste is a widely investigated as simply method for production of stable product. Cement binder was mainly used for this purpose but important shift in the use of different waste materials as a cement replacement was observed. The aim of this study was to investigate the possibility of S/S of heavy metals from EAFD using the alkali activated binders based on EAFS. The alkali activated slag with a different content of EAFS was synthesised and characterized using the SEM/EDS, XRDP, FTIR. The binding of Zn into the reaction product of slag alkali activation was founded. The immobilization efficacy was evaluated using TCLP Method No. 1311 (USEPA) and EN 12457-2 (EULFD) leaching tests.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R",
title = "A novel type of building material derived from the by-products of steel making industry",
pages = "84",
volume = "84",
url = "https://hdl.handle.net/21.15107/rcub_technorep_4178"
}
Nikolić, I., Milašević, I., Cupara, N., Ivanović, L., Đurović, D., Marković, S., Veselinović, L., Radmilović, V.,& Radmilović, V. R.. (2019). A novel type of building material derived from the by-products of steel making industry. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R
Belgrade : Materials Research Society of Serbia., 84, 84.
https://hdl.handle.net/21.15107/rcub_technorep_4178
Nikolić I, Milašević I, Cupara N, Ivanović L, Đurović D, Marković S, Veselinović L, Radmilović V, Radmilović VR. A novel type of building material derived from the by-products of steel making industry. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R. 2019;84:84.
https://hdl.handle.net/21.15107/rcub_technorep_4178 .
Nikolić, Irena, Milašević, Ivana, Cupara, Nevena, Ivanović, Ljubica, Đurović, Dijana, Marković, Smilja, Veselinović, Ljiljana, Radmilović, Vuk, Radmilović, Velimir R., "A novel type of building material derived from the by-products of steel making industry" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R, 84 (2019):84,
https://hdl.handle.net/21.15107/rcub_technorep_4178 .

Assembling Mesoscale-Structured Organic Interfaces in Perovskite Photovoltaics

Hou, Yi; Xie, Chen; Radmilović, Vuk; Puscher, Bianka; Wu, Mingjian; Heumueller, Thomas; Karl, Andre; Li, Ning; Tang, Xiaofeng; Meng, Wei; Chen, Shi; Osvet, Andres; Guldi, Dirk; Spiecker, Erdmann; Radmilović, Velimir R.; Brabec, Christoph J.

(Wiley-VCH Verlag Gmbh, Weinheim, 2019)

TY  - JOUR
AU  - Hou, Yi
AU  - Xie, Chen
AU  - Radmilović, Vuk
AU  - Puscher, Bianka
AU  - Wu, Mingjian
AU  - Heumueller, Thomas
AU  - Karl, Andre
AU  - Li, Ning
AU  - Tang, Xiaofeng
AU  - Meng, Wei
AU  - Chen, Shi
AU  - Osvet, Andres
AU  - Guldi, Dirk
AU  - Spiecker, Erdmann
AU  - Radmilović, Velimir R.
AU  - Brabec, Christoph J.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4184
AB  - Mesoscale-structured materials offer broad opportunities in extremely diverse applications owing to their high surface areas, tunable surface energy, and large pore volume. These benefits may improve the performance of materials in terms of carrier density, charge transport, and stability. Although metal oxides-based mesoscale-structured materials, such as TiO2, predominantly hold the record efficiency in perovskite solar cells, high temperatures (above 400 degrees C) and limited materials choices still challenge the community. A novel route to fabricate organic-based mesoscale-structured interfaces (OMI) for perovskite solar cells using a low-temperature and green solvent-based process is presented here. The efficient infiltration of organic porous structures based on crystalline nanoparticles allows engineering efficient "n-i-p" and "p-i-n" perovskite solar cells with enhanced thermal stability, good performance, and excellent lateral homogeneity. The results show that this method is universal for multiple organic electronic materials, which opens the door to transform a wide variety of organic-based semiconductors into scalable n- or p-type porous interfaces for diverse advanced applications.
PB  - Wiley-VCH Verlag Gmbh, Weinheim
T2  - Advanced Materials
T1  - Assembling Mesoscale-Structured Organic Interfaces in Perovskite Photovoltaics
IS  - 8
VL  - 31
DO  - 10.1002/adma.201806516
ER  - 
@article{
author = "Hou, Yi and Xie, Chen and Radmilović, Vuk and Puscher, Bianka and Wu, Mingjian and Heumueller, Thomas and Karl, Andre and Li, Ning and Tang, Xiaofeng and Meng, Wei and Chen, Shi and Osvet, Andres and Guldi, Dirk and Spiecker, Erdmann and Radmilović, Velimir R. and Brabec, Christoph J.",
year = "2019",
abstract = "Mesoscale-structured materials offer broad opportunities in extremely diverse applications owing to their high surface areas, tunable surface energy, and large pore volume. These benefits may improve the performance of materials in terms of carrier density, charge transport, and stability. Although metal oxides-based mesoscale-structured materials, such as TiO2, predominantly hold the record efficiency in perovskite solar cells, high temperatures (above 400 degrees C) and limited materials choices still challenge the community. A novel route to fabricate organic-based mesoscale-structured interfaces (OMI) for perovskite solar cells using a low-temperature and green solvent-based process is presented here. The efficient infiltration of organic porous structures based on crystalline nanoparticles allows engineering efficient "n-i-p" and "p-i-n" perovskite solar cells with enhanced thermal stability, good performance, and excellent lateral homogeneity. The results show that this method is universal for multiple organic electronic materials, which opens the door to transform a wide variety of organic-based semiconductors into scalable n- or p-type porous interfaces for diverse advanced applications.",
publisher = "Wiley-VCH Verlag Gmbh, Weinheim",
journal = "Advanced Materials",
title = "Assembling Mesoscale-Structured Organic Interfaces in Perovskite Photovoltaics",
number = "8",
volume = "31",
doi = "10.1002/adma.201806516"
}
Hou, Y., Xie, C., Radmilović, V., Puscher, B., Wu, M., Heumueller, T., Karl, A., Li, N., Tang, X., Meng, W., Chen, S., Osvet, A., Guldi, D., Spiecker, E., Radmilović, V. R.,& Brabec, C. J.. (2019). Assembling Mesoscale-Structured Organic Interfaces in Perovskite Photovoltaics. in Advanced Materials
Wiley-VCH Verlag Gmbh, Weinheim., 31(8).
https://doi.org/10.1002/adma.201806516
Hou Y, Xie C, Radmilović V, Puscher B, Wu M, Heumueller T, Karl A, Li N, Tang X, Meng W, Chen S, Osvet A, Guldi D, Spiecker E, Radmilović VR, Brabec CJ. Assembling Mesoscale-Structured Organic Interfaces in Perovskite Photovoltaics. in Advanced Materials. 2019;31(8).
doi:10.1002/adma.201806516 .
Hou, Yi, Xie, Chen, Radmilović, Vuk, Puscher, Bianka, Wu, Mingjian, Heumueller, Thomas, Karl, Andre, Li, Ning, Tang, Xiaofeng, Meng, Wei, Chen, Shi, Osvet, Andres, Guldi, Dirk, Spiecker, Erdmann, Radmilović, Velimir R., Brabec, Christoph J., "Assembling Mesoscale-Structured Organic Interfaces in Perovskite Photovoltaics" in Advanced Materials, 31, no. 8 (2019),
https://doi.org/10.1002/adma.201806516 . .
1
18
11
16

Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag

Nikolić, Irena; Marković, Smilja; Veselinović, Ljiljana; Radmilović, Vuk; Janković-Častvan, Ivona; Radmilović, Velimir R.

(Elsevier Science Bv, Amsterdam, 2019)

TY  - JOUR
AU  - Nikolić, Irena
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Radmilović, Vuk
AU  - Janković-Častvan, Ivona
AU  - Radmilović, Velimir R.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4339
AB  - Pristine electric arc furnace slag (EAFS) as well as EAFS modified by alkali activation i.e. alkali activated slag (AAS) have found a novel application as adsorbents used in Cu2+ removal from sulfate solutions. The adsorption tests were carried in batch conditions and results have shown that alkali activation of EAFS enhances the Cu2+ adsorption. The adsorption process was found to follow a pseudo second-order kinetic model and occurs via formation of posnjakite (Cu-4(SO4)(OH)(6)center dot H2O) on the surface of both, EAFS and AAS. Enhanced adsorption properties of AAS, compared to EAFS, are attributed to a more porous structure, larger specific surface area and an increased number of surface groups involved in the binding of Cu2+.
PB  - Elsevier Science Bv, Amsterdam
T2  - Materials Letters
T1  - Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag
EP  - 188
SP  - 184
VL  - 235
DO  - 10.1016/j.matlet.2018.10.027
ER  - 
@article{
author = "Nikolić, Irena and Marković, Smilja and Veselinović, Ljiljana and Radmilović, Vuk and Janković-Častvan, Ivona and Radmilović, Velimir R.",
year = "2019",
abstract = "Pristine electric arc furnace slag (EAFS) as well as EAFS modified by alkali activation i.e. alkali activated slag (AAS) have found a novel application as adsorbents used in Cu2+ removal from sulfate solutions. The adsorption tests were carried in batch conditions and results have shown that alkali activation of EAFS enhances the Cu2+ adsorption. The adsorption process was found to follow a pseudo second-order kinetic model and occurs via formation of posnjakite (Cu-4(SO4)(OH)(6)center dot H2O) on the surface of both, EAFS and AAS. Enhanced adsorption properties of AAS, compared to EAFS, are attributed to a more porous structure, larger specific surface area and an increased number of surface groups involved in the binding of Cu2+.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Materials Letters",
title = "Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag",
pages = "188-184",
volume = "235",
doi = "10.1016/j.matlet.2018.10.027"
}
Nikolić, I., Marković, S., Veselinović, L., Radmilović, V., Janković-Častvan, I.,& Radmilović, V. R.. (2019). Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag. in Materials Letters
Elsevier Science Bv, Amsterdam., 235, 184-188.
https://doi.org/10.1016/j.matlet.2018.10.027
Nikolić I, Marković S, Veselinović L, Radmilović V, Janković-Častvan I, Radmilović VR. Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag. in Materials Letters. 2019;235:184-188.
doi:10.1016/j.matlet.2018.10.027 .
Nikolić, Irena, Marković, Smilja, Veselinović, Ljiljana, Radmilović, Vuk, Janković-Častvan, Ivona, Radmilović, Velimir R., "Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag" in Materials Letters, 235 (2019):184-188,
https://doi.org/10.1016/j.matlet.2018.10.027 . .
1
1
2

Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters

Nikolić, Irena; Đurović, Dijana; Milašević, Ivana; Marković, Smilja; Veselinović, Ljiljana; Radmilović, Vuk; Janković-Častvan, Ivona; Radmilović, Velimir R.

(Belgrade : Serbian Academy of Sciences and Arts, 2018)

TY  - CONF
AU  - Nikolić, Irena
AU  - Đurović, Dijana
AU  - Milašević, Ivana
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Radmilović, Vuk
AU  - Janković-Častvan, Ivona
AU  - Radmilović, Velimir R.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3770
AB  - The removal of heavy metals from wastewaters is presently a global imperative primarily due to their well-known toxic nature and detrimental effects on the environment, and more importantly, on human health. Currently, special attention is paid to the use of novel slag based materials – alkali activated slag (AAS) as potential novel adsorbents. Our previous studies have shown that electric arc furnace slag (EAFS) can be successfully used as a precursor for the production of AAS. Generally, alkaline activation involves a chemical reaction between solid aluminosilicate materials and a highly alkaline activator. The alkali activation mechanism of slag involves the dissolution of slag in a highly alkaline, which is followed by the condensation and hardening processes. Dependent on the pH and type of alkaline activator, calcium (alumina) silicate hydrate or C–(A)–S–H gel has been identified as a reaction product of slag alkali activation. The objective of this research was to investigate the removal of Cu2+ from aquatic solution using alkali activated slag (AAS) obtained by alkaline activation of EAFS.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu
T1  - Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters
EP  - 200
SP  - 198
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3770
ER  - 
@conference{
author = "Nikolić, Irena and Đurović, Dijana and Milašević, Ivana and Marković, Smilja and Veselinović, Ljiljana and Radmilović, Vuk and Janković-Častvan, Ivona and Radmilović, Velimir R.",
year = "2018",
abstract = "The removal of heavy metals from wastewaters is presently a global imperative primarily due to their well-known toxic nature and detrimental effects on the environment, and more importantly, on human health. Currently, special attention is paid to the use of novel slag based materials – alkali activated slag (AAS) as potential novel adsorbents. Our previous studies have shown that electric arc furnace slag (EAFS) can be successfully used as a precursor for the production of AAS. Generally, alkaline activation involves a chemical reaction between solid aluminosilicate materials and a highly alkaline activator. The alkali activation mechanism of slag involves the dissolution of slag in a highly alkaline, which is followed by the condensation and hardening processes. Dependent on the pH and type of alkaline activator, calcium (alumina) silicate hydrate or C–(A)–S–H gel has been identified as a reaction product of slag alkali activation. The objective of this research was to investigate the removal of Cu2+ from aquatic solution using alkali activated slag (AAS) obtained by alkaline activation of EAFS.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu",
title = "Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters",
pages = "200-198",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3770"
}
Nikolić, I., Đurović, D., Milašević, I., Marković, S., Veselinović, L., Radmilović, V., Janković-Častvan, I.,& Radmilović, V. R.. (2018). Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu
Belgrade : Serbian Academy of Sciences and Arts., 198-200.
https://hdl.handle.net/21.15107/rcub_technorep_3770
Nikolić I, Đurović D, Milašević I, Marković S, Veselinović L, Radmilović V, Janković-Častvan I, Radmilović VR. Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu. 2018;:198-200.
https://hdl.handle.net/21.15107/rcub_technorep_3770 .
Nikolić, Irena, Đurović, Dijana, Milašević, Ivana, Marković, Smilja, Veselinović, Ljiljana, Radmilović, Vuk, Janković-Častvan, Ivona, Radmilović, Velimir R., "Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters" in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu (2018):198-200,
https://hdl.handle.net/21.15107/rcub_technorep_3770 .

