Microbial diversity study and characterization of beneficial environmental microorganisms

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173048/RS//

Microbial diversity study and characterization of beneficial environmental microorganisms (en)
Изучавање микробиолошког диверзитета и карактеризација корисних срединских микроорганизама (sr)
Izučavanje mikrobiološkog diverziteta i karakterizacija korisnih sredinskih mikroorganizama (sr_RS)
Authors

Publications

The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions

Marković, Darka; Vasiljević, Jelena; Ašanin, Jelena; Ilić‐Tomić, Tatjana; Tomšič, Brigita; Jokić, Bojan; Mitrić, Miodrag; Simončič, Barbara; Mišić, Dušan; Radetić, Maja

(Wiley, Hoboken, 2020)

TY  - JOUR
AU  - Marković, Darka
AU  - Vasiljević, Jelena
AU  - Ašanin, Jelena
AU  - Ilić‐Tomić, Tatjana
AU  - Tomšič, Brigita
AU  - Jokić, Bojan
AU  - Mitrić, Miodrag
AU  - Simončič, Barbara
AU  - Mišić, Dušan
AU  - Radetić, Maja
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4520
AB  - A novel impregnation process for the fabrication of cotton nanocomposite with strong antimicrobial activity against antibiotics-resistant bacteria and yeast was developed. The impregnation process includes the sol-gel treatment of fabric with (3-aminopropyl)triethoxysilane in the first step, and synthesis of the CuO/Cu2O nanoparticles (NPs) on the fabric surface in the second step. The in situ synthesis of the CuO/Cu2O NPs was based on the adsorption of Cu2+-ions by the introduced amino groups of the sol-gel coating. The adsorbed Cu2+-ions are subsequently reduced in the alkaline solution of NaBH4. X-ray diffraction measurements confirmed the formation of CuO/Cu2O NPs. Scanning electron microscopy and atomic absorption spectrometry analyses indicate that the particle size, agglomeration, and amounts of synthesized NPs were highly affected by the initial concentration of CuSO(4)solution. The toxicity of nanocomposites to human keratinocytes (HaCaT) and antimicrobial activity against Gram-negativeEscherichia coliATCC 25922,E. coliATCC BAA 2469, andKlebsiella pneumoniaeATCC BAA 2146, and Gram-positive bacteriaStaphylococcus aureusATCC 25923,S. aureusATCC 43300 and yeastCandida albicansATCC 24433 strongly depended on the copper content. In addition to excellent antimicrobial activity, controlled release of Cu2+-ions from the fabrics into physiological saline solution was obtained.
PB  - Wiley, Hoboken
T2  - Journal of Applied Polymer Science
T1  - The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions
IS  - 40
VL  - 137
DO  - 10.1002/app.49194
ER  - 
@article{
author = "Marković, Darka and Vasiljević, Jelena and Ašanin, Jelena and Ilić‐Tomić, Tatjana and Tomšič, Brigita and Jokić, Bojan and Mitrić, Miodrag and Simončič, Barbara and Mišić, Dušan and Radetić, Maja",
year = "2020",
abstract = "A novel impregnation process for the fabrication of cotton nanocomposite with strong antimicrobial activity against antibiotics-resistant bacteria and yeast was developed. The impregnation process includes the sol-gel treatment of fabric with (3-aminopropyl)triethoxysilane in the first step, and synthesis of the CuO/Cu2O nanoparticles (NPs) on the fabric surface in the second step. The in situ synthesis of the CuO/Cu2O NPs was based on the adsorption of Cu2+-ions by the introduced amino groups of the sol-gel coating. The adsorbed Cu2+-ions are subsequently reduced in the alkaline solution of NaBH4. X-ray diffraction measurements confirmed the formation of CuO/Cu2O NPs. Scanning electron microscopy and atomic absorption spectrometry analyses indicate that the particle size, agglomeration, and amounts of synthesized NPs were highly affected by the initial concentration of CuSO(4)solution. The toxicity of nanocomposites to human keratinocytes (HaCaT) and antimicrobial activity against Gram-negativeEscherichia coliATCC 25922,E. coliATCC BAA 2469, andKlebsiella pneumoniaeATCC BAA 2146, and Gram-positive bacteriaStaphylococcus aureusATCC 25923,S. aureusATCC 43300 and yeastCandida albicansATCC 24433 strongly depended on the copper content. In addition to excellent antimicrobial activity, controlled release of Cu2+-ions from the fabrics into physiological saline solution was obtained.",
publisher = "Wiley, Hoboken",
journal = "Journal of Applied Polymer Science",
title = "The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions",
number = "40",
volume = "137",
doi = "10.1002/app.49194"
}
Marković, D., Vasiljević, J., Ašanin, J., Ilić‐Tomić, T., Tomšič, B., Jokić, B., Mitrić, M., Simončič, B., Mišić, D.,& Radetić, M.. (2020). The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. in Journal of Applied Polymer Science
Wiley, Hoboken., 137(40).
https://doi.org/10.1002/app.49194
Marković D, Vasiljević J, Ašanin J, Ilić‐Tomić T, Tomšič B, Jokić B, Mitrić M, Simončič B, Mišić D, Radetić M. The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. in Journal of Applied Polymer Science. 2020;137(40).
doi:10.1002/app.49194 .
Marković, Darka, Vasiljević, Jelena, Ašanin, Jelena, Ilić‐Tomić, Tatjana, Tomšič, Brigita, Jokić, Bojan, Mitrić, Miodrag, Simončič, Barbara, Mišić, Dušan, Radetić, Maja, "The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions" in Journal of Applied Polymer Science, 137, no. 40 (2020),
https://doi.org/10.1002/app.49194 . .
3
19
4
18

Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Mandić, Mina; Spasić, Jelena; Ponjavić, Marijana; Nikolić, Marija; Ćosović, Vladan; O'Connor, Kevin E; Nikodinović-Runić, Jasmina; Đokić, Lidija; Jeremić, Sanja

(Elsevier Ltd, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija
AU  - Ćosović, Vladan
AU  - O'Connor, Kevin E
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5040
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier Ltd
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
EP  - 168
SP  - 160
VL  - 162
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija and Ćosović, Vladan and O'Connor, Kevin E and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier Ltd",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
pages = "168-160",
volume = "162",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M., Ćosović, V., O'Connor, K. E., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier Ltd., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić M, Ćosović V, O'Connor KE, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija, Ćosović, Vladan, O'Connor, Kevin E, Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .
21
6
20

Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Mandić, Mina; Spasić, Jelena; Ponjavić, Marijana; Nikolić, Marija; Ćosović, Vladan; O'Connor, Kevin E.; Nikodinović-Runić, Jasmina; Đokić, Lidija; Jeremić, Sanja

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija
AU  - Ćosović, Vladan
AU  - O'Connor, Kevin E.
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4250
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(epsilon-caprolactone) (PCL) or poly-hydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 mu m) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 mu m) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chiororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis13-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier Sci Ltd, Oxford
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
EP  - 168
SP  - 160
VL  - 162
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija and Ćosović, Vladan and O'Connor, Kevin E. and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(epsilon-caprolactone) (PCL) or poly-hydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 mu m) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 mu m) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chiororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis13-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
pages = "168-160",
volume = "162",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M., Ćosović, V., O'Connor, K. E., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier Sci Ltd, Oxford., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić M, Ćosović V, O'Connor KE, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija, Ćosović, Vladan, O'Connor, Kevin E., Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .
21
6
21

Controlled drug release carriers based on PCL/PEO/PCL block copolymers

Ponjavić, Marijana; Nikolić, Marija; Nikodinović-Runić, Jasmina; Ilić-Tomić, Tatjana; Đonlagić, Jasna

