Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200129 (University of Belgrade, Faculty of Dental Medicine)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200129/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200129 (University of Belgrade, Faculty of Dental Medicine) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200129 (Univerzitet u Beogradu, Stomatološki fakultet) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200129 (Универзитет у Београду, Стоматолошки факултет) (sr)
Authors

Publications

Hydroxyapatite-based dental inserts: microstructure, mechanical properties, bonding efficiency and fracture resistance of molars with occlusal restorations

Matić, Tamara; Ležaja Zebić, Maja; Miletić, Vesna; Trajković, Isaak; Milošević, Miloš; Racić, Aleksandar; Veljović, Đorđe

(Wiley Periodicals LLC., 2023)

TY  - JOUR
AU  - Matić, Tamara
AU  - Ležaja Zebić, Maja
AU  - Miletić, Vesna
AU  - Trajković, Isaak
AU  - Milošević, Miloš
AU  - Racić, Aleksandar
AU  - Veljović, Đorđe
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6659
AB  - This study aimed to (1) comparatively analyze properties of Sr- and Mg-substituted
hydroxyapatite (HAP)-based dental inserts; (2) evaluate insert bonding to restorative
materials, and (3) evaluate the effect of doped HAP inserts on fracture resistance
(FR) of human molars with large occlusal restorations. By ion-doping with Sr or Mg,
3 insert types were obtained and characterized using XRD, SEM, Vickers hardness and
fracture toughness. Shear bond strength (SBS) was determined between acid etched or
unetched inserts and following materials: Maxcem cement (Kerr); Filtek Z250
(3M) bonded with Single Bond Universal (SBU; 3M) or Clearfil Universal (Cf; Kuraray).
Modified Class I cavities were prepared in 16 intact molars and restored using insert
+ composite or composite only (control) (n = 8/group). FR of restored molars was
determined by static load until fracture upon thermal cycling. Fracture toughness was
similar between Sr/Mg-doped inserts (0.94–1.04 MPam 1/2 p = .429). Mg-doped
inserts showed greater hardness (range 4.78–5.15 GPa) than Sr6 inserts (3.74
± 0.31 GPa; p < .05). SBS for SBU and Cf adhesives (range 7.19–15.93 MPa) was higher
than for Maxcem (range 3.07–5.95 MPa) (p < .05). There was no significant difference
in FR between molars restored with insert-containing and control restorations (3.00
± 0.30 kN and 3.22 ± 0.42 kN, respectively; p > .05). HAP-based inserts doped with
Mg/Sr had different composition and mechanical properties. Adhesive bonding to
inserts resulted in greater bond strength than cementation, which may be improved by
insert acid-etching. Ion-doped HAP inserts did not affect FR of restored molars. In conclusion,
HAP-based dental inserts may potentially replace dentin in large cavities, without
affecting fracture resistance of restored teeth.
PB  - Wiley Periodicals LLC.
T2  - Journal of Biomedical Materials Research Part B: Applied Biomaterials
T1  - Hydroxyapatite-based dental inserts: microstructure, mechanical properties, bonding efficiency and fracture resistance of molars with occlusal restorations
DO  - 10.1002/jbm.b.35331
ER  - 
@article{
author = "Matić, Tamara and Ležaja Zebić, Maja and Miletić, Vesna and Trajković, Isaak and Milošević, Miloš and Racić, Aleksandar and Veljović, Đorđe",