New multifunctional materials based on steel slag

Milašević, Ivana; Ivanović, Ljubica; Nikolić, Irena; Đurović, Dijana; Marković, Smilja; Radmilović, Vuk; Radmilović, Velimir R.

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Milašević, Ivana
AU  - Ivanović, Ljubica
AU  - Nikolić, Irena
AU  - Đurović, Dijana
AU  - Marković, Smilja
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3771
AB  - Electric arc furnace slag (EAFS) is the by-product of steel production in an electric arc furnace. In a pass two decade a special attention is paid to the valorization of metallurgical slags by alkali activation. The process involves a chemical reaction of slag with the alkaline activator followed by the condensation and hardening processes. Aluminium-containing calcium silicate hydrate gel i.e. C–(A)–S–H gel with a low C/S ratio has been identified as a reaction product of slag alkali activation. We have synthesized the AAS using the EAFS as the precursor and Na2SiO3 solution as an activator. The AAS samples are characterized by XRD, SEM/EDS and FTIR analysis. Moreover, investigation of mechanical properties dilatometric and porosity analysis were performed as well so as to build up a detailed illustration of AAS properties and possible application of these materials. The results have shown that AAS may reach the compressive strength (~ 40 MPa) which enables its application in a civil engineering. Moreover, the AAS sample exhibits improved strength (~ 50 MPa) at elevated temperatures thus potential application of these materials in a high temperature conditions should be considered. On the other hand, these materials may be used as an effective adsorbent for the Cu2+ removal from sulfate bearing wastewater. The Cu2 + ions have been found to be attached on the surface of AAS by formation of stable hydrooxocomplexes that are sorbed on the adsorbent surface via hydroxyl groups in the form of posnjakite crystal phase.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb
T1  - New multifunctional materials based on steel slag
EP  - 123
SP  - 123
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3771
ER  - 
@conference{
author = "Milašević, Ivana and Ivanović, Ljubica and Nikolić, Irena and Đurović, Dijana and Marković, Smilja and Radmilović, Vuk and Radmilović, Velimir R.",
year = "2018",
abstract = "Electric arc furnace slag (EAFS) is the by-product of steel production in an electric arc furnace. In a pass two decade a special attention is paid to the valorization of metallurgical slags by alkali activation. The process involves a chemical reaction of slag with the alkaline activator followed by the condensation and hardening processes. Aluminium-containing calcium silicate hydrate gel i.e. C–(A)–S–H gel with a low C/S ratio has been identified as a reaction product of slag alkali activation. We have synthesized the AAS using the EAFS as the precursor and Na2SiO3 solution as an activator. The AAS samples are characterized by XRD, SEM/EDS and FTIR analysis. Moreover, investigation of mechanical properties dilatometric and porosity analysis were performed as well so as to build up a detailed illustration of AAS properties and possible application of these materials. The results have shown that AAS may reach the compressive strength (~ 40 MPa) which enables its application in a civil engineering. Moreover, the AAS sample exhibits improved strength (~ 50 MPa) at elevated temperatures thus potential application of these materials in a high temperature conditions should be considered. On the other hand, these materials may be used as an effective adsorbent for the Cu2+ removal from sulfate bearing wastewater. The Cu2 + ions have been found to be attached on the surface of AAS by formation of stable hydrooxocomplexes that are sorbed on the adsorbent surface via hydroxyl groups in the form of posnjakite crystal phase.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb",
title = "New multifunctional materials based on steel slag",
pages = "123-123",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3771"
}
Milašević, I., Ivanović, L., Nikolić, I., Đurović, D., Marković, S., Radmilović, V.,& Radmilović, V. R.. (2018). New multifunctional materials based on steel slag. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb
Belgrade : Materials Research Society of Serbia., 123-123.
https://hdl.handle.net/21.15107/rcub_technorep_3771
Milašević I, Ivanović L, Nikolić I, Đurović D, Marković S, Radmilović V, Radmilović VR. New multifunctional materials based on steel slag. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb. 2018;:123-123.
https://hdl.handle.net/21.15107/rcub_technorep_3771 .
Milašević, Ivana, Ivanović, Ljubica, Nikolić, Irena, Đurović, Dijana, Marković, Smilja, Radmilović, Vuk, Radmilović, Velimir R., "New multifunctional materials based on steel slag" in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb (2018):123-123,
https://hdl.handle.net/21.15107/rcub_technorep_3771 .

PtAu catalyst with enhanced activity for formic acid oxidation

Krstajić-Pajić, Mila; Stevanović, Sanja; Radmilović, Vuk; Gavrilović-Wohlmuther, Aleksandra; Rogan, Jelena; Radmilović, Velimir R.; Jovanović, Vladislava M.

(Engineering Society for Corrosion, Belgrade, Serbia, 2018)

TY  - JOUR
AU  - Krstajić-Pajić, Mila
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Rogan, Jelena
AU  - Radmilović, Velimir R.
AU  - Jovanović, Vladislava M.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3832
AB  - PtAu systems are recognized as good catalysts for the oxidation of formic acid electrooxidation, which is investigated as a possible anodic reaction in low-temperature fuel cells. In this research, bimetallic PtAu nanoparticles, supported on high area carbon Vulcan XC-72R, were synthesized by water in oil microemulsion method. The precursor reduction process took place in a single microemulsion, simultaneously, in the presence of 35% of HCl in the water phase, as a capping agent. Electrochemical behavior of the PtAu/C catalyst was investigated at as prepared electrodes by cyclic voltammetry in 0.5M H2SO4 as a supporting electrolyte, and also in the oxidation of adsorbed CO. The results were compared to the Pt/C catalyst prepared by the same synthesis procedure. PtAu/C catalyst powder was also characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Average particle diameter, of 2nm, was calculated from XRD data, which is close to the value of 2.82 nm obtained from TEM images. Compared to identically synthesized Pt nanoparticles, the bimetallic ones are significantly smaller. EDS maps of PtAu/C sample confirm the presence of both elements, and indicate a very fine distribution of Au in the sample. Elemental composition of about 20% Au and 80% Pt was also determined from these maps. Prepared catalyst was tested for formic acid electro-oxidation in terms of its activity and stability over the long term cycling. The voltammograms recorded indicate the change of reaction mechanism and better utilization of the catalyst surface in comparison to Pt/C.
AB  - PtAu sistemi se smatraju veoma dobrim katalizatorima za elektrooksidaciju mravlje kiseline, kao moguće anodne reakcije u niskotemperaturnim gorivnim galvanskim spregovima. U ovom radu bimetalne PtAu nanočestice sintetizovane su mikromulzionim postupkom, i u toku sinteze nanete na ugljenični nosač Vulcan XC-72R. Procesi redukcije prekursora odigravaju se simultano, unutar vodene faze iste mikroemulzije, u prisustvu 35% HCl. Elektrohemijske karakteristike katalizatora ispitivane su cikličnom voltametrijomv na 'as prepared' elektrodama u 0.5M H2SO4 kao osnovnom elektrolitu, kao i prilikom oksidacije adsorbovanog CO. Rezultati su upoređeni sa Pt/C katalizatorom sintetizovanim istim postupkom i pod istovetnim uslovima. Pripremljeni PtAu/C prah okarakterisan je takođe difrakcijom X-zraka, transmisionom elektronskom mikroskopijom i energetski disperzionom spektroskoijom. Veličina čestice određena analizom difraktograma X-zraka iznosi 2nm, što je blisko vrednosti dobijenoj analizom TEM snimaka od 2.82 nm. U poređenju sa Pt nanočesticama sintetizovanim na isti način, bimetalne nanočestice su znatno manjeg prečnika. Mape uzorka PtAu/C dobijene energetski disperzionom spektroskopijom potvrđuju prisustvo oba elementa i pokazuju veoma finu distribuciju Au u uzorku. Analizo mapa utvrđeno je i da je katalizator sastava 20% Au i 80% Pt. Konačno, ispitane su aktivnost i stabilnost bimetalnog katalizatora za oksidaciju mravlje kiseline. Snimljeni voltamogrami ukazuju na promenu reakcionog mehanizma i bolje iskorišćenje površine katalizatora u poređenju ra Pt/C katalizatorom sintetizovanim istim postupkom.
PB  - Engineering Society for Corrosion, Belgrade, Serbia
T2  - Zaštita materijala
T1  - PtAu catalyst with enhanced activity for formic acid oxidation
T1  - PtAu katalizator sa poboljšanom aktivnošću za reakciju oksidacije mravlje kiseline
EP  - 166
IS  - 2
SP  - 159
VL  - 59
DO  - 10.5937/ZasMat1802159K
ER  - 
@article{
author = "Krstajić-Pajić, Mila and Stevanović, Sanja and Radmilović, Vuk and Gavrilović-Wohlmuther, Aleksandra and Rogan, Jelena and Radmilović, Velimir R. and Jovanović, Vladislava M.",
year = "2018",
abstract = "PtAu systems are recognized as good catalysts for the oxidation of formic acid electrooxidation, which is investigated as a possible anodic reaction in low-temperature fuel cells. In this research, bimetallic PtAu nanoparticles, supported on high area carbon Vulcan XC-72R, were synthesized by water in oil microemulsion method. The precursor reduction process took place in a single microemulsion, simultaneously, in the presence of 35% of HCl in the water phase, as a capping agent. Electrochemical behavior of the PtAu/C catalyst was investigated at as prepared electrodes by cyclic voltammetry in 0.5M H2SO4 as a supporting electrolyte, and also in the oxidation of adsorbed CO. The results were compared to the Pt/C catalyst prepared by the same synthesis procedure. PtAu/C catalyst powder was also characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Average particle diameter, of 2nm, was calculated from XRD data, which is close to the value of 2.82 nm obtained from TEM images. Compared to identically synthesized Pt nanoparticles, the bimetallic ones are significantly smaller. EDS maps of PtAu/C sample confirm the presence of both elements, and indicate a very fine distribution of Au in the sample. Elemental composition of about 20% Au and 80% Pt was also determined from these maps. Prepared catalyst was tested for formic acid electro-oxidation in terms of its activity and stability over the long term cycling. The voltammograms recorded indicate the change of reaction mechanism and better utilization of the catalyst surface in comparison to Pt/C., PtAu sistemi se smatraju veoma dobrim katalizatorima za elektrooksidaciju mravlje kiseline, kao moguće anodne reakcije u niskotemperaturnim gorivnim galvanskim spregovima. U ovom radu bimetalne PtAu nanočestice sintetizovane su mikromulzionim postupkom, i u toku sinteze nanete na ugljenični nosač Vulcan XC-72R. Procesi redukcije prekursora odigravaju se simultano, unutar vodene faze iste mikroemulzije, u prisustvu 35% HCl. Elektrohemijske karakteristike katalizatora ispitivane su cikličnom voltametrijomv na 'as prepared' elektrodama u 0.5M H2SO4 kao osnovnom elektrolitu, kao i prilikom oksidacije adsorbovanog CO. Rezultati su upoređeni sa Pt/C katalizatorom sintetizovanim istim postupkom i pod istovetnim uslovima. Pripremljeni PtAu/C prah okarakterisan je takođe difrakcijom X-zraka, transmisionom elektronskom mikroskopijom i energetski disperzionom spektroskoijom. Veličina čestice određena analizom difraktograma X-zraka iznosi 2nm, što je blisko vrednosti dobijenoj analizom TEM snimaka od 2.82 nm. U poređenju sa Pt nanočesticama sintetizovanim na isti način, bimetalne nanočestice su znatno manjeg prečnika. Mape uzorka PtAu/C dobijene energetski disperzionom spektroskopijom potvrđuju prisustvo oba elementa i pokazuju veoma finu distribuciju Au u uzorku. Analizo mapa utvrđeno je i da je katalizator sastava 20% Au i 80% Pt. Konačno, ispitane su aktivnost i stabilnost bimetalnog katalizatora za oksidaciju mravlje kiseline. Snimljeni voltamogrami ukazuju na promenu reakcionog mehanizma i bolje iskorišćenje površine katalizatora u poređenju ra Pt/C katalizatorom sintetizovanim istim postupkom.",
publisher = "Engineering Society for Corrosion, Belgrade, Serbia",
journal = "Zaštita materijala",
title = "PtAu catalyst with enhanced activity for formic acid oxidation, PtAu katalizator sa poboljšanom aktivnošću za reakciju oksidacije mravlje kiseline",
pages = "166-159",
number = "2",
volume = "59",
doi = "10.5937/ZasMat1802159K"
}
Krstajić-Pajić, M., Stevanović, S., Radmilović, V., Gavrilović-Wohlmuther, A., Rogan, J., Radmilović, V. R.,& Jovanović, V. M.. (2018). PtAu catalyst with enhanced activity for formic acid oxidation. in Zaštita materijala
Engineering Society for Corrosion, Belgrade, Serbia., 59(2), 159-166.
https://doi.org/10.5937/ZasMat1802159K
Krstajić-Pajić M, Stevanović S, Radmilović V, Gavrilović-Wohlmuther A, Rogan J, Radmilović VR, Jovanović VM. PtAu catalyst with enhanced activity for formic acid oxidation. in Zaštita materijala. 2018;59(2):159-166.
doi:10.5937/ZasMat1802159K .
Krstajić-Pajić, Mila, Stevanović, Sanja, Radmilović, Vuk, Gavrilović-Wohlmuther, Aleksandra, Rogan, Jelena, Radmilović, Velimir R., Jovanović, Vladislava M., "PtAu catalyst with enhanced activity for formic acid oxidation" in Zaštita materijala, 59, no. 2 (2018):159-166,
https://doi.org/10.5937/ZasMat1802159K . .
2

CO tolerant Pt/Ru0.7Ti0.3O2 nanocatalyst for hydrogen oxidation reaction

Obradović, Maja; Gojković, Snežana Lj.