(Taylor & Francis As, Oslo, 2019)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija
AU  - Nikodinović-Runić, Jasmina
AU  - Ilić-Tomić, Tatjana
AU  - Đonlagić, Jasna
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4175
AB  - In order to create a new drug delivery system, the ibuprofen-loaded triblock copolymer PCL/PEO/PCL (PCEC) microspheres with a low PEO content ( lt 2 wt%) were prepared by oil in water (o/w) solvent evaporation technique. The influence of PEO content, molecular weight of a polymer matrix and drug loading on the ibuprofen release profiles were evaluated. The interactions between polymer matrix and ibuprofen were detected by FTIR analysis. The presence of hydrophilic PEO segment in PCL chains caused the decrease in particle size, which further had a great impact on the drug release kinetics, i.e., initially faster release and significantly higher quantity of released drug compared to neat PCL. Ibuprofen release behavior from polymer matrix was governed by a diffusion process. In vitro cytotoxicity tests revealed that empty PCL and PCEC microspheres were not toxic at low concentrations, while ibuprofen-loaded microspheres exhibited cytotoxicity correlated with amounts of incorporated drug.
PB  - Taylor & Francis As, Oslo
T2  - International Journal of Polymeric Materials and Polymeric Biomaterials
T1  - Controlled drug release carriers based on PCL/PEO/PCL block copolymers
EP  - 318
IS  - 6
SP  - 308
VL  - 68
DO  - 10.1080/00914037.2018.1445631
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija and Nikodinović-Runić, Jasmina and Ilić-Tomić, Tatjana and Đonlagić, Jasna",
year = "2019",
abstract = "In order to create a new drug delivery system, the ibuprofen-loaded triblock copolymer PCL/PEO/PCL (PCEC) microspheres with a low PEO content ( lt 2 wt%) were prepared by oil in water (o/w) solvent evaporation technique. The influence of PEO content, molecular weight of a polymer matrix and drug loading on the ibuprofen release profiles were evaluated. The interactions between polymer matrix and ibuprofen were detected by FTIR analysis. The presence of hydrophilic PEO segment in PCL chains caused the decrease in particle size, which further had a great impact on the drug release kinetics, i.e., initially faster release and significantly higher quantity of released drug compared to neat PCL. Ibuprofen release behavior from polymer matrix was governed by a diffusion process. In vitro cytotoxicity tests revealed that empty PCL and PCEC microspheres were not toxic at low concentrations, while ibuprofen-loaded microspheres exhibited cytotoxicity correlated with amounts of incorporated drug.",
publisher = "Taylor & Francis As, Oslo",
journal = "International Journal of Polymeric Materials and Polymeric Biomaterials",
title = "Controlled drug release carriers based on PCL/PEO/PCL block copolymers",
pages = "318-308",
number = "6",
volume = "68",
doi = "10.1080/00914037.2018.1445631"
}
Ponjavić, M., Nikolić, M., Nikodinović-Runić, J., Ilić-Tomić, T.,& Đonlagić, J.. (2019). Controlled drug release carriers based on PCL/PEO/PCL block copolymers. in International Journal of Polymeric Materials and Polymeric Biomaterials
Taylor & Francis As, Oslo., 68(6), 308-318.
https://doi.org/10.1080/00914037.2018.1445631
Ponjavić M, Nikolić M, Nikodinović-Runić J, Ilić-Tomić T, Đonlagić J. Controlled drug release carriers based on PCL/PEO/PCL block copolymers. in International Journal of Polymeric Materials and Polymeric Biomaterials. 2019;68(6):308-318.
doi:10.1080/00914037.2018.1445631 .
Ponjavić, Marijana, Nikolić, Marija, Nikodinović-Runić, Jasmina, Ilić-Tomić, Tatjana, Đonlagić, Jasna, "Controlled drug release carriers based on PCL/PEO/PCL block copolymers" in International Journal of Polymeric Materials and Polymeric Biomaterials, 68, no. 6 (2019):308-318,
https://doi.org/10.1080/00914037.2018.1445631 . .
11
3
10

Utilization of supercritical carbon dioxide in fabrication of cellulose acetate films with anti-biofilm effects against Pseudomonas aeruginosa and Staphylococcus aureus

Žižović, Irena; Senerović, Lidija; Morić, Ivana; Adamović, Tijana; Jovanović, Milena; Kalagasidis Krušić, Melina; Mišić, Dušan; Stojanović, Dušica; Milovanović, Stoja

(Elsevier Science Bv, Amsterdam, 2018)

