Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research

Link to this page

info:eu-repo/grantAgreement/EC/FP7/256716/EU//

Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research (en)
Authors

Publications

Dual effect of benzyl alcohol on alpha-glucosidase activity: efficient substrate for high yield transglucosylation and non-competitive inhibitor of its hydrolytic activity

Pavlović, Marija; Dimitrijević, Aleksandra; Bezbradica, Dejan; Milosavić, Nenad; Gavrović-Jankulović, Marija; Šegan, Dejan M.; Veličković, Dušan

(Elsevier Sci Ltd, Oxford, 2014)

TY  - JOUR
AU  - Pavlović, Marija
AU  - Dimitrijević, Aleksandra
AU  - Bezbradica, Dejan
AU  - Milosavić, Nenad
AU  - Gavrović-Jankulović, Marija
AU  - Šegan, Dejan M.
AU  - Veličković, Dušan
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2753
AB  - Benzyl alcohol, a potent anesthetic and bacteriostatic, can be efficiently glucosylated by alpha-glucosidase from Saccharomyces cerevisiae to produce benzyl alcohol alpha-glucoside with a 75% yield. However, while studying the transglucosylation reaction conditions, it was found out that benzyl alcohol is a non-competitive inhibitor of alpha-glucosidase's hydrolytic activity (K-i = 18 mM, toward maltose). Due to its interesting ability to be glycosylated by the enzyme and to inhibit its hydrolytic activity, we proposed a plausible mechanism for the phenolic alpha-glucosydase inhibitor's binding, since the mechanism of inhibition has not yet been elucidated.
PB  - Elsevier Sci Ltd, Oxford
T2  - Carbohydrate Research
T1  - Dual effect of benzyl alcohol on alpha-glucosidase activity: efficient substrate for high yield transglucosylation and non-competitive inhibitor of its hydrolytic activity
EP  - 18
SP  - 14
VL  - 387
DO  - 10.1016/j.carres.2013.08.028
ER  - 
@article{
author = "Pavlović, Marija and Dimitrijević, Aleksandra and Bezbradica, Dejan and Milosavić, Nenad and Gavrović-Jankulović, Marija and Šegan, Dejan M. and Veličković, Dušan",
year = "2014",
abstract = "Benzyl alcohol, a potent anesthetic and bacteriostatic, can be efficiently glucosylated by alpha-glucosidase from Saccharomyces cerevisiae to produce benzyl alcohol alpha-glucoside with a 75% yield. However, while studying the transglucosylation reaction conditions, it was found out that benzyl alcohol is a non-competitive inhibitor of alpha-glucosidase's hydrolytic activity (K-i = 18 mM, toward maltose). Due to its interesting ability to be glycosylated by the enzyme and to inhibit its hydrolytic activity, we proposed a plausible mechanism for the phenolic alpha-glucosydase inhibitor's binding, since the mechanism of inhibition has not yet been elucidated.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Carbohydrate Research",
title = "Dual effect of benzyl alcohol on alpha-glucosidase activity: efficient substrate for high yield transglucosylation and non-competitive inhibitor of its hydrolytic activity",
pages = "18-14",
volume = "387",
doi = "10.1016/j.carres.2013.08.028"
}
Pavlović, M., Dimitrijević, A., Bezbradica, D., Milosavić, N., Gavrović-Jankulović, M., Šegan, D. M.,& Veličković, D.. (2014). Dual effect of benzyl alcohol on alpha-glucosidase activity: efficient substrate for high yield transglucosylation and non-competitive inhibitor of its hydrolytic activity. in Carbohydrate Research
Elsevier Sci Ltd, Oxford., 387, 14-18.
https://doi.org/10.1016/j.carres.2013.08.028
Pavlović M, Dimitrijević A, Bezbradica D, Milosavić N, Gavrović-Jankulović M, Šegan DM, Veličković D. Dual effect of benzyl alcohol on alpha-glucosidase activity: efficient substrate for high yield transglucosylation and non-competitive inhibitor of its hydrolytic activity. in Carbohydrate Research. 2014;387:14-18.
doi:10.1016/j.carres.2013.08.028 .
Pavlović, Marija, Dimitrijević, Aleksandra, Bezbradica, Dejan, Milosavić, Nenad, Gavrović-Jankulović, Marija, Šegan, Dejan M., Veličković, Dušan, "Dual effect of benzyl alcohol on alpha-glucosidase activity: efficient substrate for high yield transglucosylation and non-competitive inhibitor of its hydrolytic activity" in Carbohydrate Research, 387 (2014):14-18,
https://doi.org/10.1016/j.carres.2013.08.028 . .
6
6
8