year = "2023",
abstract = "This study aimed to (1) comparatively analyze properties of Sr- and Mg-substituted
hydroxyapatite (HAP)-based dental inserts; (2) evaluate insert bonding to restorative
materials, and (3) evaluate the effect of doped HAP inserts on fracture resistance
(FR) of human molars with large occlusal restorations. By ion-doping with Sr or Mg,
3 insert types were obtained and characterized using XRD, SEM, Vickers hardness and
fracture toughness. Shear bond strength (SBS) was determined between acid etched or
unetched inserts and following materials: Maxcem cement (Kerr); Filtek Z250
(3M) bonded with Single Bond Universal (SBU; 3M) or Clearfil Universal (Cf; Kuraray).
Modified Class I cavities were prepared in 16 intact molars and restored using insert
+ composite or composite only (control) (n = 8/group). FR of restored molars was
determined by static load until fracture upon thermal cycling. Fracture toughness was
similar between Sr/Mg-doped inserts (0.94–1.04 MPam 1/2 p = .429). Mg-doped
inserts showed greater hardness (range 4.78–5.15 GPa) than Sr6 inserts (3.74
± 0.31 GPa; p < .05). SBS for SBU and Cf adhesives (range 7.19–15.93 MPa) was higher
than for Maxcem (range 3.07–5.95 MPa) (p < .05). There was no significant difference
in FR between molars restored with insert-containing and control restorations (3.00
± 0.30 kN and 3.22 ± 0.42 kN, respectively; p > .05). HAP-based inserts doped with
Mg/Sr had different composition and mechanical properties. Adhesive bonding to
inserts resulted in greater bond strength than cementation, which may be improved by
insert acid-etching. Ion-doped HAP inserts did not affect FR of restored molars. In conclusion,
HAP-based dental inserts may potentially replace dentin in large cavities, without
affecting fracture resistance of restored teeth.",
publisher = "Wiley Periodicals LLC.",
journal = "Journal of Biomedical Materials Research Part B: Applied Biomaterials",
title = "Hydroxyapatite-based dental inserts: microstructure, mechanical properties, bonding efficiency and fracture resistance of molars with occlusal restorations",
doi = "10.1002/jbm.b.35331"
}
Matić, T., Ležaja Zebić, M., Miletić, V., Trajković, I., Milošević, M., Racić, A.,& Veljović, Đ.. (2023). Hydroxyapatite-based dental inserts: microstructure, mechanical properties, bonding efficiency and fracture resistance of molars with occlusal restorations. in Journal of Biomedical Materials Research Part B: Applied Biomaterials
Wiley Periodicals LLC...
https://doi.org/10.1002/jbm.b.35331
Matić T, Ležaja Zebić M, Miletić V, Trajković I, Milošević M, Racić A, Veljović Đ. Hydroxyapatite-based dental inserts: microstructure, mechanical properties, bonding efficiency and fracture resistance of molars with occlusal restorations. in Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2023;.
doi:10.1002/jbm.b.35331 .
Matić, Tamara, Ležaja Zebić, Maja, Miletić, Vesna, Trajković, Isaak, Milošević, Miloš, Racić, Aleksandar, Veljović, Đorđe, "Hydroxyapatite-based dental inserts: microstructure, mechanical properties, bonding efficiency and fracture resistance of molars with occlusal restorations" in Journal of Biomedical Materials Research Part B: Applied Biomaterials (2023),
https://doi.org/10.1002/jbm.b.35331 . .

