"Aufbruch Bayern'' initiative of the state of Bavaria

Link to this page

"Aufbruch Bayern'' initiative of the state of Bavaria

Authors

Publications

Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes

Guo, Fei; Li, Ning; Radmilović, Vuk; Radmilović, Velimir R.; Turbiez, Mathieu; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

(Royal Soc Chemistry, Cambridge, 2015)

TY  - JOUR
AU  - Guo, Fei
AU  - Li, Ning
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
AU  - Turbiez, Mathieu
AU  - Spiecker, Erdmann
AU  - Forberich, Karen
AU  - Brabec, Christoph J.
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2966
AB  - We report in this work efficient, fully printed tandem organic solar cells (OSCs) using solution-processed silver as the reflective bottom electrode and silver nanowires as the transparent top electrode. Employing two different band-gap photoactive materials with complementary absorption, the tandem OSCs are fully printed under ambient conditions without the use of indium tin oxide and vacuum-based deposition. The fully printed tandem devices achieve power conversion efficiencies of 5.81% (on glass) and 4.85% (on flexible substrate) without open circuit voltage (V-oc) losses. These results represent an important progress towards the realization of low-cost tandem OSCs by demonstrating the possibility of printing efficient organic tandem devices under ambient conditions onto production relevant carrier substrates.
PB  - Royal Soc Chemistry, Cambridge
T2  - Energy & Environmental Science
T1  - Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes
EP  - 1697
IS  - 6
SP  - 1690
VL  - 8
DO  - 10.1039/c5ee00184f
ER  - 
@article{
author = "Guo, Fei and Li, Ning and Radmilović, Vuk and Radmilović, Velimir R. and Turbiez, Mathieu and Spiecker, Erdmann and Forberich, Karen and Brabec, Christoph J.",
year = "2015",
abstract = "We report in this work efficient, fully printed tandem organic solar cells (OSCs) using solution-processed silver as the reflective bottom electrode and silver nanowires as the transparent top electrode. Employing two different band-gap photoactive materials with complementary absorption, the tandem OSCs are fully printed under ambient conditions without the use of indium tin oxide and vacuum-based deposition. The fully printed tandem devices achieve power conversion efficiencies of 5.81% (on glass) and 4.85% (on flexible substrate) without open circuit voltage (V-oc) losses. These results represent an important progress towards the realization of low-cost tandem OSCs by demonstrating the possibility of printing efficient organic tandem devices under ambient conditions onto production relevant carrier substrates.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Energy & Environmental Science",
title = "Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes",
pages = "1697-1690",
number = "6",
volume = "8",
doi = "10.1039/c5ee00184f"
}
Guo, F., Li, N., Radmilović, V., Radmilović, V. R., Turbiez, M., Spiecker, E., Forberich, K.,& Brabec, C. J.. (2015). Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. in Energy & Environmental Science
Royal Soc Chemistry, Cambridge., 8(6), 1690-1697.
https://doi.org/10.1039/c5ee00184f
Guo F, Li N, Radmilović V, Radmilović VR, Turbiez M, Spiecker E, Forberich K, Brabec CJ. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. in Energy & Environmental Science. 2015;8(6):1690-1697.
doi:10.1039/c5ee00184f .
Guo, Fei, Li, Ning, Radmilović, Vuk, Radmilović, Velimir R., Turbiez, Mathieu, Spiecker, Erdmann, Forberich, Karen, Brabec, Christoph J., "Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes" in Energy & Environmental Science, 8, no. 6 (2015):1690-1697,
https://doi.org/10.1039/c5ee00184f . .
1
83
72
82