This work was also funded by the European Regional Development Fund through the Operational Competitiveness Program and the National Foundation for Science and Technology of Portugal (FCT) under the projects UID/CTM/00264/2020 of the Centre for Textile Science and Technology (2C2T)

Link to this page

This work was also funded by the European Regional Development Fund through the Operational Competitiveness Program and the National Foundation for Science and Technology of Portugal (FCT) under the projects UID/CTM/00264/2020 of the Centre for Textile Science and Technology (2C2T)

Authors

Publications

Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies

Krkobabić, Ana; Radetić, Maja; Zille, Andrea; Ribeiro, Ana Isabel; Tadić, Vanja; Ilić-Tomić, Tatjana; Marković, Darka

(MDPI, 2024)

TY  - JOUR
AU  - Krkobabić, Ana
AU  - Radetić, Maja
AU  - Zille, Andrea
AU  - Ribeiro, Ana Isabel
AU  - Tadić, Vanja
AU  - Ilić-Tomić, Tatjana
AU  - Marković, Darka
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7460
AB  - The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.
PB  - MDPI
T2  - Molecules
T1  - Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies
IS  - 7
SP  - 1447
VL  - 29
DO  - 10.3390/molecules29071447
ER  - 
@article{
author = "Krkobabić, Ana and Radetić, Maja and Zille, Andrea and Ribeiro, Ana Isabel and Tadić, Vanja and Ilić-Tomić, Tatjana and Marković, Darka",
year = "2024",
abstract = "The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.",
publisher = "MDPI",
journal = "Molecules",
title = "Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies",
number = "7",
pages = "1447",
volume = "29",
doi = "10.3390/molecules29071447"
}
Krkobabić, A., Radetić, M., Zille, A., Ribeiro, A. I., Tadić, V., Ilić-Tomić, T.,& Marković, D.. (2024). Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies. in Molecules
MDPI., 29(7), 1447.
https://doi.org/10.3390/molecules29071447
Krkobabić A, Radetić M, Zille A, Ribeiro AI, Tadić V, Ilić-Tomić T, Marković D. Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies. in Molecules. 2024;29(7):1447.
doi:10.3390/molecules29071447 .
Krkobabić, Ana, Radetić, Maja, Zille, Andrea, Ribeiro, Ana Isabel, Tadić, Vanja, Ilić-Tomić, Tatjana, Marković, Darka, "Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies" in Molecules, 29, no. 7 (2024):1447,
https://doi.org/10.3390/molecules29071447 . .