Sr,Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes

Matić, Tamara; Zebić, M. Ležaja; Miletić, Vesna; Cvijović-Alagić, Ivana; Petrović, Rada; Janaćković, Đorđe; Veljović, Đorđe

(2022)

TY  - JOUR
AU  - Matić, Tamara
AU  - Zebić, M. Ležaja
AU  - Miletić, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
AU  - Veljović, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5362
AB  - The aim of this study was to investigate the influence of binary Sr, Mg ion-doping compared to the single-ion doping effects on the phase composition and morphology of hydrothermally obtained calcium hydroxyapatite (HAP) powders and on the phase composition, microstructure, and mechanical properties of the sintered materials. Additionally, the focus of this study was to investigate the possible utilization of the binary doped Sr,Mg-HAP compacts as dentin substitutes in restorative dentistry by evaluating their bonding ability with commercially available restorative materials using the shear bond strength test (SBS). The hydrothermally obtained mono-doped Mg5 and Sr5 showed the monophasic apatite structure, while in all co-doped samples β-TCP phase was formed, resulting in biphasic calcium phosphate (BCP) powders. It was confirmed that co-doping with Sr and Mg ions led to the thermal stabilization of the β-TCP phase by suppressing the phase transition into α-TCP when sintered at 1200 °C. Moreover, the co-presence of Mg ions significantly improved the hardness of Sr-doped HAP from 3.74 to 5.02 GPa. Sr,Mg-HAP dental inserts were found to achieve sufficient bonding (13.53 MPa) through the micromechanical interlocking with Z250 dental composite and Single Bond Universal dental adhesive applied with a total etch approach. The SBS values obtained for the SrMg-HAP insert were similar to the literature data on bonding ability with human dentin, indicating that binary doped Sr,Mg-HAP ceramics present a promising material for application in restorative dentistry as dentin substitutes.
T2  - Ceramics International
T1  - Sr,Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes
EP  - 11165
IS  - 8
SP  - 11155
VL  - 48
DO  - 10.1016/j.ceramint.2021.12.335
ER  - 
@article{
author = "Matić, Tamara and Zebić, M. Ležaja and Miletić, Vesna and Cvijović-Alagić, Ivana and Petrović, Rada and Janaćković, Đorđe and Veljović, Đorđe",
year = "2022",
abstract = "The aim of this study was to investigate the influence of binary Sr, Mg ion-doping compared to the single-ion doping effects on the phase composition and morphology of hydrothermally obtained calcium hydroxyapatite (HAP) powders and on the phase composition, microstructure, and mechanical properties of the sintered materials. Additionally, the focus of this study was to investigate the possible utilization of the binary doped Sr,Mg-HAP compacts as dentin substitutes in restorative dentistry by evaluating their bonding ability with commercially available restorative materials using the shear bond strength test (SBS). The hydrothermally obtained mono-doped Mg5 and Sr5 showed the monophasic apatite structure, while in all co-doped samples β-TCP phase was formed, resulting in biphasic calcium phosphate (BCP) powders. It was confirmed that co-doping with Sr and Mg ions led to the thermal stabilization of the β-TCP phase by suppressing the phase transition into α-TCP when sintered at 1200 °C. Moreover, the co-presence of Mg ions significantly improved the hardness of Sr-doped HAP from 3.74 to 5.02 GPa. Sr,Mg-HAP dental inserts were found to achieve sufficient bonding (13.53 MPa) through the micromechanical interlocking with Z250 dental composite and Single Bond Universal dental adhesive applied with a total etch approach. The SBS values obtained for the SrMg-HAP insert were similar to the literature data on bonding ability with human dentin, indicating that binary doped Sr,Mg-HAP ceramics present a promising material for application in restorative dentistry as dentin substitutes.",
journal = "Ceramics International",
title = "Sr,Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes",
pages = "11165-11155",
number = "8",
volume = "48",
doi = "10.1016/j.ceramint.2021.12.335"
}
Matić, T., Zebić, M. L., Miletić, V., Cvijović-Alagić, I., Petrović, R., Janaćković, Đ.,& Veljović, Đ.. (2022). Sr,Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes. in Ceramics International, 48(8), 11155-11165.
https://doi.org/10.1016/j.ceramint.2021.12.335
Matić T, Zebić ML, Miletić V, Cvijović-Alagić I, Petrović R, Janaćković Đ, Veljović Đ. Sr,Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes. in Ceramics International. 2022;48(8):11155-11165.
doi:10.1016/j.ceramint.2021.12.335 .
Matić, Tamara, Zebić, M. Ležaja, Miletić, Vesna, Cvijović-Alagić, Ivana, Petrović, Rada, Janaćković, Đorđe, Veljović, Đorđe, "Sr,Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes" in Ceramics International, 48, no. 8 (2022):11155-11165,
https://doi.org/10.1016/j.ceramint.2021.12.335 . .
8
9

Hydroxyapatite-based Bioceramic Dental Inserts as Dentin Substitute

Matić, Tamara; Zebić, Maja L.; Miletić, Vesna; Petrović, Rada; Janaćković, Đorđe; Veljović, Đorđe