The specificity of alpha-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation

Veličković, Dušan; Milosavić, Nenad; Bezbradica, Dejan; Bihelović, Filip; Segal, Ann Marie; Šegan, Dejan M.; Trbojević-Ivić, Jovana; Dimitrijević, Aleksandra

(Springer, New York, 2014)

TY  - JOUR
AU  - Veličković, Dušan
AU  - Milosavić, Nenad
AU  - Bezbradica, Dejan
AU  - Bihelović, Filip
AU  - Segal, Ann Marie
AU  - Šegan, Dejan M.
AU  - Trbojević-Ivić, Jovana
AU  - Dimitrijević, Aleksandra
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2788
AB  - Our investigation of the catalytic properties of Saccharomyces cerevisiae alpha-glucosidase (AGL) using hydroxybenzyl alcohol (HBA) isomers as transglucosylation substrates and their glucosides in hydrolytic reactions demonstrated interesting findings pertaining to the aglycon specificity of this important enzyme. AGL specificity increased from the para(p)- to the ortho(o)-HBA isomer in transglucosylation, whereas such AGL aglycon specificity was not seen in hydrolysis, thus indicating that the second step of the reaction (i.e., binding of the glucosyl acceptor) is rate-determining. To study the influence of substitution pattern on AGL kinetics, we compared AGL specificity, inferred from kinetic constants, for HBA isomers and other aglycon substrates. The demonstrated inhibitory effects of HBA isomers and their corresponding glucosides on AGL-catalyzed hydrolysis of p-nitrophenyl a-glucoside (PNPG) suggest that HBA glucosides act as competitive, whereas HBA isomers are noncompetitive, inhibitors. As such, we postulate that aromatic moieties cannot bind to an active site unless an enzyme-glucosyl complex has already formed, but they can interact with other regions of the enzyme molecule resulting in inhibition.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - The specificity of alpha-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation
EP  - 6328
IS  - 14
SP  - 6317
VL  - 98
DO  - 10.1007/s00253-014-5587-9
ER  - 
@article{
author = "Veličković, Dušan and Milosavić, Nenad and Bezbradica, Dejan and Bihelović, Filip and Segal, Ann Marie and Šegan, Dejan M. and Trbojević-Ivić, Jovana and Dimitrijević, Aleksandra",
year = "2014",
abstract = "Our investigation of the catalytic properties of Saccharomyces cerevisiae alpha-glucosidase (AGL) using hydroxybenzyl alcohol (HBA) isomers as transglucosylation substrates and their glucosides in hydrolytic reactions demonstrated interesting findings pertaining to the aglycon specificity of this important enzyme. AGL specificity increased from the para(p)- to the ortho(o)-HBA isomer in transglucosylation, whereas such AGL aglycon specificity was not seen in hydrolysis, thus indicating that the second step of the reaction (i.e., binding of the glucosyl acceptor) is rate-determining. To study the influence of substitution pattern on AGL kinetics, we compared AGL specificity, inferred from kinetic constants, for HBA isomers and other aglycon substrates. The demonstrated inhibitory effects of HBA isomers and their corresponding glucosides on AGL-catalyzed hydrolysis of p-nitrophenyl a-glucoside (PNPG) suggest that HBA glucosides act as competitive, whereas HBA isomers are noncompetitive, inhibitors. As such, we postulate that aromatic moieties cannot bind to an active site unless an enzyme-glucosyl complex has already formed, but they can interact with other regions of the enzyme molecule resulting in inhibition.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "The specificity of alpha-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation",
pages = "6328-6317",
number = "14",
volume = "98",
doi = "10.1007/s00253-014-5587-9"
}
Veličković, D., Milosavić, N., Bezbradica, D., Bihelović, F., Segal, A. M., Šegan, D. M., Trbojević-Ivić, J.,& Dimitrijević, A.. (2014). The specificity of alpha-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation. in Applied Microbiology and Biotechnology
Springer, New York., 98(14), 6317-6328.
https://doi.org/10.1007/s00253-014-5587-9
Veličković D, Milosavić N, Bezbradica D, Bihelović F, Segal AM, Šegan DM, Trbojević-Ivić J, Dimitrijević A. The specificity of alpha-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation. in Applied Microbiology and Biotechnology. 2014;98(14):6317-6328.
doi:10.1007/s00253-014-5587-9 .
Veličković, Dušan, Milosavić, Nenad, Bezbradica, Dejan, Bihelović, Filip, Segal, Ann Marie, Šegan, Dejan M., Trbojević-Ivić, Jovana, Dimitrijević, Aleksandra, "The specificity of alpha-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation" in Applied Microbiology and Biotechnology, 98, no. 14 (2014):6317-6328,
https://doi.org/10.1007/s00253-014-5587-9 . .
5
1
5

