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INTRODUCTION: Today tissue engineering has to 
solve challenging task - in vitro growth of different 
tissues. In specially constructed bioreactors in-vivo-like 
conditions have to be created.  Many experiments will 
be needed first to identify key growth factors/growing 
conditions and subsequently optimise them. Because 
many processes are involved, mathematical models may 
be useful to estimate the impact of each of them and 
later to improve biological and mechanical functionality 
of tissue engineered constructs [1].  We analyze the role 
of the different processes for tissue growth: nutrient 
transport and consumption, cell population dynamics, 
extra-cellular matrix (ECM) secretion, stress and strain 
distribution, construct expansion, tissue degradation, 
and the role of mechanical stimulation. Our aim is to 
embed current understanding of processes controlling 
the seeding of a scaffold, cell and ECM growth and 
maintenance for engineered spinal disk tissue in to a 
modelling tool to predict tissue quality metrics and for 
potential use in the optimisation of processes to create 
such constructs with a bioreactor. 
METHODS: Multiphase theory [2] is used to describe 
tissue growth. We have incorporated a viscoelastic 
model [3] and approaches used for wound healing 
description [4]. Tissue is described as a mixture of four 
phases – cells, water, scaffold and ECM (at this stage 
we represent ECM in terms of a single component - 
GAG due to lack of suitable experimental data for other 
parts). Scaffold and ECM move together like in [4] and 
cells are attached to them. This joint movement is 
caused by cell traction and deformations associated with 
tissue growth. The scaffold is gradually degraded by 
hydrolysis. ECM synthesis is modelled as a two-stage 
process. Initially, cells produce proteoglycan (PG) 
molecules, which may bind to already existed GAG 
matrix or diffuse and leak out of the construct. The rate 
of PG synthesis is proportional to nutrient and cell 
concentration and is limited by the local concentration 
of GAG. To simulate expansion of the construct due to 
the growth a “thermoelastic” model is employed in 
conjunction with moving boundary conditions [2,3]. 
The experimental results in [6] have been used to 
calibrate the model. One of the current challenges is to 
match the temporal evolution of spatial cell distribution. 
In this paper we investigate the ability of different 
mechanisms to explain the experimental trends. 
Different models for description of the growth of the 
construct have been tested and compared. 

 
Fig. 1: Comparison between experimental results from 
[6] (dots or triangles) with simulations (solid lines). (a) 
GAG distribution - 10th day (thin line), 42nd day thick 
line; (b) increase of the width of the construct. 

RESULTS: The results obtained (Fig. 1) show the 
satisfactory agreement to those observed experimentally 
with respect to the time evolution of GAG distribution 
and increase the size of the construct. Further work is 
required to verify the model, a recently commissioned 
experimental system will enable this.  
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