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Matić, Tamara
AU  - Zebić, Maja L.
AU  - Miletić, Vesna
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
AU  - Veljović, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6674
AB  - Tooth caries presents one of the most common diseases worldwide, and its treatment involves
removal of the decayed tooth structure, and the cavity restoration using restorative dental materials. Resin based composites (RBCs) are the most commonly used restorative material in practice owing to their great aesthetic appearance allowing the clinicians to adapt the nuance of the restoration to the patient’s tooth color. However, the RBCs harden by the polymerization of monomers that leads to the polymerization shrinkage of the restoration, leaving the micro-gaps at the teeth-restorations interface which allows the secondary caries formation.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program & Book of Abstracts / Second International Conference on Electron Microscopy of Nanostructures ELMINA 2022, August 22nd-26th Belgrade, Serbia
T1  - Hydroxyapatite-based Bioceramic Dental Inserts as Dentin Substitute
EP  - 151
SP  - 150
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6674
ER  - 
@conference{
author = "Matić, Tamara and Zebić, Maja L. and Miletić, Vesna and Petrović, Rada and Janaćković, Đorđe and Veljović, Đorđe",
year = "2022",
abstract = "Tooth caries presents one of the most common diseases worldwide, and its treatment involves
removal of the decayed tooth structure, and the cavity restoration using restorative dental materials. Resin based composites (RBCs) are the most commonly used restorative material in practice owing to their great aesthetic appearance allowing the clinicians to adapt the nuance of the restoration to the patient’s tooth color. However, the RBCs harden by the polymerization of monomers that leads to the polymerization shrinkage of the restoration, leaving the micro-gaps at the teeth-restorations interface which allows the secondary caries formation.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program & Book of Abstracts / Second International Conference on Electron Microscopy of Nanostructures ELMINA 2022, August 22nd-26th Belgrade, Serbia",
title = "Hydroxyapatite-based Bioceramic Dental Inserts as Dentin Substitute",
pages = "151-150",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6674"
}
Matić, T., Zebić, M. L., Miletić, V., Petrović, R., Janaćković, Đ.,& Veljović, Đ.. (2022). Hydroxyapatite-based Bioceramic Dental Inserts as Dentin Substitute. in Program & Book of Abstracts / Second International Conference on Electron Microscopy of Nanostructures ELMINA 2022, August 22nd-26th Belgrade, Serbia
Belgrade : Serbian Academy of Sciences and Arts., 150-151.
https://hdl.handle.net/21.15107/rcub_technorep_6674
Matić T, Zebić ML, Miletić V, Petrović R, Janaćković Đ, Veljović Đ. Hydroxyapatite-based Bioceramic Dental Inserts as Dentin Substitute. in Program & Book of Abstracts / Second International Conference on Electron Microscopy of Nanostructures ELMINA 2022, August 22nd-26th Belgrade, Serbia. 2022;:150-151.
https://hdl.handle.net/21.15107/rcub_technorep_6674 .
Matić, Tamara, Zebić, Maja L., Miletić, Vesna, Petrović, Rada, Janaćković, Đorđe, Veljović, Đorđe, "Hydroxyapatite-based Bioceramic Dental Inserts as Dentin Substitute" in Program & Book of Abstracts / Second International Conference on Electron Microscopy of Nanostructures ELMINA 2022, August 22nd-26th Belgrade, Serbia (2022):150-151,
https://hdl.handle.net/21.15107/rcub_technorep_6674 .

Biocompatibility and antibiofilm activity of graphene-oxide functionalized titanium discs and collagen membranes

Radunović, Milena; Pavić, Aleksandar; Ivanović, Vera; Milivojević, Marija; Radović, Igor; Di Carlo, Roberta; Pilato, Serena; Fontana, Antonella; Piattelli, Adriano; Petrović, Sanja

(Elsevier Inc., 2022)