A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by alpha-glucosidase from S-cerevisiae

Pavlović, Marijana; Dimitrijević, Aleksandra; Trbojević-Ivić, Jovana; Milosavić, Nenad; Gavrović-Jankulović, Marija; Bezbradica, Dejan; Veličković, Dušan

(Maik Nauka/Interperiodica/Springer, New York, 2013)

TY  - JOUR
AU  - Pavlović, Marijana
AU  - Dimitrijević, Aleksandra
AU  - Trbojević-Ivić, Jovana
AU  - Milosavić, Nenad
AU  - Gavrović-Jankulović, Marija
AU  - Bezbradica, Dejan
AU  - Veličković, Dušan
PY  - 2013
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2448
AB  - alpha-1,4-Glucosidase from Saccharomyces cerevisiae is an enzyme which is widely used in synthesis of different drugs. Glucosidase inhibitors are studied as potential drugs for prevention of HIV and diabetes. For understanding of these processes it is very important to have insights in the transglucosylation activity of this enzyme. In this paper the kinetics of transglucosylation reaction catalyzed by this enzyme in the synthesis of benzyl alcohol glucoside was studied and all relevant kinetic constants for this system are found. It was shown one additional property of transglycosylation reactions catalyzed by glycosidases-inhibition by both, glucose acceptor and glucose donor, and mechanisms for these inhibitions were proposed.
PB  - Maik Nauka/Interperiodica/Springer, New York
T2  - Russian Journal of Physical Chemistry A
T1  - A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by alpha-glucosidase from S-cerevisiae
EP  - 2288
IS  - 13
SP  - 2285
VL  - 87
DO  - 10.1134/S0036024413130207
ER  - 
@article{
author = "Pavlović, Marijana and Dimitrijević, Aleksandra and Trbojević-Ivić, Jovana and Milosavić, Nenad and Gavrović-Jankulović, Marija and Bezbradica, Dejan and Veličković, Dušan",
year = "2013",
abstract = "alpha-1,4-Glucosidase from Saccharomyces cerevisiae is an enzyme which is widely used in synthesis of different drugs. Glucosidase inhibitors are studied as potential drugs for prevention of HIV and diabetes. For understanding of these processes it is very important to have insights in the transglucosylation activity of this enzyme. In this paper the kinetics of transglucosylation reaction catalyzed by this enzyme in the synthesis of benzyl alcohol glucoside was studied and all relevant kinetic constants for this system are found. It was shown one additional property of transglycosylation reactions catalyzed by glycosidases-inhibition by both, glucose acceptor and glucose donor, and mechanisms for these inhibitions were proposed.",
publisher = "Maik Nauka/Interperiodica/Springer, New York",
journal = "Russian Journal of Physical Chemistry A",
title = "A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by alpha-glucosidase from S-cerevisiae",
pages = "2288-2285",
number = "13",
volume = "87",
doi = "10.1134/S0036024413130207"
}
Pavlović, M., Dimitrijević, A., Trbojević-Ivić, J., Milosavić, N., Gavrović-Jankulović, M., Bezbradica, D.,& Veličković, D.. (2013). A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by alpha-glucosidase from S-cerevisiae. in Russian Journal of Physical Chemistry A
Maik Nauka/Interperiodica/Springer, New York., 87(13), 2285-2288.
https://doi.org/10.1134/S0036024413130207
Pavlović M, Dimitrijević A, Trbojević-Ivić J, Milosavić N, Gavrović-Jankulović M, Bezbradica D, Veličković D. A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by alpha-glucosidase from S-cerevisiae. in Russian Journal of Physical Chemistry A. 2013;87(13):2285-2288.
doi:10.1134/S0036024413130207 .
Pavlović, Marijana, Dimitrijević, Aleksandra, Trbojević-Ivić, Jovana, Milosavić, Nenad, Gavrović-Jankulović, Marija, Bezbradica, Dejan, Veličković, Dušan, "A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by alpha-glucosidase from S-cerevisiae" in Russian Journal of Physical Chemistry A, 87, no. 13 (2013):2285-2288,
https://doi.org/10.1134/S0036024413130207 . .
5
3
5