TY  - JOUR
AU  - Žižović, Irena
AU  - Senerović, Lidija
AU  - Morić, Ivana
AU  - Adamović, Tijana
AU  - Jovanović, Milena
AU  - Kalagasidis Krušić, Melina
AU  - Mišić, Dušan
AU  - Stojanović, Dušica
AU  - Milovanović, Stoja
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3923
AB  - This study discusses utilization of supercritical carbon dioxide for impregnation of cellulose acetate films with thymol in order to produce material with anti-biofilm activity against Pseudomonas aeruginosa and Staphylococcus aureus. Analysis of anti-biofilm activity of cellulose acetate beads impregnated with thymol suggested that optimal thymol loading was in the range from 26% to 30% for efficient reduction of biofilm formation and eradication of pre-formed biofilms. Polymer films were fabricated by the solvent casting method from polymer solutions of different contents, and loaded with thymol using supercritical carbon dioxide at 15.5 MPa and 35 degrees C. The film containing 30% of thymol (F1 30%) exhibited substantial anti-adhesion properties inhibiting biofilm formation on its surface and considerably reduced formation of biofilms on the surrounding surfaces (up to 80%) by all tested strains including antibiotic resistant P. aeruginosa DM50 and methicillin-resistant S. aureus.
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Supercritical Fluids
T1  - Utilization of supercritical carbon dioxide in fabrication of cellulose acetate films with anti-biofilm effects against Pseudomonas aeruginosa and Staphylococcus aureus
EP  - 20
SP  - 11
VL  - 140
DO  - 10.1016/j.supflu.2018.05.025
ER  - 
@article{
author = "Žižović, Irena and Senerović, Lidija and Morić, Ivana and Adamović, Tijana and Jovanović, Milena and Kalagasidis Krušić, Melina and Mišić, Dušan and Stojanović, Dušica and Milovanović, Stoja",
year = "2018",
abstract = "This study discusses utilization of supercritical carbon dioxide for impregnation of cellulose acetate films with thymol in order to produce material with anti-biofilm activity against Pseudomonas aeruginosa and Staphylococcus aureus. Analysis of anti-biofilm activity of cellulose acetate beads impregnated with thymol suggested that optimal thymol loading was in the range from 26% to 30% for efficient reduction of biofilm formation and eradication of pre-formed biofilms. Polymer films were fabricated by the solvent casting method from polymer solutions of different contents, and loaded with thymol using supercritical carbon dioxide at 15.5 MPa and 35 degrees C. The film containing 30% of thymol (F1 30%) exhibited substantial anti-adhesion properties inhibiting biofilm formation on its surface and considerably reduced formation of biofilms on the surrounding surfaces (up to 80%) by all tested strains including antibiotic resistant P. aeruginosa DM50 and methicillin-resistant S. aureus.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Supercritical Fluids",
title = "Utilization of supercritical carbon dioxide in fabrication of cellulose acetate films with anti-biofilm effects against Pseudomonas aeruginosa and Staphylococcus aureus",
pages = "20-11",
volume = "140",
doi = "10.1016/j.supflu.2018.05.025"
}
Žižović, I., Senerović, L., Morić, I., Adamović, T., Jovanović, M., Kalagasidis Krušić, M., Mišić, D., Stojanović, D.,& Milovanović, S.. (2018). Utilization of supercritical carbon dioxide in fabrication of cellulose acetate films with anti-biofilm effects against Pseudomonas aeruginosa and Staphylococcus aureus. in Journal of Supercritical Fluids
Elsevier Science Bv, Amsterdam., 140, 11-20.
https://doi.org/10.1016/j.supflu.2018.05.025
Žižović I, Senerović L, Morić I, Adamović T, Jovanović M, Kalagasidis Krušić M, Mišić D, Stojanović D, Milovanović S. Utilization of supercritical carbon dioxide in fabrication of cellulose acetate films with anti-biofilm effects against Pseudomonas aeruginosa and Staphylococcus aureus. in Journal of Supercritical Fluids. 2018;140:11-20.
doi:10.1016/j.supflu.2018.05.025 .
Žižović, Irena, Senerović, Lidija, Morić, Ivana, Adamović, Tijana, Jovanović, Milena, Kalagasidis Krušić, Melina, Mišić, Dušan, Stojanović, Dušica, Milovanović, Stoja, "Utilization of supercritical carbon dioxide in fabrication of cellulose acetate films with anti-biofilm effects against Pseudomonas aeruginosa and Staphylococcus aureus" in Journal of Supercritical Fluids, 140 (2018):11-20,
https://doi.org/10.1016/j.supflu.2018.05.025 . .
28
14
27

Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers

Ponjavić, Marijana; Nikolić, Marija; Jeremić, Sanja; Đokić, Lidija; Nikodinović-Runić, Jasmina; Ćosović, Vladan; Đonlagić, Jasna

(Springer/Plenum Publishers, New York, 2018)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Nikodinović-Runić, Jasmina
AU  - Ćosović, Vladan
AU  - Đonlagić, Jasna
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4002
AB  - Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M (n) 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of epsilon-caprolactone, were characterized by H-1 NMR, quantitative C-13 NMR, GPC, DSC and WAXS. The introduction of the PEO central segment ( lt  2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 A degrees C resulted in significant degradation of the all synthesized block copolymers.
PB  - Springer/Plenum Publishers, New York
T2  - Journal of Polymers and the Environment
T1  - Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers
EP  - 2359
IS  - 6
SP  - 2346
VL  - 26
DO  - 10.1007/s10924-017-1130-2
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija and Jeremić, Sanja and Đokić, Lidija and Nikodinović-Runić, Jasmina and Ćosović, Vladan and Đonlagić, Jasna",
year = "2018",
abstract = "Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M (n) 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of epsilon-caprolactone, were characterized by H-1 NMR, quantitative C-13 NMR, GPC, DSC and WAXS. The introduction of the PEO central segment ( lt  2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 A degrees C resulted in significant degradation of the all synthesized block copolymers.",
publisher = "Springer/Plenum Publishers, New York",
journal = "Journal of Polymers and the Environment",
title = "Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers",
pages = "2359-2346",
number = "6",
volume = "26",
doi = "10.1007/s10924-017-1130-2"
}
Ponjavić, M., Nikolić, M., Jeremić, S., Đokić, L., Nikodinović-Runić, J., Ćosović, V.,& Đonlagić, J.. (2018). Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers. in Journal of Polymers and the Environment
Springer/Plenum Publishers, New York., 26(6), 2346-2359.
https://doi.org/10.1007/s10924-017-1130-2
Ponjavić M, Nikolić M, Jeremić S, Đokić L, Nikodinović-Runić J, Ćosović V, Đonlagić J. Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers. in Journal of Polymers and the Environment. 2018;26(6):2346-2359.
doi:10.1007/s10924-017-1130-2 .
Ponjavić, Marijana, Nikolić, Marija, Jeremić, Sanja, Đokić, Lidija, Nikodinović-Runić, Jasmina, Ćosović, Vladan, Đonlagić, Jasna, "Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers" in Journal of Polymers and the Environment, 26, no. 6 (2018):2346-2359,
https://doi.org/10.1007/s10924-017-1130-2 . .
9
4
9

Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions

Ponjavić, Marijana; Nikolić, Marija; Nikodinović-Runić, Jasmina; Jeremić, Sanja; Stevanović, Sanja; Đonlagić, Jasna

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija
AU  - Nikodinović-Runić, Jasmina
AU  - Jeremić, Sanja
AU  - Stevanović, Sanja
AU  - Đonlagić, Jasna
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3668
AB  - Short-term hydrolytic and enzymatic degradation of poly(epsilon-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FUR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 degrees C, where an effective degradation of block copolymers was observed.
PB  - Elsevier Sci Ltd, Oxford
T2  - Polymer Testing
T1  - Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions
EP  - 77
SP  - 67
VL  - 57
DO  - 10.1016/j.polymertesting.2016.11.018
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija and Nikodinović-Runić, Jasmina and Jeremić, Sanja and Stevanović, Sanja and Đonlagić, Jasna",
year = "2017",
abstract = "Short-term hydrolytic and enzymatic degradation of poly(epsilon-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FUR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 degrees C, where an effective degradation of block copolymers was observed.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Polymer Testing",
title = "Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions",
pages = "77-67",
volume = "57",
doi = "10.1016/j.polymertesting.2016.11.018"
}
Ponjavić, M., Nikolić, M., Nikodinović-Runić, J., Jeremić, S., Stevanović, S.,& Đonlagić, J.. (2017). Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. in Polymer Testing
Elsevier Sci Ltd, Oxford., 57, 67-77.
https://doi.org/10.1016/j.polymertesting.2016.11.018
Ponjavić M, Nikolić M, Nikodinović-Runić J, Jeremić S, Stevanović S, Đonlagić J. Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. in Polymer Testing. 2017;57:67-77.
doi:10.1016/j.polymertesting.2016.11.018 .
Ponjavić, Marijana, Nikolić, Marija, Nikodinović-Runić, Jasmina, Jeremić, Sanja, Stevanović, Sanja, Đonlagić, Jasna, "Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions" in Polymer Testing, 57 (2017):67-77,
https://doi.org/10.1016/j.polymertesting.2016.11.018 . .
43
28
44

Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

Tadić, Marin; Kopanja, Lazar; Panjan, Matjaž; Kralj, Slavko; Nikodinović Runić, Jasmina; Stojanović, Zoran S.

(2017)

TY  - JOUR
AU  - Tadić, Marin
AU  - Kopanja, Lazar
AU  - Panjan, Matjaž
AU  - Kralj, Slavko
AU  - Nikodinović Runić, Jasmina
AU  - Stojanović, Zoran S.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5854
AB  - Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10–20 nm thickness, 80–100 nm landscape dimensions (aspect ratio ∼5) and 3–4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core–shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles’ for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.
T2  - Applied Surface Science
T1  - Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity
EP  - 634
SP  - 628
VL  - 403
DO  - 10.1016/j.apsusc.2017.01.115
UR  - https://hdl.handle.net/21.15107/rcub_dais_2349
ER  - 
@article{
author = "Tadić, Marin and Kopanja, Lazar and Panjan, Matjaž and Kralj, Slavko and Nikodinović Runić, Jasmina and Stojanović, Zoran S.",
year = "2017",
abstract = "Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10–20 nm thickness, 80–100 nm landscape dimensions (aspect ratio ∼5) and 3–4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core–shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles’ for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.",
journal = "Applied Surface Science",
title = "Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity",
pages = "634-628",
volume = "403",
doi = "10.1016/j.apsusc.2017.01.115",
url = "https://hdl.handle.net/21.15107/rcub_dais_2349"
}
Tadić, M., Kopanja, L., Panjan, M., Kralj, S., Nikodinović Runić, J.,& Stojanović, Z. S.. (2017). Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. in Applied Surface Science, 403, 628-634.
https://doi.org/10.1016/j.apsusc.2017.01.115
https://hdl.handle.net/21.15107/rcub_dais_2349
Tadić M, Kopanja L, Panjan M, Kralj S, Nikodinović Runić J, Stojanović ZS. Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. in Applied Surface Science. 2017;403:628-634.
doi:10.1016/j.apsusc.2017.01.115
https://hdl.handle.net/21.15107/rcub_dais_2349 .
Tadić, Marin, Kopanja, Lazar, Panjan, Matjaž, Kralj, Slavko, Nikodinović Runić, Jasmina, Stojanović, Zoran S., "Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity" in Applied Surface Science, 403 (2017):628-634,
https://doi.org/10.1016/j.apsusc.2017.01.115 .,
https://hdl.handle.net/21.15107/rcub_dais_2349 .
50
38
49

Crude bacterial extracts of two new Streptomyces sp isolates as bio-colorants for textile dyeing

Kramar, Ana; Ilić-Tomić, Tatjana; Petković, Miloš; Radulović, Niko; Kostić, Mirjana; Jocić, Dragan; Nikodinović-Runić, Jasmina

(Springer, Dordrecht, 2014)