(Engineering Society for Corrosion, Belgrade, Serbia, 2018)

TY  - JOUR
AU  - Obradović, Maja
AU  - Gojković, Snežana Lj.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3827
AB  - The oxidation of pure H2 and H2/CO mixture (100 ppm CO) was investigated on Pt nanocatalyst supported on Ru0.7Ti0.3O2 (Pt /Ru0.7Ti0.3O2) by linear sweep voltammetry at a rotating disc electrode in 0.1 M HClO4. The results were compared with those on the commercial Pt/C catalyst. It was demonstrated that Pt/Ru0.7Ti0.3O2 electrode possesses good conductivity and stability of the supports in the electrochemical experiments. The onset potential of COads oxidation on Pt/Ru0.7Ti0.3O2 is lower than Pt/C indicating that the Pt nanoparticles are in close contact with Ru atoms from support, which enable bifunctional mechanism and electronic effects to be operable. The influence of the poisoning of Pt/Ru0.7Ti0.3O2 and Pt/C catalyst by COads on the HOR was examined at several surface coverages ranging from 0 to 0.6. The decrease in HOR current on COads poisoned surface in low over-potential region of 0.05-0.50 V is less pronounced on Pt/Ru0.7Ti0.3O2 than on Pt/C. This is ascribed to a weakening of the Pt-CO interaction and consequently higher mobility of COads on Pt particles contacting Ru from the Ru0.7Ti0.3O2 support.
AB  - Oksidacija čistog H2 i smeše H2/CO (100 ppm CO) je ispitivana na nanokatalizatoru koji se sastojao od čestica Pt na nosaču Ru0,7Ti0,3O2 (Pt/Ru0,7Ti0,3O2). Korišćene su metoda linearne voltametrije u rastvoru 0,1 M HClO4 i rotirajuća disk elektroda. Rezultati su upoređeni sa komercijalnim katalizatorom Pt/C. Za katalizator Pt/Ru0,7Ti0,3O2 je utvrđena dobra provodnost i stabilnost nosača u elektrohemijskim eksperimentima. Pokazano je da oksidacija adorbovanog CO na Pt/Ru0,7Ti0,3O2 počinje na negativnijim potencijalima nego na Pt/C. To ukazuje da su nanočestice Pt u bliskom kontaktu sa atomima Ru iz nosača, što omogućuje odigravanje bifunkcionalnog mehanizma i ispoljavanje elektronskog efekta. Uticaj trovanja katalizatora Pt/Ru0,7Ti0,3O2 i Pt/C adsorbovanim CO na oksidaciju H2 je ispitivan na nekoliko stepena pokrivenosti u opsegu od 0 do 0,6. Smanjenje struje oksidacije vodonika na površini delimično pokrivenoj adsorbovanim CO u oblasti malih prenapetosti 0,05-0,50 V je manje izraženo na Pt/Ru0,7Ti0,3O2 u odnosu na Pt/C. Ovo se pripisuje slabljenju interakcija Pt-CO što dovodi do povećane pokretljivosti CO na česticama Pt koje su u kontaktu sa Ru iz nosača Ru0,7Ti0,3O2.
PB  - Engineering Society for Corrosion, Belgrade, Serbia
T2  - Zaštita materijala
T1  - CO tolerant Pt/Ru0.7Ti0.3O2 nanocatalyst for hydrogen oxidation reaction
T1  - Pt/Ru0,7Ti0,3O2 kao nanokatalizator za oksidaciju vodonika i njegova tolerancija na CO
EP  - 272
IS  - 2
SP  - 265
VL  - 59
DO  - 10.5937/ZasMat1802265O
ER  - 
@article{
author = "Obradović, Maja and Gojković, Snežana Lj.",
year = "2018",
abstract = "The oxidation of pure H2 and H2/CO mixture (100 ppm CO) was investigated on Pt nanocatalyst supported on Ru0.7Ti0.3O2 (Pt /Ru0.7Ti0.3O2) by linear sweep voltammetry at a rotating disc electrode in 0.1 M HClO4. The results were compared with those on the commercial Pt/C catalyst. It was demonstrated that Pt/Ru0.7Ti0.3O2 electrode possesses good conductivity and stability of the supports in the electrochemical experiments. The onset potential of COads oxidation on Pt/Ru0.7Ti0.3O2 is lower than Pt/C indicating that the Pt nanoparticles are in close contact with Ru atoms from support, which enable bifunctional mechanism and electronic effects to be operable. The influence of the poisoning of Pt/Ru0.7Ti0.3O2 and Pt/C catalyst by COads on the HOR was examined at several surface coverages ranging from 0 to 0.6. The decrease in HOR current on COads poisoned surface in low over-potential region of 0.05-0.50 V is less pronounced on Pt/Ru0.7Ti0.3O2 than on Pt/C. This is ascribed to a weakening of the Pt-CO interaction and consequently higher mobility of COads on Pt particles contacting Ru from the Ru0.7Ti0.3O2 support., Oksidacija čistog H2 i smeše H2/CO (100 ppm CO) je ispitivana na nanokatalizatoru koji se sastojao od čestica Pt na nosaču Ru0,7Ti0,3O2 (Pt/Ru0,7Ti0,3O2). Korišćene su metoda linearne voltametrije u rastvoru 0,1 M HClO4 i rotirajuća disk elektroda. Rezultati su upoređeni sa komercijalnim katalizatorom Pt/C. Za katalizator Pt/Ru0,7Ti0,3O2 je utvrđena dobra provodnost i stabilnost nosača u elektrohemijskim eksperimentima. Pokazano je da oksidacija adorbovanog CO na Pt/Ru0,7Ti0,3O2 počinje na negativnijim potencijalima nego na Pt/C. To ukazuje da su nanočestice Pt u bliskom kontaktu sa atomima Ru iz nosača, što omogućuje odigravanje bifunkcionalnog mehanizma i ispoljavanje elektronskog efekta. Uticaj trovanja katalizatora Pt/Ru0,7Ti0,3O2 i Pt/C adsorbovanim CO na oksidaciju H2 je ispitivan na nekoliko stepena pokrivenosti u opsegu od 0 do 0,6. Smanjenje struje oksidacije vodonika na površini delimično pokrivenoj adsorbovanim CO u oblasti malih prenapetosti 0,05-0,50 V je manje izraženo na Pt/Ru0,7Ti0,3O2 u odnosu na Pt/C. Ovo se pripisuje slabljenju interakcija Pt-CO što dovodi do povećane pokretljivosti CO na česticama Pt koje su u kontaktu sa Ru iz nosača Ru0,7Ti0,3O2.",
publisher = "Engineering Society for Corrosion, Belgrade, Serbia",
journal = "Zaštita materijala",
title = "CO tolerant Pt/Ru0.7Ti0.3O2 nanocatalyst for hydrogen oxidation reaction, Pt/Ru0,7Ti0,3O2 kao nanokatalizator za oksidaciju vodonika i njegova tolerancija na CO",
pages = "272-265",
number = "2",
volume = "59",
doi = "10.5937/ZasMat1802265O"
}
Obradović, M.,& Gojković, S. Lj.. (2018). CO tolerant Pt/Ru0.7Ti0.3O2 nanocatalyst for hydrogen oxidation reaction. in Zaštita materijala
Engineering Society for Corrosion, Belgrade, Serbia., 59(2), 265-272.
https://doi.org/10.5937/ZasMat1802265O
Obradović M, Gojković SL. CO tolerant Pt/Ru0.7Ti0.3O2 nanocatalyst for hydrogen oxidation reaction. in Zaštita materijala. 2018;59(2):265-272.
doi:10.5937/ZasMat1802265O .
Obradović, Maja, Gojković, Snežana Lj., "CO tolerant Pt/Ru0.7Ti0.3O2 nanocatalyst for hydrogen oxidation reaction" in Zaštita materijala, 59, no. 2 (2018):265-272,
https://doi.org/10.5937/ZasMat1802265O . .
2

Electrochemical deposition and characterization of AgPd alloy layers

Elezović, Nevenka R.; Zabinski, Piotr; Krstajić-Pajić, Mila; Tokarski, Tomasz; Jović, Borka M.; Jović, Vladimir D.

(Srpsko hemijsko društvo, Beograd, 2018)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Zabinski, Piotr
AU  - Krstajić-Pajić, Mila
AU  - Tokarski, Tomasz
AU  - Jović, Borka M.
AU  - Jović, Vladimir D.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4011
AB  - The AgPd alloys were electrodeposited onto Au and glassy carbon disc electrodes from the solution containing 0 001 mol dm(-3) PdCl2 + 0.04 mol dm(-3) AgCl + 0.1 mol dm(-3) HCl + 12 mol dm(-3) LiCl under the non-stationary diffusion (quiescent electrolyte) and convective diffusion (omega = 1000 rpm) to the different amounts of charge and at different current densities. Electro-deposited alloy layers were characterized by the anodic linear sweep voltam-metry (ALSV), scanning electron microscopy, energy dispersive X-ray spectro-scopy (EDS) and X-ray photoelectron spectroscopy (XPS). The compositions of the AgPd alloys determined by the EDS were almost identical to the theoretically predicted ones, while the compositions obtained by XPS and ALSV analysis were similar to each other, but different from those obtained by EDS. Deviation from the theoretically predicted values (determined by the ratio j(L)(Pd)/j(Ag)) was more pronounced at lower current densities and lower charges of AgPd alloys electrodeposition, due to the lower current efficiencies for alloys electrodeposition. The ALSV analysis indicated the presence of Ag and Pd, expressed by two ALSV peaks, and in some cases the presence of the additional peak, which was found to correspond to the dissolution of large AgPd crystals, formed at thicker electrodeposits (higher electrodeposition charge), indicating, for the first time, that besides the phase structure, the morphology of alloy electrodeposit could also influence the shape of the ALSV response. In addition to Ag and Pd, the XPS analysis confirmed the presence of AgCl at the surface of samples electrodeposited to low thicknesses (amounts of charge).
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Electrochemical deposition and characterization of AgPd alloy layers
EP  - 609
IS  - 5
SP  - 593
VL  - 83
DO  - 10.2298/JSC171103011E
ER  - 
@article{
author = "Elezović, Nevenka R. and Zabinski, Piotr and Krstajić-Pajić, Mila and Tokarski, Tomasz and Jović, Borka M. and Jović, Vladimir D.",
year = "2018",
abstract = "The AgPd alloys were electrodeposited onto Au and glassy carbon disc electrodes from the solution containing 0 001 mol dm(-3) PdCl2 + 0.04 mol dm(-3) AgCl + 0.1 mol dm(-3) HCl + 12 mol dm(-3) LiCl under the non-stationary diffusion (quiescent electrolyte) and convective diffusion (omega = 1000 rpm) to the different amounts of charge and at different current densities. Electro-deposited alloy layers were characterized by the anodic linear sweep voltam-metry (ALSV), scanning electron microscopy, energy dispersive X-ray spectro-scopy (EDS) and X-ray photoelectron spectroscopy (XPS). The compositions of the AgPd alloys determined by the EDS were almost identical to the theoretically predicted ones, while the compositions obtained by XPS and ALSV analysis were similar to each other, but different from those obtained by EDS. Deviation from the theoretically predicted values (determined by the ratio j(L)(Pd)/j(Ag)) was more pronounced at lower current densities and lower charges of AgPd alloys electrodeposition, due to the lower current efficiencies for alloys electrodeposition. The ALSV analysis indicated the presence of Ag and Pd, expressed by two ALSV peaks, and in some cases the presence of the additional peak, which was found to correspond to the dissolution of large AgPd crystals, formed at thicker electrodeposits (higher electrodeposition charge), indicating, for the first time, that besides the phase structure, the morphology of alloy electrodeposit could also influence the shape of the ALSV response. In addition to Ag and Pd, the XPS analysis confirmed the presence of AgCl at the surface of samples electrodeposited to low thicknesses (amounts of charge).",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Electrochemical deposition and characterization of AgPd alloy layers",
pages = "609-593",
number = "5",
volume = "83",
doi = "10.2298/JSC171103011E"
}
Elezović, N. R., Zabinski, P., Krstajić-Pajić, M., Tokarski, T., Jović, B. M.,& Jović, V. D.. (2018). Electrochemical deposition and characterization of AgPd alloy layers. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 83(5), 593-609.
https://doi.org/10.2298/JSC171103011E
Elezović NR, Zabinski P, Krstajić-Pajić M, Tokarski T, Jović BM, Jović VD. Electrochemical deposition and characterization of AgPd alloy layers. in Journal of the Serbian Chemical Society. 2018;83(5):593-609.
doi:10.2298/JSC171103011E .
Elezović, Nevenka R., Zabinski, Piotr, Krstajić-Pajić, Mila, Tokarski, Tomasz, Jović, Borka M., Jović, Vladimir D., "Electrochemical deposition and characterization of AgPd alloy layers" in Journal of the Serbian Chemical Society, 83, no. 5 (2018):593-609,
https://doi.org/10.2298/JSC171103011E . .
5
5
4

The slag based adsorbents for Cu2+ removal from aquatic solutions

Nikolić, Irena; Đurović, Dijana; Milašević, Ivana; Marković, Smilja; Radmilović, Vuk; Radmilović, Velimir R.