TY  - JOUR
AU  - Radunović, Milena
AU  - Pavić, Aleksandar
AU  - Ivanović, Vera
AU  - Milivojević, Marija
AU  - Radović, Igor
AU  - Di Carlo, Roberta
AU  - Pilato, Serena
AU  - Fontana, Antonella
AU  - Piattelli, Adriano
AU  - Petrović, Sanja
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5144
AB  - The aims of the study were: 1) to evaluate the effect on biofilm formation of barrier membranes and titanium surfaces coated with graphene-oxide (GO); 2) to analyze the connection between the superficial topography of the tested materials and the amount of bacterial accumulation on them and 3) to analyze the biocompatibility of GO functionalized discs using the zebrafish model. Methods: Single species bacterial biofilms (Streptococcus oralis, Veilonella parvula, Fusobacterium nucleatum, Porphyomonas gingivalis) were grown on GO-free membranes, membranes coated with 2 and 10 μg/ml of GO, GO-free and GO-coated titanium discs. The biofilms were analyzed by determining the CFU count and by Scanning Electron Microscopy (SEM) and the materials’ topography by Atomic Force Microscopy (AFM). Zebrafish model was used to determine the materials’ toxicity and inflammatory effects. Results: AFM showed similar roughness of control and GO-coated materials. CFU counts on GO-coated discs were significantly lower than on control discs for all species. CFU counts of S. oralis, V. parvula and P. gingivalis were lower on biofilms grown on both types of GO-coated membranes than on GO-free membrane. SEM analysis showed different formation of single species biofilm of S. oralis on control and GO-coated materials. GO-functionalized titanium discs do not induce toxic or inflammatory effects. Significance: Titanium implant surfaces functionalized with GO have shown to be biocompatible and less susceptible to biofilm formation. These results encourage further in vivo investigation of the tested materials on infection prevention, specifically in prevention and reduction of peri-implant mucositis and periimplantitis incidence.
PB  - Elsevier Inc.
T2  - Dental Materials
T1  - Biocompatibility and antibiofilm activity of graphene-oxide functionalized titanium discs and collagen membranes
EP  - 1127
IS  - 7
SP  - 1117
VL  - 38
DO  - 10.1016/j.dental.2022.04.024
ER  - 
@article{
author = "Radunović, Milena and Pavić, Aleksandar and Ivanović, Vera and Milivojević, Marija and Radović, Igor and Di Carlo, Roberta and Pilato, Serena and Fontana, Antonella and Piattelli, Adriano and Petrović, Sanja",
year = "2022",
abstract = "The aims of the study were: 1) to evaluate the effect on biofilm formation of barrier membranes and titanium surfaces coated with graphene-oxide (GO); 2) to analyze the connection between the superficial topography of the tested materials and the amount of bacterial accumulation on them and 3) to analyze the biocompatibility of GO functionalized discs using the zebrafish model. Methods: Single species bacterial biofilms (Streptococcus oralis, Veilonella parvula, Fusobacterium nucleatum, Porphyomonas gingivalis) were grown on GO-free membranes, membranes coated with 2 and 10 μg/ml of GO, GO-free and GO-coated titanium discs. The biofilms were analyzed by determining the CFU count and by Scanning Electron Microscopy (SEM) and the materials’ topography by Atomic Force Microscopy (AFM). Zebrafish model was used to determine the materials’ toxicity and inflammatory effects. Results: AFM showed similar roughness of control and GO-coated materials. CFU counts on GO-coated discs were significantly lower than on control discs for all species. CFU counts of S. oralis, V. parvula and P. gingivalis were lower on biofilms grown on both types of GO-coated membranes than on GO-free membrane. SEM analysis showed different formation of single species biofilm of S. oralis on control and GO-coated materials. GO-functionalized titanium discs do not induce toxic or inflammatory effects. Significance: Titanium implant surfaces functionalized with GO have shown to be biocompatible and less susceptible to biofilm formation. These results encourage further in vivo investigation of the tested materials on infection prevention, specifically in prevention and reduction of peri-implant mucositis and periimplantitis incidence.",
publisher = "Elsevier Inc.",
journal = "Dental Materials",
title = "Biocompatibility and antibiofilm activity of graphene-oxide functionalized titanium discs and collagen membranes",
pages = "1127-1117",
number = "7",
volume = "38",
doi = "10.1016/j.dental.2022.04.024"
}
Radunović, M., Pavić, A., Ivanović, V., Milivojević, M., Radović, I., Di Carlo, R., Pilato, S., Fontana, A., Piattelli, A.,& Petrović, S.. (2022). Biocompatibility and antibiofilm activity of graphene-oxide functionalized titanium discs and collagen membranes. in Dental Materials
Elsevier Inc.., 38(7), 1117-1127.
https://doi.org/10.1016/j.dental.2022.04.024
Radunović M, Pavić A, Ivanović V, Milivojević M, Radović I, Di Carlo R, Pilato S, Fontana A, Piattelli A, Petrović S. Biocompatibility and antibiofilm activity of graphene-oxide functionalized titanium discs and collagen membranes. in Dental Materials. 2022;38(7):1117-1127.
doi:10.1016/j.dental.2022.04.024 .
Radunović, Milena, Pavić, Aleksandar, Ivanović, Vera, Milivojević, Marija, Radović, Igor, Di Carlo, Roberta, Pilato, Serena, Fontana, Antonella, Piattelli, Adriano, Petrović, Sanja, "Biocompatibility and antibiofilm activity of graphene-oxide functionalized titanium discs and collagen membranes" in Dental Materials, 38, no. 7 (2022):1117-1127,
https://doi.org/10.1016/j.dental.2022.04.024 . .
1
5
4