One-step, inexpensive high yield strategy for Candida antarctica lipase A isolation using hydroxyapatite

Dimitrijević, Aleksandra; Veličković, Dušan; Bihelović, Filip; Bezbradica, Dejan; Jankov, Ratko; Milosavić, Nenad

(Elsevier Sci Ltd, Oxford, 2012)

TY  - JOUR
AU  - Dimitrijević, Aleksandra
AU  - Veličković, Dušan
AU  - Bihelović, Filip
AU  - Bezbradica, Dejan
AU  - Jankov, Ratko
AU  - Milosavić, Nenad
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2201
AB  - Lipase A from Candida antarctica (CAL A) was purified to apparent homogeneity in a single step using hydroxyapatite (HAP) chromatography. CAL A bound to HAP was eluted with 10 mM Na-phosphate buffer, pH 7.0 containing 0.5% Triton X-100. The protocol resulted in a 3.74-fold purification with 94.7% final recovery and 400.83 U/mg specific activity. Silver staining after SDS-PAGE revealed the presence a single band of 45 kDa. The enzyme exhibited a temperature optimum of 60 degrees C, was unaffected by monovalent metal ions, but was destabilized by divalent metal ions (Zn2+, Ca2+, Mg2+, Cu2+, Mn2+) and stimulated by 50 mM Fe2+. Detergents at 0.1% concentrations did not affect lipase activity. Except for Triton X-100, detergent concentrations of 1% had a destabilizing effect.
PB  - Elsevier Sci Ltd, Oxford
T2  - Bioresource Technology
T1  - One-step, inexpensive high yield strategy for Candida antarctica lipase A isolation using hydroxyapatite
EP  - 362
SP  - 358
VL  - 107
DO  - 10.1016/j.biortech.2011.11.077
ER  - 
@article{
author = "Dimitrijević, Aleksandra and Veličković, Dušan and Bihelović, Filip and Bezbradica, Dejan and Jankov, Ratko and Milosavić, Nenad",
year = "2012",
abstract = "Lipase A from Candida antarctica (CAL A) was purified to apparent homogeneity in a single step using hydroxyapatite (HAP) chromatography. CAL A bound to HAP was eluted with 10 mM Na-phosphate buffer, pH 7.0 containing 0.5% Triton X-100. The protocol resulted in a 3.74-fold purification with 94.7% final recovery and 400.83 U/mg specific activity. Silver staining after SDS-PAGE revealed the presence a single band of 45 kDa. The enzyme exhibited a temperature optimum of 60 degrees C, was unaffected by monovalent metal ions, but was destabilized by divalent metal ions (Zn2+, Ca2+, Mg2+, Cu2+, Mn2+) and stimulated by 50 mM Fe2+. Detergents at 0.1% concentrations did not affect lipase activity. Except for Triton X-100, detergent concentrations of 1% had a destabilizing effect.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Bioresource Technology",
title = "One-step, inexpensive high yield strategy for Candida antarctica lipase A isolation using hydroxyapatite",
pages = "362-358",
volume = "107",
doi = "10.1016/j.biortech.2011.11.077"
}
Dimitrijević, A., Veličković, D., Bihelović, F., Bezbradica, D., Jankov, R.,& Milosavić, N.. (2012). One-step, inexpensive high yield strategy for Candida antarctica lipase A isolation using hydroxyapatite. in Bioresource Technology
Elsevier Sci Ltd, Oxford., 107, 358-362.
https://doi.org/10.1016/j.biortech.2011.11.077
Dimitrijević A, Veličković D, Bihelović F, Bezbradica D, Jankov R, Milosavić N. One-step, inexpensive high yield strategy for Candida antarctica lipase A isolation using hydroxyapatite. in Bioresource Technology. 2012;107:358-362.
doi:10.1016/j.biortech.2011.11.077 .
Dimitrijević, Aleksandra, Veličković, Dušan, Bihelović, Filip, Bezbradica, Dejan, Jankov, Ratko, Milosavić, Nenad, "One-step, inexpensive high yield strategy for Candida antarctica lipase A isolation using hydroxyapatite" in Bioresource Technology, 107 (2012):358-362,
https://doi.org/10.1016/j.biortech.2011.11.077 . .
18
14
21

Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity

Veličković, Dušan; Dimitrijević, Aleksandra; Bihelović, Filip; Bezbradica, Dejan; Knežević-Jugović, Zorica; Milosavić, Nenad

(Springer, New York, 2012)

TY  - JOUR
AU  - Veličković, Dušan
AU  - Dimitrijević, Aleksandra
AU  - Bihelović, Filip
AU  - Bezbradica, Dejan
AU  - Knežević-Jugović, Zorica
AU  - Milosavić, Nenad
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2109
AB  - Novel glucoside of physiological active vanillyl alcohol was synthesized for the first time using maltase from Saccharomyces cerevisiae as catalyst, and established its structure as 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside. The key reaction factors for this transglucosylation reaction were optimized using response surface methodology and the highest yield so far in maltase catalyzed transglucosylation reaction was obtained. It was found out that optimum temperature of reaction was 37 A degrees C, optimal maltose concentration was 60% (w/v), optimal pH was 6.6, and optimal concentration of vanillyl alcohol was 158 mM. Under these conditions, yield of glucoside was 90 mM with no by product formation. It was shown that this compound posses good antioxidant activity as well as stability in gastrointestinal tract. It was demonstrated that it is hydrolyzed on brush border membrane of enterocytes, so it can serve in protecting gastrointestinal system from oxidation, as well as source of anticonvulsive drug after the hydrolysis of glucoside on brush border membrane of small intestine.
PB  - Springer, New York
T2  - Bioprocess and Biosystems Engineering
T1  - Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity
EP  - 1115
IS  - 7
SP  - 1107
VL  - 35
DO  - 10.1007/s00449-012-0695-3
ER  - 
@article{
author = "Veličković, Dušan and Dimitrijević, Aleksandra and Bihelović, Filip and Bezbradica, Dejan and Knežević-Jugović, Zorica and Milosavić, Nenad",
year = "2012",
abstract = "Novel glucoside of physiological active vanillyl alcohol was synthesized for the first time using maltase from Saccharomyces cerevisiae as catalyst, and established its structure as 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside. The key reaction factors for this transglucosylation reaction were optimized using response surface methodology and the highest yield so far in maltase catalyzed transglucosylation reaction was obtained. It was found out that optimum temperature of reaction was 37 A degrees C, optimal maltose concentration was 60% (w/v), optimal pH was 6.6, and optimal concentration of vanillyl alcohol was 158 mM. Under these conditions, yield of glucoside was 90 mM with no by product formation. It was shown that this compound posses good antioxidant activity as well as stability in gastrointestinal tract. It was demonstrated that it is hydrolyzed on brush border membrane of enterocytes, so it can serve in protecting gastrointestinal system from oxidation, as well as source of anticonvulsive drug after the hydrolysis of glucoside on brush border membrane of small intestine.",
publisher = "Springer, New York",
journal = "Bioprocess and Biosystems Engineering",
title = "Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity",
pages = "1115-1107",
number = "7",
volume = "35",
doi = "10.1007/s00449-012-0695-3"
}
Veličković, D., Dimitrijević, A., Bihelović, F., Bezbradica, D., Knežević-Jugović, Z.,& Milosavić, N.. (2012). Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity. in Bioprocess and Biosystems Engineering
Springer, New York., 35(7), 1107-1115.
https://doi.org/10.1007/s00449-012-0695-3
Veličković D, Dimitrijević A, Bihelović F, Bezbradica D, Knežević-Jugović Z, Milosavić N. Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity. in Bioprocess and Biosystems Engineering. 2012;35(7):1107-1115.
doi:10.1007/s00449-012-0695-3 .
Veličković, Dušan, Dimitrijević, Aleksandra, Bihelović, Filip, Bezbradica, Dejan, Knežević-Jugović, Zorica, Milosavić, Nenad, "Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity" in Bioprocess and Biosystems Engineering, 35, no. 7 (2012):1107-1115,
https://doi.org/10.1007/s00449-012-0695-3 . .
13
11
16

Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents

Dimitrijević, Aleksandra; Veličković, Dušan; Bezbradica, Dejan; Bihelović, Filip; Jankov, Ratko; Milosavić, Nenad

(Serbian Chemical Society, Belgrade, 2011)

TY  - JOUR
AU  - Dimitrijević, Aleksandra
AU  - Veličković, Dušan
AU  - Bezbradica, Dejan
AU  - Bihelović, Filip
AU  - Jankov, Ratko
AU  - Milosavić, Nenad
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1800
AB  - The production of lipase from Pseudozyma aphidis (DSM 70725) was determined in six different media. The highest lipase production was observed in a medium with glucose as the sole carbon source, and yeast extract and sodium nitrate as the nitrogen sources. The time course studies of growth and lipase production in the optimal medium revealed that the highest lipase production was achieved at the end of the log phase of growth, reaching the value of 35.0 U cm-3 in the fifth day of cultivation. The effects of various polar, water-miscible, organic solvents on the activity and stability of the crude lipase produced by P. aphidis were evaluated. The hydrolytic activity of the crude lipase towards p-nitrophenyl palmitate (p-NPP) in aqueous media and in organic solvents was determined, using the same spectrophotometric assay in both the aqueous and organic media. The crude lipase preparation exhibited activity towards p-NPP only in acetone and acetonitrile, while the lipase was stable only in acetone, with 23% residual activity after 24 h of incubation. These results suggested that lipase from P. aphidis can be used as a biocatalyst for potential applications in such organic solvents.
AB  - Proizvodnja lipaze iz Pseudozyma aphidis utvrđena je u šest različitih medijuma. Najviša proizvodnja uočena je u medijumu gde je glukoza bila izvor ugljenika, a ekstrakt kvasca i natrijum-nitrat izvori azota. Praćenjem dinamike rasta i proizvodnje lipaze u optimalnom medijumu, uočeno je da se najviša proizvodnja lipaze dostiže pred kraj logaritamske faze rasta, i dostiže vrednost od 35 U cm-3 u petom danu kultivacije, što je četri puta veća proizvodnja od one do sada prijavljene u literaturi. Utvrđen je efekat različitih polarnih organskih rastvarača, mešljivih sa vodom, na aktivnost i stabilnost lipaze iz P. aphidis. Hidrolitička aktivnost lipaze prema para-nitrofenil-palmitatu (p-NPP-u) u vo- denoj sredini i organskim rastvaračima utvrđena je upotrebom istog spektrofotometrijskog testa. Pokazano je da lipaza ima aktivnost prema p-NPP-u samo u acetonu i acetonitrilu, dok je enzim stabilan jedino u acetonu i zadržava 23% aktivnosti nakon 24 časa inkubacije. Dobijeni rezultati ukazuju da lipaza iz P. aphidis može biti korišćena kao biokatalizator za potencijalne primene u acetonu kao medijumu.
PB  - Serbian Chemical Society, Belgrade
T2  - Journal of the Serbian Chemical Society
T1  - Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents
T1  - Proizvodnja lipaze iz Pseudozyma aphidis i utvrđivanje aktivnosti i stabilnosti lipaze u polarnim organskim rastvaračima
EP  - 1092
IS  - 8
SP  - 1081
VL  - 76
UR  - https://hdl.handle.net/21.15107/rcub_technorep_1800
ER  - 
@article{
author = "Dimitrijević, Aleksandra and Veličković, Dušan and Bezbradica, Dejan and Bihelović, Filip and Jankov, Ratko and Milosavić, Nenad",
year = "2011",