(Belgrade : Materials Research Society of Serbia, 2017)

TY  - CONF
AU  - Nikolić, Irena
AU  - Đurović, Dijana
AU  - Milašević, Ivana
AU  - Marković, Smilja
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3491
AB  - This study aims to understand the kinetic, thermodynamic and mechanism of Cu2+ adsorption onto unmodified electric arc furnace slag (EAFS) and alkali modified EAFS. The adsorption process was investigated via a batch reactor system. The modified EAFS sample has been prepared by reacting an EAFS powder with an aqueous alkali silicate solution. The both samples were characterized by SEM, XRD, FTIR and porosimetric measurements. The results have shown that alkali activation of EAFS favour adsorption process. The adsorption reaction on both adsorbents was found to be pseudo second order. Thermodynamic investigations have shown that adsorption process is spontaneous and endothermic. Mechanism of adsorption was investigated using the intraparticle diffusion and Boyd model which suggested that the both, film diffusion and diffusion within the pores of adsorbent controls the intraparticle diffusion of Cu2+ onto and EAFS and modified EAFS and was mainly due to external mass transport. Besides, FTIR spectroscopy determined the surface functional groups of the EAFS and modified EAFS which participate in Cu2+ bonding.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem
T1  - The slag based adsorbents for Cu2+ removal from aquatic solutions
EP  - 58
SP  - 58
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3491
ER  - 
@conference{
author = "Nikolić, Irena and Đurović, Dijana and Milašević, Ivana and Marković, Smilja and Radmilović, Vuk and Radmilović, Velimir R.",
year = "2017",
abstract = "This study aims to understand the kinetic, thermodynamic and mechanism of Cu2+ adsorption onto unmodified electric arc furnace slag (EAFS) and alkali modified EAFS. The adsorption process was investigated via a batch reactor system. The modified EAFS sample has been prepared by reacting an EAFS powder with an aqueous alkali silicate solution. The both samples were characterized by SEM, XRD, FTIR and porosimetric measurements. The results have shown that alkali activation of EAFS favour adsorption process. The adsorption reaction on both adsorbents was found to be pseudo second order. Thermodynamic investigations have shown that adsorption process is spontaneous and endothermic. Mechanism of adsorption was investigated using the intraparticle diffusion and Boyd model which suggested that the both, film diffusion and diffusion within the pores of adsorbent controls the intraparticle diffusion of Cu2+ onto and EAFS and modified EAFS and was mainly due to external mass transport. Besides, FTIR spectroscopy determined the surface functional groups of the EAFS and modified EAFS which participate in Cu2+ bonding.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem",
title = "The slag based adsorbents for Cu2+ removal from aquatic solutions",
pages = "58-58",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3491"
}
Nikolić, I., Đurović, D., Milašević, I., Marković, S., Radmilović, V.,& Radmilović, V. R.. (2017). The slag based adsorbents for Cu2+ removal from aquatic solutions. in Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem
Belgrade : Materials Research Society of Serbia., 58-58.
https://hdl.handle.net/21.15107/rcub_technorep_3491
Nikolić I, Đurović D, Milašević I, Marković S, Radmilović V, Radmilović VR. The slag based adsorbents for Cu2+ removal from aquatic solutions. in Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem. 2017;:58-58.
https://hdl.handle.net/21.15107/rcub_technorep_3491 .
Nikolić, Irena, Đurović, Dijana, Milašević, Ivana, Marković, Smilja, Radmilović, Vuk, Radmilović, Velimir R., "The slag based adsorbents for Cu2+ removal from aquatic solutions" in Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem (2017):58-58,
https://hdl.handle.net/21.15107/rcub_technorep_3491 .

Structure and Properties of Polymer Nanocomposite Films With Carbon Nanotubes and Graphene

Radmilović, Vuk; Carraro, Carlo; Uskoković, Petar; Radmilović, Velimir R.

(Wiley, Hoboken, 2017)

TY  - JOUR
AU  - Radmilović, Vuk
AU  - Carraro, Carlo
AU  - Uskoković, Petar
AU  - Radmilović, Velimir R.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3551
AB  - In this report, we demonstrate a simple fabrication route for polyvinyl butyral (PVB)-based nanocomposites with carbon nanotubes and graphene. In spite of insufficient percolation threshold due to low concentration of carbonaceous nanofillers, in the amount of 1 wt%, significant improvement of electrical and mechanical properties with negligible deterioration of optical properties for the polymer PVB matrix can be achieved. Both hardness and modulus increase and electrical resistivity and transmittance decrease in this order: PVB + multi-wall carbon nanotubes (MWCNT) double right arrow PVB+single-wall carbon nanotubes (SWCNT) double right arrow PVB + graphene. The largest values of reduced modulus and hardness are observed for the PVB + graphene nanocomposite, obtained by nanoindentation. Transmittance is similar to 84%, 86%, 89%, and 91% at 370 nm, and at 550 nm is similar to 84%, 88%, 90%, and 92%, for PVB + graphene, PVB+MWCNT, PVB + SWCNT, and pure PVB, respectively. The highest resistivity of 4 x 10(4) Omega cm is exhibited by the PVB + MWCNT nanocomposite while the lowest, 1.9 x 10(3) Omega cm, is exhibited by the PVB + graphene. Nanocomposite films are fabricated by a simple processing route using ultrasonic mixing and spin coating.
PB  - Wiley, Hoboken
T2  - Polymer Composites
T1  - Structure and Properties of Polymer Nanocomposite Films With Carbon Nanotubes and Graphene
EP  - E497
SP  - E490
VL  - 38
DO  - 10.1002/pc.24079
ER  - 
@article{
author = "Radmilović, Vuk and Carraro, Carlo and Uskoković, Petar and Radmilović, Velimir R.",
year = "2017",
abstract = "In this report, we demonstrate a simple fabrication route for polyvinyl butyral (PVB)-based nanocomposites with carbon nanotubes and graphene. In spite of insufficient percolation threshold due to low concentration of carbonaceous nanofillers, in the amount of 1 wt%, significant improvement of electrical and mechanical properties with negligible deterioration of optical properties for the polymer PVB matrix can be achieved. Both hardness and modulus increase and electrical resistivity and transmittance decrease in this order: PVB + multi-wall carbon nanotubes (MWCNT) double right arrow PVB+single-wall carbon nanotubes (SWCNT) double right arrow PVB + graphene. The largest values of reduced modulus and hardness are observed for the PVB + graphene nanocomposite, obtained by nanoindentation. Transmittance is similar to 84%, 86%, 89%, and 91% at 370 nm, and at 550 nm is similar to 84%, 88%, 90%, and 92%, for PVB + graphene, PVB+MWCNT, PVB + SWCNT, and pure PVB, respectively. The highest resistivity of 4 x 10(4) Omega cm is exhibited by the PVB + MWCNT nanocomposite while the lowest, 1.9 x 10(3) Omega cm, is exhibited by the PVB + graphene. Nanocomposite films are fabricated by a simple processing route using ultrasonic mixing and spin coating.",
publisher = "Wiley, Hoboken",
journal = "Polymer Composites",
title = "Structure and Properties of Polymer Nanocomposite Films With Carbon Nanotubes and Graphene",
pages = "E497-E490",
volume = "38",
doi = "10.1002/pc.24079"
}
Radmilović, V., Carraro, C., Uskoković, P.,& Radmilović, V. R.. (2017). Structure and Properties of Polymer Nanocomposite Films With Carbon Nanotubes and Graphene. in Polymer Composites
Wiley, Hoboken., 38, E490-E497.
https://doi.org/10.1002/pc.24079
Radmilović V, Carraro C, Uskoković P, Radmilović VR. Structure and Properties of Polymer Nanocomposite Films With Carbon Nanotubes and Graphene. in Polymer Composites. 2017;38:E490-E497.
doi:10.1002/pc.24079 .
Radmilović, Vuk, Carraro, Carlo, Uskoković, Petar, Radmilović, Velimir R., "Structure and Properties of Polymer Nanocomposite Films With Carbon Nanotubes and Graphene" in Polymer Composites, 38 (2017):E490-E497,
https://doi.org/10.1002/pc.24079 . .
13
5
10

Low temperature solid-state wetting and formation of nanowelds in silver nanowires

Radmilović, Vuk; Goebelt, Manuela; Ophus, Colin; Christiansen, Silke; Spiecker, Erdmann; Radmilović, Velimir R.

(IOP Publishing Ltd, Bristol, 2017)

TY  - JOUR
AU  - Radmilović, Vuk
AU  - Goebelt, Manuela
AU  - Ophus, Colin
AU  - Christiansen, Silke
AU  - Spiecker, Erdmann
AU  - Radmilović, Velimir R.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3633
AB  - This article focuses on the microscopic mechanism of thermally induced nanoweld formation between silver nanowires (AgNWs) which is a key process for improving electrical conductivity in NW networks employed for transparent electrodes. Focused ion beam sectioning and transmission electron microscopy were applied in order to elucidate the atomic structure of a welded NW including measurement of the wetting contact angle and characterization of defect structure with atomic accuracy, which provides fundamental information on the welding mechanism. Crystal lattice strain, obtained by direct evaluation of atomic column displacements in high resolution scanning transmission electron microscopy images, was shown to be non-uniform among the five twin segments of the AgNW pentagonal structure. It was found that the pentagonal cross-sectional morphology of AgNWs has a dominant effect on the formation of nanowelds by controlling initial wetting as well as diffusion of Ag atoms between the NWs. Due to complete solid-state wetting, at an angle of similar to 4.8 degrees, the welding process starts with homoepitaxial nucleation of an initial Ag layer on (100) surface facets, considered to have an infinitely large radius of curvature. However, the strong driving force for this process due to the Gibbs-Thomson effect, requires the NW contact to occur through the corner of the pentagonal cross-section of the second NW providing a small radius of curvature. After the initial layer is formed, the welded zone continues to grow and extends out epitaxially to the neighboring twin segments.
PB  - IOP Publishing Ltd, Bristol
T2  - Nanotechnology
T1  - Low temperature solid-state wetting and formation of nanowelds in silver nanowires
IS  - 38
VL  - 28
DO  - 10.1088/1361-6528/aa7eb8
ER  - 
@article{
author = "Radmilović, Vuk and Goebelt, Manuela and Ophus, Colin and Christiansen, Silke and Spiecker, Erdmann and Radmilović, Velimir R.",
year = "2017",
abstract = "This article focuses on the microscopic mechanism of thermally induced nanoweld formation between silver nanowires (AgNWs) which is a key process for improving electrical conductivity in NW networks employed for transparent electrodes. Focused ion beam sectioning and transmission electron microscopy were applied in order to elucidate the atomic structure of a welded NW including measurement of the wetting contact angle and characterization of defect structure with atomic accuracy, which provides fundamental information on the welding mechanism. Crystal lattice strain, obtained by direct evaluation of atomic column displacements in high resolution scanning transmission electron microscopy images, was shown to be non-uniform among the five twin segments of the AgNW pentagonal structure. It was found that the pentagonal cross-sectional morphology of AgNWs has a dominant effect on the formation of nanowelds by controlling initial wetting as well as diffusion of Ag atoms between the NWs. Due to complete solid-state wetting, at an angle of similar to 4.8 degrees, the welding process starts with homoepitaxial nucleation of an initial Ag layer on (100) surface facets, considered to have an infinitely large radius of curvature. However, the strong driving force for this process due to the Gibbs-Thomson effect, requires the NW contact to occur through the corner of the pentagonal cross-section of the second NW providing a small radius of curvature. After the initial layer is formed, the welded zone continues to grow and extends out epitaxially to the neighboring twin segments.",
publisher = "IOP Publishing Ltd, Bristol",
journal = "Nanotechnology",
title = "Low temperature solid-state wetting and formation of nanowelds in silver nanowires",
number = "38",
volume = "28",
doi = "10.1088/1361-6528/aa7eb8"
}
Radmilović, V., Goebelt, M., Ophus, C., Christiansen, S., Spiecker, E.,& Radmilović, V. R.. (2017). Low temperature solid-state wetting and formation of nanowelds in silver nanowires. in Nanotechnology
IOP Publishing Ltd, Bristol., 28(38).
https://doi.org/10.1088/1361-6528/aa7eb8
Radmilović V, Goebelt M, Ophus C, Christiansen S, Spiecker E, Radmilović VR. Low temperature solid-state wetting and formation of nanowelds in silver nanowires. in Nanotechnology. 2017;28(38).
doi:10.1088/1361-6528/aa7eb8 .
Radmilović, Vuk, Goebelt, Manuela, Ophus, Colin, Christiansen, Silke, Spiecker, Erdmann, Radmilović, Velimir R., "Low temperature solid-state wetting and formation of nanowelds in silver nanowires" in Nanotechnology, 28, no. 38 (2017),
https://doi.org/10.1088/1361-6528/aa7eb8 . .
7
4
9

Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC

Jović, Borka M; Jović, Vladimir D; Branković, Goran; Radović, M.; Krstajić, Nedeljko V

(Pergamon-Elsevier Science Ltd, Oxford, 2017)

TY  - JOUR
AU  - Jović, Borka M
AU  - Jović, Vladimir D
AU  - Branković, Goran
AU  - Radović, M.
AU  - Krstajić, Nedeljko V
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5821
AB  - The hydrogen evolution reaction (HER) was studied in 0.5 M H2SO4 at 25 degrees C on Pd electrodeposited onto Ti2AlC substrate, as an excellent substrate due to its high conductivity and high stability in concentrated sulfuric acid. Pd was electrodeposited onto Ti2AlC by pulse technique from the solutions containing different concentrations of PdCl2 in 1 M NH4Cl. It was shown that in all investigated solutions Pd electrodeposition occurs by the diffusion-controlled 3D nucleation and growth. Two types of Pd electrodeposits were submitted to the study of the HER by the polarization measurements and the electrochemical impedance spectroscopy (EIS). The surface of Pd samples was characterized by scanning electron microscopy (SEM), by energy dispersive X-ray spectroscopy (EDS) and by atomic force microscopy (AFM). High catalytic activity for the HER was observed for all investigated samples. The Tafel slope of -64 mV dec(-1) was recorded for the Pd layer electrodeposited at 20 mV vs. saturated calomel electrode (SCE) for 5 s, mainly composed of isolated hemispherical 3D Pd centers and dendrites (sample (2)), while for Pd electrodeposit with the theoretical thickness of 1000 nm (sample (1)) Tafel slope of -143 mV dec(-1) was detected. All Tafel slopes recorded for the investigated samples could be explained by the Volmer-Tafel mechanism for the HER assuming Temkin adsorption isotherm, with either of the steps (Volmer or Tafel step) being the rate-determining one. By the analysis of the EIS results similar slopes for the E vs. log (R-F)(-1) dependences were observed for all investigated samples respectively, while the electrochemically active surface area (EASA), obtained by the integration of the charge for Pd-oxide reduction was found to be the highest for the sample (1). The exchange current densities corrected for the EASA were presented for all samples.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Electrochimica Acta
T1  - Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC
EP  - 584
SP  - 571
VL  - 224
DO  - 10.1016/j.electacta.2016.12.015
ER  - 
@article{
author = "Jović, Borka M and Jović, Vladimir D and Branković, Goran and Radović, M. and Krstajić, Nedeljko V",
year = "2017",
abstract = "The hydrogen evolution reaction (HER) was studied in 0.5 M H2SO4 at 25 degrees C on Pd electrodeposited onto Ti2AlC substrate, as an excellent substrate due to its high conductivity and high stability in concentrated sulfuric acid. Pd was electrodeposited onto Ti2AlC by pulse technique from the solutions containing different concentrations of PdCl2 in 1 M NH4Cl. It was shown that in all investigated solutions Pd electrodeposition occurs by the diffusion-controlled 3D nucleation and growth. Two types of Pd electrodeposits were submitted to the study of the HER by the polarization measurements and the electrochemical impedance spectroscopy (EIS). The surface of Pd samples was characterized by scanning electron microscopy (SEM), by energy dispersive X-ray spectroscopy (EDS) and by atomic force microscopy (AFM). High catalytic activity for the HER was observed for all investigated samples. The Tafel slope of -64 mV dec(-1) was recorded for the Pd layer electrodeposited at 20 mV vs. saturated calomel electrode (SCE) for 5 s, mainly composed of isolated hemispherical 3D Pd centers and dendrites (sample (2)), while for Pd electrodeposit with the theoretical thickness of 1000 nm (sample (1)) Tafel slope of -143 mV dec(-1) was detected. All Tafel slopes recorded for the investigated samples could be explained by the Volmer-Tafel mechanism for the HER assuming Temkin adsorption isotherm, with either of the steps (Volmer or Tafel step) being the rate-determining one. By the analysis of the EIS results similar slopes for the E vs. log (R-F)(-1) dependences were observed for all investigated samples respectively, while the electrochemically active surface area (EASA), obtained by the integration of the charge for Pd-oxide reduction was found to be the highest for the sample (1). The exchange current densities corrected for the EASA were presented for all samples.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Electrochimica Acta",
title = "Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC",
pages = "584-571",
volume = "224",
doi = "10.1016/j.electacta.2016.12.015"
}
Jović, B. M., Jović, V. D., Branković, G., Radović, M.,& Krstajić, N. V.. (2017). Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC. in Electrochimica Acta
Pergamon-Elsevier Science Ltd, Oxford., 224, 571-584.
https://doi.org/10.1016/j.electacta.2016.12.015
Jović BM, Jović VD, Branković G, Radović M, Krstajić NV. Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC. in Electrochimica Acta. 2017;224:571-584.
doi:10.1016/j.electacta.2016.12.015 .
Jović, Borka M, Jović, Vladimir D, Branković, Goran, Radović, M., Krstajić, Nedeljko V, "Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC" in Electrochimica Acta, 224 (2017):571-584,
https://doi.org/10.1016/j.electacta.2016.12.015 . .
14
8
14

Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution

Jović, Borka; Lačnjevac, Uroš; Jović, Vladimir; Gajić Krstajić, Ljiljana; Kovač, Janez; Poleti, Dejan; Krstajić, Nedeljko

(Elsevier Ltd., 2016)

TY  - JOUR
AU  - Jović, Borka
AU  - Lačnjevac, Uroš
AU  - Jović, Vladimir
AU  - Gajić Krstajić, Ljiljana
AU  - Kovač, Janez
AU  - Poleti, Dejan
AU  - Krstajić, Nedeljko
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5833
AB  - The oxygen evolution reaction (OER) was studied at pure Ni and Ni-(Ebonex/Ir) composite coatings in 1 M NaOH solution at 25 °C. Ni-(Ebonex-supported Ir) coatings were electrodeposited from a nickel Watts bath containing different concentrations of suspended Ebonex/Ir particles (0–2 g dm−3) onto a Ni 40 mesh substrate. The surface morphology of the coatings was examined by scanning electron microscopy (SEM), the surface composition by energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS), whereas the electrochemical properties were studied by electrochemical impedance spectroscopy (EIS), polarization measurements and cyclic voltammetry (CV). It was shown that the roughness factor of Ni-(Ebonex/Ir) composite coatings calculated relative to the surface area of the pure Ni sample increased with the increasing content of Ebonex/Ir particles in the bath to a maximum value of 40.6. All samples displayed a Tafel slope of about 60 mV dec−1 in the potential range corresponding to lower current densities for the OER. The increase of the apparent activity for the OER at Ni-(Ebonex/Ir) coatings compared with the pure Ni coating was attributed only to the increase of the electrochemically active surface area. Although the pure Ni coating initially exhibited higher intrinsic catalytic activity for the OER than the composite coatings, it also showed a drastic loss of activity after subjecting to continuous oxygen evolution at j = 50 mA cm−2 for 24 h (ΔE = 395 mV). At the same time, the OER overpotential at Ni-(Ebonex/Ir) coatings only negligibly increased after the stability test (ΔE = 22 mV). The improved retention of catalytic activity observed with Ni-(Ebonex/Ir) coatings was ascribed to the presence of IrO2, which inhibited the formation of the inactive γ-NiOOH phase.
PB  - Elsevier Ltd.
T2  - International Journal of Hydrogen Energy
T1  - Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution
EP  - 20514
IS  - 45
SP  - 20502
VL  - 41
DO  - 10.1016/j.ijhydene.2016.08.226
UR  - https://hdl.handle.net/21.15107/rcub_dais_15978
ER  - 
@article{
author = "Jović, Borka and Lačnjevac, Uroš and Jović, Vladimir and Gajić Krstajić, Ljiljana and Kovač, Janez and Poleti, Dejan and Krstajić, Nedeljko",
year = "2016",
abstract = "The oxygen evolution reaction (OER) was studied at pure Ni and Ni-(Ebonex/Ir) composite coatings in 1 M NaOH solution at 25 °C. Ni-(Ebonex-supported Ir) coatings were electrodeposited from a nickel Watts bath containing different concentrations of suspended Ebonex/Ir particles (0–2 g dm−3) onto a Ni 40 mesh substrate. The surface morphology of the coatings was examined by scanning electron microscopy (SEM), the surface composition by energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS), whereas the electrochemical properties were studied by electrochemical impedance spectroscopy (EIS), polarization measurements and cyclic voltammetry (CV). It was shown that the roughness factor of Ni-(Ebonex/Ir) composite coatings calculated relative to the surface area of the pure Ni sample increased with the increasing content of Ebonex/Ir particles in the bath to a maximum value of 40.6. All samples displayed a Tafel slope of about 60 mV dec−1 in the potential range corresponding to lower current densities for the OER. The increase of the apparent activity for the OER at Ni-(Ebonex/Ir) coatings compared with the pure Ni coating was attributed only to the increase of the electrochemically active surface area. Although the pure Ni coating initially exhibited higher intrinsic catalytic activity for the OER than the composite coatings, it also showed a drastic loss of activity after subjecting to continuous oxygen evolution at j = 50 mA cm−2 for 24 h (ΔE = 395 mV). At the same time, the OER overpotential at Ni-(Ebonex/Ir) coatings only negligibly increased after the stability test (ΔE = 22 mV). The improved retention of catalytic activity observed with Ni-(Ebonex/Ir) coatings was ascribed to the presence of IrO2, which inhibited the formation of the inactive γ-NiOOH phase.",
publisher = "Elsevier Ltd.",
journal = "International Journal of Hydrogen Energy",
title = "Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution",
pages = "20514-20502",
number = "45",
volume = "41",
doi = "10.1016/j.ijhydene.2016.08.226",
url = "https://hdl.handle.net/21.15107/rcub_dais_15978"
}
Jović, B., Lačnjevac, U., Jović, V., Gajić Krstajić, L., Kovač, J., Poleti, D.,& Krstajić, N.. (2016). Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution. in International Journal of Hydrogen Energy
Elsevier Ltd.., 41(45), 20502-20514.
https://doi.org/10.1016/j.ijhydene.2016.08.226
https://hdl.handle.net/21.15107/rcub_dais_15978
Jović B, Lačnjevac U, Jović V, Gajić Krstajić L, Kovač J, Poleti D, Krstajić N. Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution. in International Journal of Hydrogen Energy. 2016;41(45):20502-20514.
doi:10.1016/j.ijhydene.2016.08.226
https://hdl.handle.net/21.15107/rcub_dais_15978 .
Jović, Borka, Lačnjevac, Uroš, Jović, Vladimir, Gajić Krstajić, Ljiljana, Kovač, Janez, Poleti, Dejan, Krstajić, Nedeljko, "Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution" in International Journal of Hydrogen Energy, 41, no. 45 (2016):20502-20514,
https://doi.org/10.1016/j.ijhydene.2016.08.226 .,
https://hdl.handle.net/21.15107/rcub_dais_15978 .
32
23
36

Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag

Niklioc, I.; Marković, Smilja; Janković-Častvan, Ivona; Radmilović, Vuk; Karanović, Ljiljana; Babić, Biljana M.; Radmilović, Velimir R.