TY  - JOUR
AU  - Kramar, Ana
AU  - Ilić-Tomić, Tatjana
AU  - Petković, Miloš
AU  - Radulović, Niko
AU  - Kostić, Mirjana
AU  - Jocić, Dragan
AU  - Nikodinović-Runić, Jasmina
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2674
AB  - Renewed demand for incorporation of natural dyes (bio-colorants) in textile industry could be met through biotechnological production of bacterial pigments. Two new Streptomyces strains (NP2 and NP4) were isolated for the remarkable ability to produce diffusible deep blue and deep red pigment into fermentation medium. Crude mycelial extracts of both strains were used as bio-colorants in conventional textile dyeing procedures avoiding downstream purification procedures. The yields of bio-colorants obtained in this way were 62 and 84 mg per g of mycelia for Streptomyces sp. NP2 and Streptomyces sp. NP4, respectively. Through nuclear magnetic resonance analysis of crude extracts before and after dyeing procedures, it was shown that both extracts contained prodigiosin-like family of compounds that exhibited different dyeing capabilities towards different textile fibers. Polyamide and acrylic fibers were colored to the deepest shade, polyester and triacetate fibers to a noticeable, but much lower shade depth, while cotton and cellulosic fibers stained weakly. These results confirmed that crude bacterial extracts had the characteristics similar to those of ionic and disperse dyes, which was consistent with the identified polypyrrolic prodigiosin-like structures.
PB  - Springer, Dordrecht
T2  - World Journal of Microbiology & Biotechnology
T1  - Crude bacterial extracts of two new Streptomyces sp isolates as bio-colorants for textile dyeing
EP  - 2240
IS  - 8
SP  - 2231
VL  - 30
DO  - 10.1007/s11274-014-1644-x
ER  - 
@article{
author = "Kramar, Ana and Ilić-Tomić, Tatjana and Petković, Miloš and Radulović, Niko and Kostić, Mirjana and Jocić, Dragan and Nikodinović-Runić, Jasmina",
year = "2014",
abstract = "Renewed demand for incorporation of natural dyes (bio-colorants) in textile industry could be met through biotechnological production of bacterial pigments. Two new Streptomyces strains (NP2 and NP4) were isolated for the remarkable ability to produce diffusible deep blue and deep red pigment into fermentation medium. Crude mycelial extracts of both strains were used as bio-colorants in conventional textile dyeing procedures avoiding downstream purification procedures. The yields of bio-colorants obtained in this way were 62 and 84 mg per g of mycelia for Streptomyces sp. NP2 and Streptomyces sp. NP4, respectively. Through nuclear magnetic resonance analysis of crude extracts before and after dyeing procedures, it was shown that both extracts contained prodigiosin-like family of compounds that exhibited different dyeing capabilities towards different textile fibers. Polyamide and acrylic fibers were colored to the deepest shade, polyester and triacetate fibers to a noticeable, but much lower shade depth, while cotton and cellulosic fibers stained weakly. These results confirmed that crude bacterial extracts had the characteristics similar to those of ionic and disperse dyes, which was consistent with the identified polypyrrolic prodigiosin-like structures.",
publisher = "Springer, Dordrecht",
journal = "World Journal of Microbiology & Biotechnology",
title = "Crude bacterial extracts of two new Streptomyces sp isolates as bio-colorants for textile dyeing",
pages = "2240-2231",
number = "8",
volume = "30",
doi = "10.1007/s11274-014-1644-x"
}
Kramar, A., Ilić-Tomić, T., Petković, M., Radulović, N., Kostić, M., Jocić, D.,& Nikodinović-Runić, J.. (2014). Crude bacterial extracts of two new Streptomyces sp isolates as bio-colorants for textile dyeing. in World Journal of Microbiology & Biotechnology
Springer, Dordrecht., 30(8), 2231-2240.
https://doi.org/10.1007/s11274-014-1644-x
Kramar A, Ilić-Tomić T, Petković M, Radulović N, Kostić M, Jocić D, Nikodinović-Runić J. Crude bacterial extracts of two new Streptomyces sp isolates as bio-colorants for textile dyeing. in World Journal of Microbiology & Biotechnology. 2014;30(8):2231-2240.
doi:10.1007/s11274-014-1644-x .
Kramar, Ana, Ilić-Tomić, Tatjana, Petković, Miloš, Radulović, Niko, Kostić, Mirjana, Jocić, Dragan, Nikodinović-Runić, Jasmina, "Crude bacterial extracts of two new Streptomyces sp isolates as bio-colorants for textile dyeing" in World Journal of Microbiology & Biotechnology, 30, no. 8 (2014):2231-2240,
https://doi.org/10.1007/s11274-014-1644-x . .
21
7
25