abstract = "The production of lipase from Pseudozyma aphidis (DSM 70725) was determined in six different media. The highest lipase production was observed in a medium with glucose as the sole carbon source, and yeast extract and sodium nitrate as the nitrogen sources. The time course studies of growth and lipase production in the optimal medium revealed that the highest lipase production was achieved at the end of the log phase of growth, reaching the value of 35.0 U cm-3 in the fifth day of cultivation. The effects of various polar, water-miscible, organic solvents on the activity and stability of the crude lipase produced by P. aphidis were evaluated. The hydrolytic activity of the crude lipase towards p-nitrophenyl palmitate (p-NPP) in aqueous media and in organic solvents was determined, using the same spectrophotometric assay in both the aqueous and organic media. The crude lipase preparation exhibited activity towards p-NPP only in acetone and acetonitrile, while the lipase was stable only in acetone, with 23% residual activity after 24 h of incubation. These results suggested that lipase from P. aphidis can be used as a biocatalyst for potential applications in such organic solvents., Proizvodnja lipaze iz Pseudozyma aphidis utvrđena je u šest različitih medijuma. Najviša proizvodnja uočena je u medijumu gde je glukoza bila izvor ugljenika, a ekstrakt kvasca i natrijum-nitrat izvori azota. Praćenjem dinamike rasta i proizvodnje lipaze u optimalnom medijumu, uočeno je da se najviša proizvodnja lipaze dostiže pred kraj logaritamske faze rasta, i dostiže vrednost od 35 U cm-3 u petom danu kultivacije, što je četri puta veća proizvodnja od one do sada prijavljene u literaturi. Utvrđen je efekat različitih polarnih organskih rastvarača, mešljivih sa vodom, na aktivnost i stabilnost lipaze iz P. aphidis. Hidrolitička aktivnost lipaze prema para-nitrofenil-palmitatu (p-NPP-u) u vo- denoj sredini i organskim rastvaračima utvrđena je upotrebom istog spektrofotometrijskog testa. Pokazano je da lipaza ima aktivnost prema p-NPP-u samo u acetonu i acetonitrilu, dok je enzim stabilan jedino u acetonu i zadržava 23% aktivnosti nakon 24 časa inkubacije. Dobijeni rezultati ukazuju da lipaza iz P. aphidis može biti korišćena kao biokatalizator za potencijalne primene u acetonu kao medijumu.",
publisher = "Serbian Chemical Society, Belgrade",
journal = "Journal of the Serbian Chemical Society",
title = "Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents, Proizvodnja lipaze iz Pseudozyma aphidis i utvrđivanje aktivnosti i stabilnosti lipaze u polarnim organskim rastvaračima",
pages = "1092-1081",
number = "8",
volume = "76",
url = "https://hdl.handle.net/21.15107/rcub_technorep_1800"
}
Dimitrijević, A., Veličković, D., Bezbradica, D., Bihelović, F., Jankov, R.,& Milosavić, N.. (2011). Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents. in Journal of the Serbian Chemical Society
Serbian Chemical Society, Belgrade., 76(8), 1081-1092.
https://hdl.handle.net/21.15107/rcub_technorep_1800
Dimitrijević A, Veličković D, Bezbradica D, Bihelović F, Jankov R, Milosavić N. Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents. in Journal of the Serbian Chemical Society. 2011;76(8):1081-1092.
https://hdl.handle.net/21.15107/rcub_technorep_1800 .
Dimitrijević, Aleksandra, Veličković, Dušan, Bezbradica, Dejan, Bihelović, Filip, Jankov, Ratko, Milosavić, Nenad, "Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents" in Journal of the Serbian Chemical Society, 76, no. 8 (2011):1081-1092,
https://hdl.handle.net/21.15107/rcub_technorep_1800 .
11
16