(Elsevier Science Bv, Amsterdam, 2016)

TY  - JOUR
AU  - Niklioc, I.
AU  - Marković, Smilja
AU  - Janković-Častvan, Ivona
AU  - Radmilović, Vuk
AU  - Karanović, Ljiljana
AU  - Babić, Biljana M.
AU  - Radmilović, Velimir R.
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3238
AB  - Geopolymeric binders (GB) were produced using fly ash (FA) and electric arc furnace slag (EAFS). The slag has been added in the range of 0-40%. The effects of slag content on the strength, microstructure and thermal resistance were evaluated. It was found that the amount of EAFS up to 30% positively affects the strength evolution of GB. The main reaction product of FA/EAFS blends was amorphous N-
PB  - Elsevier Science Bv, Amsterdam
T2  - Materials Letters
T1  - Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag
EP  - 305
SP  - 301
VL  - 176
DO  - 10.1016/j.matlet.2016.04.121
ER  - 
@article{
author = "Niklioc, I. and Marković, Smilja and Janković-Častvan, Ivona and Radmilović, Vuk and Karanović, Ljiljana and Babić, Biljana M. and Radmilović, Velimir R.",
year = "2016",
abstract = "Geopolymeric binders (GB) were produced using fly ash (FA) and electric arc furnace slag (EAFS). The slag has been added in the range of 0-40%. The effects of slag content on the strength, microstructure and thermal resistance were evaluated. It was found that the amount of EAFS up to 30% positively affects the strength evolution of GB. The main reaction product of FA/EAFS blends was amorphous N-",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Materials Letters",
title = "Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag",
pages = "305-301",
volume = "176",
doi = "10.1016/j.matlet.2016.04.121"
}
Niklioc, I., Marković, S., Janković-Častvan, I., Radmilović, V., Karanović, L., Babić, B. M.,& Radmilović, V. R.. (2016). Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag. in Materials Letters
Elsevier Science Bv, Amsterdam., 176, 301-305.
https://doi.org/10.1016/j.matlet.2016.04.121
Niklioc I, Marković S, Janković-Častvan I, Radmilović V, Karanović L, Babić BM, Radmilović VR. Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag. in Materials Letters. 2016;176:301-305.
doi:10.1016/j.matlet.2016.04.121 .
Niklioc, I., Marković, Smilja, Janković-Častvan, Ivona, Radmilović, Vuk, Karanović, Ljiljana, Babić, Biljana M., Radmilović, Velimir R., "Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag" in Materials Letters, 176 (2016):301-305,
https://doi.org/10.1016/j.matlet.2016.04.121 . .
56
26
54

Multiple Twinning and Stacking Faults in Silver Dendrites

Radmilović, Vuk; Kacher, Josh; Ivanović, Evica; Minor, Andrew M.; Radmilović, Velimir R.

(Amer Chemical Soc, Washington, 2016)

TY  - JOUR
AU  - Radmilović, Vuk
AU  - Kacher, Josh
AU  - Ivanović, Evica
AU  - Minor, Andrew M.
AU  - Radmilović, Velimir R.
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3410
AB  - Detailed defect structure of dendrite formation was studied in order to connect the mesoscopic with the atomistic structure. It was demonstrated that twinning and stacking fault formation play a central role in the growth of electrodeposited Ag dendrites. The broad faces of Ag dendrites and the main trunk growth direction were found to be ((1) over bar 11) and [(1) over bar1 (2) over bar], respectively. Dendrite branches also formed and grew from the main trunk parallel to the [12 (1) over bar] and [(211) over bar] crystallographic directions. Twins and stacking faults were found to reside on the {111} crystallographic planes, as expected for a face centered cubic (FCC) Ag crystal. Using electron back scattered diffraction (EBSD) we found two variants of in-plane 60 degrees rotational twin domains in the ((1) over bar 11) broad dendrite surface plane. The intersections of twins and stacking faults with dendrite arm surfaces are perpendicular to the (112) arm growth directions. However, occasionally twins on the {111} planes parallel to the (112) arm growth directions were also observed. Although defect assisted dendrite growth is facilitated by twinning and stacking fault formation on {111} planes, the growth directions of the trunk and branches are not of the (111) type, but rather close to (112). The (112) growth directions are maintained by breaking dendrite facets into thermodynamically stable 111 and 200 steps and structural ledges of different length.
PB  - Amer Chemical Soc, Washington
T2  - Crystal Growth & Design
T1  - Multiple Twinning and Stacking Faults in Silver Dendrites
EP  - 474
IS  - 1
SP  - 467
VL  - 16
DO  - 10.1021/acs.cgd.5b01459
ER  - 
@article{
author = "Radmilović, Vuk and Kacher, Josh and Ivanović, Evica and Minor, Andrew M. and Radmilović, Velimir R.",
year = "2016",
abstract = "Detailed defect structure of dendrite formation was studied in order to connect the mesoscopic with the atomistic structure. It was demonstrated that twinning and stacking fault formation play a central role in the growth of electrodeposited Ag dendrites. The broad faces of Ag dendrites and the main trunk growth direction were found to be ((1) over bar 11) and [(1) over bar1 (2) over bar], respectively. Dendrite branches also formed and grew from the main trunk parallel to the [12 (1) over bar] and [(211) over bar] crystallographic directions. Twins and stacking faults were found to reside on the {111} crystallographic planes, as expected for a face centered cubic (FCC) Ag crystal. Using electron back scattered diffraction (EBSD) we found two variants of in-plane 60 degrees rotational twin domains in the ((1) over bar 11) broad dendrite surface plane. The intersections of twins and stacking faults with dendrite arm surfaces are perpendicular to the (112) arm growth directions. However, occasionally twins on the {111} planes parallel to the (112) arm growth directions were also observed. Although defect assisted dendrite growth is facilitated by twinning and stacking fault formation on {111} planes, the growth directions of the trunk and branches are not of the (111) type, but rather close to (112). The (112) growth directions are maintained by breaking dendrite facets into thermodynamically stable 111 and 200 steps and structural ledges of different length.",
publisher = "Amer Chemical Soc, Washington",
journal = "Crystal Growth & Design",
title = "Multiple Twinning and Stacking Faults in Silver Dendrites",
pages = "474-467",
number = "1",
volume = "16",
doi = "10.1021/acs.cgd.5b01459"
}
Radmilović, V., Kacher, J., Ivanović, E., Minor, A. M.,& Radmilović, V. R.. (2016). Multiple Twinning and Stacking Faults in Silver Dendrites. in Crystal Growth & Design
Amer Chemical Soc, Washington., 16(1), 467-474.
https://doi.org/10.1021/acs.cgd.5b01459
Radmilović V, Kacher J, Ivanović E, Minor AM, Radmilović VR. Multiple Twinning and Stacking Faults in Silver Dendrites. in Crystal Growth & Design. 2016;16(1):467-474.
doi:10.1021/acs.cgd.5b01459 .
Radmilović, Vuk, Kacher, Josh, Ivanović, Evica, Minor, Andrew M., Radmilović, Velimir R., "Multiple Twinning and Stacking Faults in Silver Dendrites" in Crystal Growth & Design, 16, no. 1 (2016):467-474,
https://doi.org/10.1021/acs.cgd.5b01459 . .
13
11
14

Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media

Obradović, Maja; Stancić, Z M; Lačnjevac, Uroš; Radmilović, Vuk; Gavrilović-Wohlmuther, Aleksandra; Radmilović, Velimir R.; Gojković, Snežana Lj.

(Elsevier, Amsterdam, 2016)

TY  - JOUR
AU  - Obradović, Maja
AU  - Stancić, Z M
AU  - Lačnjevac, Uroš
AU  - Radmilović, Vuk
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3437
AB  - Pd-Ni/C catalyst was synthesized employing a borohydride reduction method. The high area Ni was first dispersed on the carbon support and then modified by Pd nanoparticles. Transmission electron microscopy confirmed relatively even distribution of Ni across the carbon support with discrete palladium particles of about 3.3 nm mean diameter on it. Cyclic voltammetry confirmed the presence of Ni on the catalyst surface. The activity of the Pd-Ni/C catalysts for ethanol oxidation reaction (EOR) in alkaline solution was tested under the potentiodynamic and potentiostatic conditions and the results were compared to those obtained on the Pd/C catalyst. It was found that Pd-Ni/C is more active for the EOR compared to Pd/C by a factor up to 3, depending on the type of experiments and whether specific activity or mass activity are considered. During the potentiodynamic stability test an interesting phenomenon of activation of Pd-Ni/C catalyst was observed. It was found that maximum activity is attained after fifty cycles with the positive potential limit of 1.2 V, regardless of whether they were performed in the electrolyte with or without ethanol. It was postulated that potential cycling of the Pd-Ni surface causes reorganization of the catalyst surface bringing Pd and Ni sites to a more suitable arrangement for the efficient ethanol oxidation.
PB  - Elsevier, Amsterdam
T2  - Applied Catalysis B-Environmental
T1  - Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media
EP  - 118
SP  - 110
VL  - 189
DO  - 10.1016/j.apcatb.2016.02.039
ER  - 
@article{
author = "Obradović, Maja and Stancić, Z M and Lačnjevac, Uroš and Radmilović, Vuk and Gavrilović-Wohlmuther, Aleksandra and Radmilović, Velimir R. and Gojković, Snežana Lj.",
year = "2016",
abstract = "Pd-Ni/C catalyst was synthesized employing a borohydride reduction method. The high area Ni was first dispersed on the carbon support and then modified by Pd nanoparticles. Transmission electron microscopy confirmed relatively even distribution of Ni across the carbon support with discrete palladium particles of about 3.3 nm mean diameter on it. Cyclic voltammetry confirmed the presence of Ni on the catalyst surface. The activity of the Pd-Ni/C catalysts for ethanol oxidation reaction (EOR) in alkaline solution was tested under the potentiodynamic and potentiostatic conditions and the results were compared to those obtained on the Pd/C catalyst. It was found that Pd-Ni/C is more active for the EOR compared to Pd/C by a factor up to 3, depending on the type of experiments and whether specific activity or mass activity are considered. During the potentiodynamic stability test an interesting phenomenon of activation of Pd-Ni/C catalyst was observed. It was found that maximum activity is attained after fifty cycles with the positive potential limit of 1.2 V, regardless of whether they were performed in the electrolyte with or without ethanol. It was postulated that potential cycling of the Pd-Ni surface causes reorganization of the catalyst surface bringing Pd and Ni sites to a more suitable arrangement for the efficient ethanol oxidation.",
publisher = "Elsevier, Amsterdam",
journal = "Applied Catalysis B-Environmental",
title = "Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media",
pages = "118-110",
volume = "189",
doi = "10.1016/j.apcatb.2016.02.039"
}
Obradović, M., Stancić, Z. M., Lačnjevac, U., Radmilović, V., Gavrilović-Wohlmuther, A., Radmilović, V. R.,& Gojković, S. Lj.. (2016). Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. in Applied Catalysis B-Environmental
Elsevier, Amsterdam., 189, 110-118.
https://doi.org/10.1016/j.apcatb.2016.02.039
Obradović M, Stancić ZM, Lačnjevac U, Radmilović V, Gavrilović-Wohlmuther A, Radmilović VR, Gojković SL. Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. in Applied Catalysis B-Environmental. 2016;189:110-118.
doi:10.1016/j.apcatb.2016.02.039 .
Obradović, Maja, Stancić, Z M, Lačnjevac, Uroš, Radmilović, Vuk, Gavrilović-Wohlmuther, Aleksandra, Radmilović, Velimir R., Gojković, Snežana Lj., "Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media" in Applied Catalysis B-Environmental, 189 (2016):110-118,
https://doi.org/10.1016/j.apcatb.2016.02.039 . .
1
99
71
93

Kinetics of electric arc furnace slag leaching in alkaline solutions

Nikolić, Irena; Drincić, Ana; Đurović, Dijana; Karanović, Ljiljana; Radmilović, Vuk; Radmilović, Velimir R.

(Elsevier Sci Ltd, Oxford, 2016)

TY  - JOUR
AU  - Nikolić, Irena
AU  - Drincić, Ana
AU  - Đurović, Dijana
AU  - Karanović, Ljiljana
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3463
AB  - The dissolution of electric arc furnace steel slag (EAFSS) in highly alkaline MOH solution (M = alkali metal Na or K) has been investigated with emphases on the influence of the initial alkali concentration, solid to liquid (S/L) ratio and temperature on the kinetics of Si and Al dissolution from EAFSS. The shrinking core model (SCM) was used to analyze experimental data and the results have shown that the Si and Al dissolution from EAFSS was greatly influenced by MOH concentration, alkaline ion type and temperature. The dissolution process was controlled by the bulk diffusion through the product layer crystals. The activation energy for Si and Al dissolution was 55.27 kJ/mol and 48.05 kJ/mol in NaOH solution and 90.68 kJ/mol and 33.62 kJ/mol in KOH solution, respectively.
PB  - Elsevier Sci Ltd, Oxford
T2  - Construction and Building Materials
T1  - Kinetics of electric arc furnace slag leaching in alkaline solutions
EP  - 9
SP  - 1
VL  - 108
DO  - 10.1016/j.conbuildmat.2016.01.038
ER  - 
@article{
author = "Nikolić, Irena and Drincić, Ana and Đurović, Dijana and Karanović, Ljiljana and Radmilović, Vuk and Radmilović, Velimir R.",
year = "2016",
abstract = "The dissolution of electric arc furnace steel slag (EAFSS) in highly alkaline MOH solution (M = alkali metal Na or K) has been investigated with emphases on the influence of the initial alkali concentration, solid to liquid (S/L) ratio and temperature on the kinetics of Si and Al dissolution from EAFSS. The shrinking core model (SCM) was used to analyze experimental data and the results have shown that the Si and Al dissolution from EAFSS was greatly influenced by MOH concentration, alkaline ion type and temperature. The dissolution process was controlled by the bulk diffusion through the product layer crystals. The activation energy for Si and Al dissolution was 55.27 kJ/mol and 48.05 kJ/mol in NaOH solution and 90.68 kJ/mol and 33.62 kJ/mol in KOH solution, respectively.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Construction and Building Materials",
title = "Kinetics of electric arc furnace slag leaching in alkaline solutions",
pages = "9-1",
volume = "108",
doi = "10.1016/j.conbuildmat.2016.01.038"
}
Nikolić, I., Drincić, A., Đurović, D., Karanović, L., Radmilović, V.,& Radmilović, V. R.. (2016). Kinetics of electric arc furnace slag leaching in alkaline solutions. in Construction and Building Materials
Elsevier Sci Ltd, Oxford., 108, 1-9.
https://doi.org/10.1016/j.conbuildmat.2016.01.038
Nikolić I, Drincić A, Đurović D, Karanović L, Radmilović V, Radmilović VR. Kinetics of electric arc furnace slag leaching in alkaline solutions. in Construction and Building Materials. 2016;108:1-9.
doi:10.1016/j.conbuildmat.2016.01.038 .
Nikolić, Irena, Drincić, Ana, Đurović, Dijana, Karanović, Ljiljana, Radmilović, Vuk, Radmilović, Velimir R., "Kinetics of electric arc furnace slag leaching in alkaline solutions" in Construction and Building Materials, 108 (2016):1-9,
https://doi.org/10.1016/j.conbuildmat.2016.01.038 . .
40
24
41

Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions

Jović, Borka M.; Jović, Vladimir D.; Lačnjevac, Uroš; Stevanović, Sanja; Kovač, Janez; Radović, Miladin; Krstajić, Nedeljko V.

(Elsevier, 2016)

TY  - JOUR
AU  - Jović, Borka M.
AU  - Jović, Vladimir D.
AU  - Lačnjevac, Uroš
AU  - Stevanović, Sanja
AU  - Kovač, Janez
AU  - Radović, Miladin
AU  - Krstajić, Nedeljko V.
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5839
AB  - In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions
EP  - 86
SP  - 78
VL  - 766
DO  - 10.1016/j.jelechem.2016.01.038
ER  - 
@article{
author = "Jović, Borka M. and Jović, Vladimir D. and Lačnjevac, Uroš and Stevanović, Sanja and Kovač, Janez and Radović, Miladin and Krstajić, Nedeljko V.",
year = "2016",
abstract = "In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions",
pages = "86-78",
volume = "766",
doi = "10.1016/j.jelechem.2016.01.038"
}
Jović, B. M., Jović, V. D., Lačnjevac, U., Stevanović, S., Kovač, J., Radović, M.,& Krstajić, N. V.. (2016). Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry
Elsevier., 766, 78-86.
https://doi.org/10.1016/j.jelechem.2016.01.038
Jović BM, Jović VD, Lačnjevac U, Stevanović S, Kovač J, Radović M, Krstajić NV. Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry. 2016;766:78-86.
doi:10.1016/j.jelechem.2016.01.038 .
Jović, Borka M., Jović, Vladimir D., Lačnjevac, Uroš, Stevanović, Sanja, Kovač, Janez, Radović, Miladin, Krstajić, Nedeljko V., "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions" in Journal of Electroanalytical Chemistry, 766 (2016):78-86,
https://doi.org/10.1016/j.jelechem.2016.01.038 . .
18
14
19

Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions

Jović, Borka M.; Jović, Vladimir D.; Lačnjevac, Uroš; Stevanović, Sanja; Kovač, Janez; Radović, Miladin; Krstajić, Nedeljko V.

(Elsevier, 2016)

TY  - JOUR
AU  - Jović, Borka M.
AU  - Jović, Vladimir D.
AU  - Lačnjevac, Uroš
AU  - Stevanović, Sanja
AU  - Kovač, Janez
AU  - Radović, Miladin
AU  - Krstajić, Nedeljko V.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4297
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6365
AB  - In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions
EP  - 86
SP  - 78
VL  - 766
DO  - 10.1016/j.jelechem.2016.01.038
ER  - 
@article{
author = "Jović, Borka M. and Jović, Vladimir D. and Lačnjevac, Uroš and Stevanović, Sanja and Kovač, Janez and Radović, Miladin and Krstajić, Nedeljko V.",
year = "2016",
abstract = "In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions",
pages = "86-78",
volume = "766",
doi = "10.1016/j.jelechem.2016.01.038"
}
Jović, B. M., Jović, V. D., Lačnjevac, U., Stevanović, S., Kovač, J., Radović, M.,& Krstajić, N. V.. (2016). Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry
Elsevier., 766, 78-86.
https://doi.org/10.1016/j.jelechem.2016.01.038
Jović BM, Jović VD, Lačnjevac U, Stevanović S, Kovač J, Radović M, Krstajić NV. Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry. 2016;766:78-86.
doi:10.1016/j.jelechem.2016.01.038 .
Jović, Borka M., Jović, Vladimir D., Lačnjevac, Uroš, Stevanović, Sanja, Kovač, Janez, Radović, Miladin, Krstajić, Nedeljko V., "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions" in Journal of Electroanalytical Chemistry, 766 (2016):78-86,
https://doi.org/10.1016/j.jelechem.2016.01.038 . .
18
14
19

Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications

Elezović, Nevenka R.; Radmilović, Velimir R; Krstajić, Nedeljko V

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Radmilović, Velimir R
AU  - Krstajić, Nedeljko V
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5834
AB  - In this manuscript a survey of the contemporary research related to platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications is presented. Different carbon based supports, used as state of the art materials, are listed and discussed, as well. Although carbon based materials possess many desirable properties, such as high surface area, high conductivity and relatively low cost and easy synthesis, the large scale commercialization is limited by instability under accelerated stability testing, simulating real fuel cell operating conditions. To overcome these disadvantages of carbon supports, different metal oxide based ones have been studied and promising results are referenced. The most often used oxide based supports for low temperature fuel cell applications are presented in this review. Suitable discussion and future research related remarks are given, as well.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications
EP  - 6801
IS  - 8
SP  - 6788
VL  - 6
DO  - 10.1039/C5RA22403A
ER  - 
@article{
author = "Elezović, Nevenka R. and Radmilović, Velimir R and Krstajić, Nedeljko V",
year = "2016",
abstract = "In this manuscript a survey of the contemporary research related to platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications is presented. Different carbon based supports, used as state of the art materials, are listed and discussed, as well. Although carbon based materials possess many desirable properties, such as high surface area, high conductivity and relatively low cost and easy synthesis, the large scale commercialization is limited by instability under accelerated stability testing, simulating real fuel cell operating conditions. To overcome these disadvantages of carbon supports, different metal oxide based ones have been studied and promising results are referenced. The most often used oxide based supports for low temperature fuel cell applications are presented in this review. Suitable discussion and future research related remarks are given, as well.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications",
pages = "6801-6788",
number = "8",
volume = "6",
doi = "10.1039/C5RA22403A"
}
Elezović, N. R., Radmilović, V. R.,& Krstajić, N. V.. (2016). Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications. in RSC Advances
Royal Soc Chemistry, Cambridge., 6(8), 6788-6801.
https://doi.org/10.1039/C5RA22403A
Elezović NR, Radmilović VR, Krstajić NV. Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications. in RSC Advances. 2016;6(8):6788-6801.
doi:10.1039/C5RA22403A .
Elezović, Nevenka R., Radmilović, Velimir R, Krstajić, Nedeljko V, "Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications" in RSC Advances, 6, no. 8 (2016):6788-6801,
https://doi.org/10.1039/C5RA22403A . .
71
32
72

Thermal Resistance of Alkali Activated Binders Synthesized Using the Fly Ash and Steel Slag

Nikolić, Irena; Marković, Smilja; Karanović, Ljiljana; Radmilović, Vuk; Radmilović, Velimir R.

(Belgrade : Materials Research Society of Serbia, 2015)

TY  - CONF
AU  - Nikolić, Irena
AU  - Marković, Smilja
AU  - Karanović, Ljiljana
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2882
AB  - The thermal resistance of alkali-activated binders based on fly ash (FA), electric arc furnace slag (EAFS) and their FA/EAFS blends was assessed. Compressive strengths of samples before and after firing were measured. The samples were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), energydispersive X-ray spectra (EDS), thermal (TG/DTA) analysis. Besides, the sintering shrinkage were recorded by thermomechanical analyzer (TMA) during non-isothermal sintering up to 900 ºC with heating rate of 15 º/min, in an air atmosphere. The main reaction products in FA and EAFS based alkali activated binders are the sodiumalumino-silicate-hydrate (N–A–S–H) and calcium-alumino-silicate-hydrate (C-A-S-H) type gels, respectively. FA/EAFS based binders are characterized by the presence of N-A-S-H gel with the high content of Ca. The EAFS based binders exhibited superior performances in terms of compressive strength than FA based binders. Thermal resistance of FA based binders was improved by the slag addition. This research was supported by a Ministry of Science of Montenegro under the contract No. 01-460.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August
T1  - Thermal Resistance of Alkali Activated Binders Synthesized Using the Fly Ash and Steel Slag
EP  - 24
SP  - 24
UR  - https://hdl.handle.net/21.15107/rcub_technorep_2882
ER  - 
@conference{
author = "Nikolić, Irena and Marković, Smilja and Karanović, Ljiljana and Radmilović, Vuk and Radmilović, Velimir R.",
year = "2015",
abstract = "The thermal resistance of alkali-activated binders based on fly ash (FA), electric arc furnace slag (EAFS) and their FA/EAFS blends was assessed. Compressive strengths of samples before and after firing were measured. The samples were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), energydispersive X-ray spectra (EDS), thermal (TG/DTA) analysis. Besides, the sintering shrinkage were recorded by thermomechanical analyzer (TMA) during non-isothermal sintering up to 900 ºC with heating rate of 15 º/min, in an air atmosphere. The main reaction products in FA and EAFS based alkali activated binders are the sodiumalumino-silicate-hydrate (N–A–S–H) and calcium-alumino-silicate-hydrate (C-A-S-H) type gels, respectively. FA/EAFS based binders are characterized by the presence of N-A-S-H gel with the high content of Ca. The EAFS based binders exhibited superior performances in terms of compressive strength than FA based binders. Thermal resistance of FA based binders was improved by the slag addition. This research was supported by a Ministry of Science of Montenegro under the contract No. 01-460.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August",
title = "Thermal Resistance of Alkali Activated Binders Synthesized Using the Fly Ash and Steel Slag",
pages = "24-24",
url = "https://hdl.handle.net/21.15107/rcub_technorep_2882"
}
Nikolić, I., Marković, S., Karanović, L., Radmilović, V.,& Radmilović, V. R.. (2015). Thermal Resistance of Alkali Activated Binders Synthesized Using the Fly Ash and Steel Slag. in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August
Belgrade : Materials Research Society of Serbia., 24-24.
https://hdl.handle.net/21.15107/rcub_technorep_2882
Nikolić I, Marković S, Karanović L, Radmilović V, Radmilović VR. Thermal Resistance of Alkali Activated Binders Synthesized Using the Fly Ash and Steel Slag. in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August. 2015;:24-24.
https://hdl.handle.net/21.15107/rcub_technorep_2882 .
Nikolić, Irena, Marković, Smilja, Karanović, Ljiljana, Radmilović, Vuk, Radmilović, Velimir R., "Thermal Resistance of Alkali Activated Binders Synthesized Using the Fly Ash and Steel Slag" in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August (2015):24-24,
https://hdl.handle.net/21.15107/rcub_technorep_2882 .

Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes

Guo, Fei; Li, Ning; Radmilović, Vuk; Radmilović, Velimir R.; Turbiez, Mathieu; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

(Royal Soc Chemistry, Cambridge, 2015)

TY  - JOUR
AU  - Guo, Fei
AU  - Li, Ning
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
AU  - Turbiez, Mathieu
AU  - Spiecker, Erdmann
AU  - Forberich, Karen
AU  - Brabec, Christoph J.
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2966
AB  - We report in this work efficient, fully printed tandem organic solar cells (OSCs) using solution-processed silver as the reflective bottom electrode and silver nanowires as the transparent top electrode. Employing two different band-gap photoactive materials with complementary absorption, the tandem OSCs are fully printed under ambient conditions without the use of indium tin oxide and vacuum-based deposition. The fully printed tandem devices achieve power conversion efficiencies of 5.81% (on glass) and 4.85% (on flexible substrate) without open circuit voltage (V-oc) losses. These results represent an important progress towards the realization of low-cost tandem OSCs by demonstrating the possibility of printing efficient organic tandem devices under ambient conditions onto production relevant carrier substrates.
PB  - Royal Soc Chemistry, Cambridge
T2  - Energy & Environmental Science
T1  - Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes
EP  - 1697
IS  - 6
SP  - 1690
VL  - 8
DO  - 10.1039/c5ee00184f
ER  - 
@article{
author = "Guo, Fei and Li, Ning and Radmilović, Vuk and Radmilović, Velimir R. and Turbiez, Mathieu and Spiecker, Erdmann and Forberich, Karen and Brabec, Christoph J.",
year = "2015",
abstract = "We report in this work efficient, fully printed tandem organic solar cells (OSCs) using solution-processed silver as the reflective bottom electrode and silver nanowires as the transparent top electrode. Employing two different band-gap photoactive materials with complementary absorption, the tandem OSCs are fully printed under ambient conditions without the use of indium tin oxide and vacuum-based deposition. The fully printed tandem devices achieve power conversion efficiencies of 5.81% (on glass) and 4.85% (on flexible substrate) without open circuit voltage (V-oc) losses. These results represent an important progress towards the realization of low-cost tandem OSCs by demonstrating the possibility of printing efficient organic tandem devices under ambient conditions onto production relevant carrier substrates.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Energy & Environmental Science",
title = "Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes",
pages = "1697-1690",
number = "6",
volume = "8",
doi = "10.1039/c5ee00184f"
}
Guo, F., Li, N., Radmilović, V., Radmilović, V. R., Turbiez, M., Spiecker, E., Forberich, K.,& Brabec, C. J.. (2015). Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. in Energy & Environmental Science
Royal Soc Chemistry, Cambridge., 8(6), 1690-1697.
https://doi.org/10.1039/c5ee00184f
Guo F, Li N, Radmilović V, Radmilović VR, Turbiez M, Spiecker E, Forberich K, Brabec CJ. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. in Energy & Environmental Science. 2015;8(6):1690-1697.
doi:10.1039/c5ee00184f .
Guo, Fei, Li, Ning, Radmilović, Vuk, Radmilović, Velimir R., Turbiez, Mathieu, Spiecker, Erdmann, Forberich, Karen, Brabec, Christoph J., "Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes" in Energy & Environmental Science, 8, no. 6 (2015):1690-1697,
https://doi.org/10.1039/c5ee00184f . .
1
83
72
82

RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution

Lačnjevac, Uroš; Radmilović, Vuk; Radmilović, Velimir R.; Krstajić, Nedeljko V.

(Pergamon-Elsevier Science Ltd, Oxford, 2015)

TY  - JOUR
AU  - Lačnjevac, Uroš
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko V.
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2981
AB  - Nanocomposite cathodes for the hydrogen evolution reaction (HER) were prepared by deposition of RuOx catalyst particles on self-organized titania nanotube (TiNT) arrays of highly developed surface area, following a procedure that involved the initial cathodic intercalation of H+ into the TiNT walls and the subsequent two-step ion-exchange process. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analyses of obtained Ru-TiNT samples revealed that the concentration of RuOx particles in the size range of a few nanometers was the highest at the surface of the TiNT layer and steadily decreased to a minimum value at about 4.5 mu m inside the tubes. The capacitive behavior and electrocatalytic activity for the HER of Ru-TiNT nanocomposites, hydrogenated TiNT samples (H-TiNT) and compact TiO2 were investigated in 1.0 M HClO4 solution at room temperature by means of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis and steady-state polarization measurements. It was shown that cathodic hydrogenation treatment induced a four orders of magnitude higher concentration of electron donors in TiNT structures providing their quasimetallic behavior in the range of potentials corresponding to the HER. Ru-TiNT cathodes exhibited a more than 250 mV lower overpotential for the HER with respect to bare H-TiNT substrates at the current density of -50 mA cm (2). A decrease of the Tafel slope from about -120 mV/dec for H-TiNT samples to as low as -70 mV/dec for the Ru-TiNT sample with longer tubes was explained by the formal kinetics approach.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Electrochimica Acta
T1  - RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution
EP  - 190
SP  - 178
VL  - 168
DO  - 10.1016/j.electacta.2015.04.012
ER  - 
@article{
author = "Lačnjevac, Uroš and Radmilović, Vuk and Radmilović, Velimir R. and Krstajić, Nedeljko V.",
year = "2015",
abstract = "Nanocomposite cathodes for the hydrogen evolution reaction (HER) were prepared by deposition of RuOx catalyst particles on self-organized titania nanotube (TiNT) arrays of highly developed surface area, following a procedure that involved the initial cathodic intercalation of H+ into the TiNT walls and the subsequent two-step ion-exchange process. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analyses of obtained Ru-TiNT samples revealed that the concentration of RuOx particles in the size range of a few nanometers was the highest at the surface of the TiNT layer and steadily decreased to a minimum value at about 4.5 mu m inside the tubes. The capacitive behavior and electrocatalytic activity for the HER of Ru-TiNT nanocomposites, hydrogenated TiNT samples (H-TiNT) and compact TiO2 were investigated in 1.0 M HClO4 solution at room temperature by means of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis and steady-state polarization measurements. It was shown that cathodic hydrogenation treatment induced a four orders of magnitude higher concentration of electron donors in TiNT structures providing their quasimetallic behavior in the range of potentials corresponding to the HER. Ru-TiNT cathodes exhibited a more than 250 mV lower overpotential for the HER with respect to bare H-TiNT substrates at the current density of -50 mA cm (2). A decrease of the Tafel slope from about -120 mV/dec for H-TiNT samples to as low as -70 mV/dec for the Ru-TiNT sample with longer tubes was explained by the formal kinetics approach.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Electrochimica Acta",
title = "RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution",
pages = "190-178",
volume = "168",
doi = "10.1016/j.electacta.2015.04.012"
}
Lačnjevac, U., Radmilović, V., Radmilović, V. R.,& Krstajić, N. V.. (2015). RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution. in Electrochimica Acta
Pergamon-Elsevier Science Ltd, Oxford., 168, 178-190.
https://doi.org/10.1016/j.electacta.2015.04.012
Lačnjevac U, Radmilović V, Radmilović VR, Krstajić NV. RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution. in Electrochimica Acta. 2015;168:178-190.
doi:10.1016/j.electacta.2015.04.012 .
Lačnjevac, Uroš, Radmilović, Vuk, Radmilović, Velimir R., Krstajić, Nedeljko V., "RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution" in Electrochimica Acta, 168 (2015):178-190,
https://doi.org/10.1016/j.electacta.2015.04.012 . .
30
24
33

Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes

Goebelt, Manuela; Keding, Ralf; Schmitt, Sebastian W.; Hoffmann, Bjoern; Jaeckle, Sara; Latzel, Michael; Radmilović, Vuk; Radmilović, Velimir R.; Spiecker, Erdmann; Christiansen, Silke

(Elsevier, Amsterdam, 2015)

TY  - JOUR
AU  - Goebelt, Manuela
AU  - Keding, Ralf
AU  - Schmitt, Sebastian W.
AU  - Hoffmann, Bjoern
AU  - Jaeckle, Sara
AU  - Latzel, Michael
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
AU  - Spiecker, Erdmann
AU  - Christiansen, Silke
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3061
AB  - We report on the development of a novel nano-composite transparent electrode material to be used in various energy applications e.g. as contacts for solar cells, composed of a wet-chemically synthesized silver nanowire (AgNW) network encapsulated in a transparent conductive oxide (TCO) which was deposited with nano-scale precision by atomic layer deposition (ALD). The AgNWs form a random network on a substrate of choice when being drop casted. ALD encapsulation of AgNWs guarantees a conformal and thickness controlled coating of the wires e.g. by the selected aluminum doped zinc oxide (AZO). Annealing of the AgNWs prior to ALD coating, yield a local sintering of AgNWs at their points of intersection, which improves the conductivity of the composite electrodes by reducing their sheet resistance. To demonstrate the performance of these AgNW/AZO composite transparent electrodes, they were used as a top electrode on wafer-based silicon (Si) - solar cells. A novel combination of scanning electron microscopy and image processing is used to determine the degree of percolation of the AgNWs on large areas of the nano-composite AgNW/AZO electrodes. Our results show that the solar cell with percolated AgNW/AZO electrode show the highest short circuit current density (28 mA/cm(2)) and a series resistance in the same order of magnitude compared to reference solar cells with a thermally evaporated silver grid electrode. The electrode example we chose reveals that the developed AgNW/AZO electrode is a technologically relevant and cheap alternative to conventional solar cell screen printed grid electrodes, which contain similar to 95% more Ag per device area, with a high potential to be further systematically optimized by the presented image processing method.
PB  - Elsevier, Amsterdam
T2  - Nano Energy
T1  - Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes
EP  - 206
SP  - 196
VL  - 16
DO  - 10.1016/j.nanoen.2015.06.027
ER  - 
@article{
author = "Goebelt, Manuela and Keding, Ralf and Schmitt, Sebastian W. and Hoffmann, Bjoern and Jaeckle, Sara and Latzel, Michael and Radmilović, Vuk and Radmilović, Velimir R. and Spiecker, Erdmann and Christiansen, Silke",
year = "2015",
abstract = "We report on the development of a novel nano-composite transparent electrode material to be used in various energy applications e.g. as contacts for solar cells, composed of a wet-chemically synthesized silver nanowire (AgNW) network encapsulated in a transparent conductive oxide (TCO) which was deposited with nano-scale precision by atomic layer deposition (ALD). The AgNWs form a random network on a substrate of choice when being drop casted. ALD encapsulation of AgNWs guarantees a conformal and thickness controlled coating of the wires e.g. by the selected aluminum doped zinc oxide (AZO). Annealing of the AgNWs prior to ALD coating, yield a local sintering of AgNWs at their points of intersection, which improves the conductivity of the composite electrodes by reducing their sheet resistance. To demonstrate the performance of these AgNW/AZO composite transparent electrodes, they were used as a top electrode on wafer-based silicon (Si) - solar cells. A novel combination of scanning electron microscopy and image processing is used to determine the degree of percolation of the AgNWs on large areas of the nano-composite AgNW/AZO electrodes. Our results show that the solar cell with percolated AgNW/AZO electrode show the highest short circuit current density (28 mA/cm(2)) and a series resistance in the same order of magnitude compared to reference solar cells with a thermally evaporated silver grid electrode. The electrode example we chose reveals that the developed AgNW/AZO electrode is a technologically relevant and cheap alternative to conventional solar cell screen printed grid electrodes, which contain similar to 95% more Ag per device area, with a high potential to be further systematically optimized by the presented image processing method.",
publisher = "Elsevier, Amsterdam",
journal = "Nano Energy",
title = "Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes",
pages = "206-196",
volume = "16",
doi = "10.1016/j.nanoen.2015.06.027"
}
Goebelt, M., Keding, R., Schmitt, S. W., Hoffmann, B., Jaeckle, S., Latzel, M., Radmilović, V., Radmilović, V. R., Spiecker, E.,& Christiansen, S.. (2015). Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. in Nano Energy
Elsevier, Amsterdam., 16, 196-206.
https://doi.org/10.1016/j.nanoen.2015.06.027
Goebelt M, Keding R, Schmitt SW, Hoffmann B, Jaeckle S, Latzel M, Radmilović V, Radmilović VR, Spiecker E, Christiansen S. Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. in Nano Energy. 2015;16:196-206.
doi:10.1016/j.nanoen.2015.06.027 .
Goebelt, Manuela, Keding, Ralf, Schmitt, Sebastian W., Hoffmann, Bjoern, Jaeckle, Sara, Latzel, Michael, Radmilović, Vuk, Radmilović, Velimir R., Spiecker, Erdmann, Christiansen, Silke, "Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes" in Nano Energy, 16 (2015):196-206,
https://doi.org/10.1016/j.nanoen.2015.06.027 . .
65
71
57
69

A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells

Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

(Nature Publishing Group, London, 2015)

TY  - JOUR
AU  - Guo, Fei
AU  - Li, Ning
AU  - Fecher, Frank W.
AU  - Gasparini, Nicola
AU  - Quiroz, Cesar Omar Ramirez
AU  - Bronnbauer, Carina
AU  - Hou, Yi
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
AU  - Spiecker, Erdmann
AU  - Forberich, Karen
AU  - Brabec, Christoph J.
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3116
AB  - The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series-and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.
PB  - Nature Publishing Group, London
T2  - Nature Communications
T1  - A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells
VL  - 6
DO  - 10.1038/ncomms8730
ER  - 
@article{
author = "Guo, Fei and Li, Ning and Fecher, Frank W. and Gasparini, Nicola and Quiroz, Cesar Omar Ramirez and Bronnbauer, Carina and Hou, Yi and Radmilović, Vuk and Radmilović, Velimir R. and Spiecker, Erdmann and Forberich, Karen and Brabec, Christoph J.",
year = "2015",
abstract = "The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series-and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.",
publisher = "Nature Publishing Group, London",
journal = "Nature Communications",
title = "A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells",
volume = "6",
doi = "10.1038/ncomms8730"
}
Guo, F., Li, N., Fecher, F. W., Gasparini, N., Quiroz, C. O. R., Bronnbauer, C., Hou, Y., Radmilović, V., Radmilović, V. R., Spiecker, E., Forberich, K.,& Brabec, C. J.. (2015). A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. in Nature Communications
Nature Publishing Group, London., 6.
https://doi.org/10.1038/ncomms8730
Guo F, Li N, Fecher FW, Gasparini N, Quiroz COR, Bronnbauer C, Hou Y, Radmilović V, Radmilović VR, Spiecker E, Forberich K, Brabec CJ. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. in Nature Communications. 2015;6.
doi:10.1038/ncomms8730 .
Guo, Fei, Li, Ning, Fecher, Frank W., Gasparini, Nicola, Quiroz, Cesar Omar Ramirez, Bronnbauer, Carina, Hou, Yi, Radmilović, Vuk, Radmilović, Velimir R., Spiecker, Erdmann, Forberich, Karen, Brabec, Christoph J., "A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells" in Nature Communications, 6 (2015),
https://doi.org/10.1038/ncomms8730 . .
68
51
69