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Network Theory of Living Cell Clusters and Rheological
Applications at Nano-Level
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The system of living cells closed in a polymer matrix and self-organized into clusters is considered, extending
free volume concept developed for complex system interactions quantification in statistical mechanics of jammed
state of matter. Possibility of extension of Edwards concept of compactivity and angorisity developed for hard
irregular grains with friction to living cell systems, is considered. Existences of scaling laws for cell colony grow,
related to their self assembling and response to polymer hydrogel micro-environment constrains, is analyzed as
function of rate of cluster density increase. Based on the theory proposed are developed relations, connecting
cluster properties that are difficult to measure, to data from standard cell cultivation experiments. The model
also provides possibilities of incorporation data on single cell behavior, available from modern nano- rheology
measurements, into cluster

PACS: 05.20.–y, 36.20.–f, 64.75.Yz, 87.18.–h

1. Introduction

Interactions of a cell with neighboring cells in cell-
colony or tissue, as well as interactions with extracellu-
lar matrix (ECM) trigger numerous responses that have
essential roles in cell’s life including cell arrangement
in clusters, food transport and cell migration but also
its proliferation, differentiation, growth and death, espe-
cially apoptosis [1].The most essential part of ECM for
functions described is polymer network constituted from
polysaccharide chains and fibrous proteins that fill the
interstitial space between cells and incorporating body
liquids build gels. Also cytoskeleton is a polymer net-
work but of different kind. Cytoskeleton of eukaryotic
cells contain three main kinds of filament: microfilament
(made of actin polymeric chains), intermediate filaments
(made of vimentins, keratins etc.) and microtubules
(tubuline nano-networks). It may be useful to think of
cytoskeleton in general as dynamic network with micro-
and intermediate- filaments as cables and microtubules
as cellular support beams. Here is especially important
that intermediate filaments mainly organize the internal
tridimensional cell structure and participate in cell-cell,
cell-ECM or cell-support-matrix junctions.

It follows that a number of essential features of such
complex systems as tissues (i.e. cells together with ECM)
or cell colonies with supporting gels (in bioengineering
cell immobilizing devices e.g. alginate gel beads) can
be considered as “united” polymeric network, interpen-
etrating the whole system as described above. It helps
not only to understanding the architecture of the sys-
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tem and its mechanical properties but also numerous cell
functions. Cytoskeleton filaments anchor organelles and
serve as structural components of nuclear lamina and sar-
comers. So forces transferred from ECM or arrived in
the course of adhesion are related to information trans-
fer through the united network, taking part in distinction
of “self” and “foreign” in immune response and gene acti-
vation, formation of tissue and healing of wounds. More-
over, last years grows the evidence of cell-cell communi-
cation of unicellular organisms tending to organize into
complex communities that behave analogous to multi-
cellular organisms (organize united self-defense, hunting
for prey etc.) and making such intercellular network con-
nections as described. The silent aspect of such organi-
zation is cell-cell signaling mechanism that can be under-
stood also as a kind of informational network been dual
to described polymer (connectivity) networks [2–4].

Even more exciting experimental evidence are recent
results on formation and function of such networks in the
case of dynamic onset of Dictyostelium discoideum from a
collision of unicellular organisms to a multi-cellular slug
and finally to a fruiting body as multi-cellular amoeba
organism [5]. The cell aggregation starts with stochas-
tic pulsing of individual cells with release of signaling
molecules. But, at some density of cell “crowding” and
density of signaling molecules in interstitial space starts
synchronization of such cell oscillations and the new kind
of behavior, organization and “wholeness” emerges what
is characteristics of systems considered in complexity sci-
ence approach of modern physics. Although in many pa-
pers have been investigated constitution and biochemical
properties of particular components of the cell clusters
and supporting gels or ECM, the whole system described
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as a connectivity network is not considered. In this con-
tribution we propose a method that resolves the com-
plex structures described, in particular with stochastic
behavior of individual cells, to some basic physical prop-
erties that can be elaborated in terms of jammed state
statistical mechanics. Relations obtained provide possi-
bilities for interpretation of cluster rheological properties
at nano-level and can be used in further research of cell
cluster organization and growth.

2. Theory
It has been recognized for pretty long time that cellular

systems (in particular polymer foams) as well as granular
systems with large number of particles (or cells) evolve
into steady state of similar structures, irrespective of the
specific dynamics and of the length scale over which the
dynamics take place [6]. This prompts the use of statis-
tical mechanical methods to define global characteristics
(in de Genne’s teminology) of such structures. For ex-
ample using sand for an idealized model of such systems
we expect by pouring the same amount of send on a ta-
ble to obtain every time a heap of different shape (and
space configuration of grains)but pretty much of the same
properties and averaged dimensions. It also means that
formation of monolayer of grains (having the lowest po-
tential energy in the gravitational field) can be estimated
as event of very low probability under such conditions as
well as will be low probability to obtain extremely high
and slim heaps. More detailed analyses will confirm self-
similarity and scaling of properties in such systems as
we will see later. Still it arises several fundamental is-
sues: Why equilibrium- based description should apply
to these non- equilibrium systems? Moreover, thermal
equilibration is not possible because grains are too heavy
for thermal motions. How than to formulate a phase
space that enable the treatment of such jammed particle
systems in the systematic ways of statistical mechanics.
Those difficulties are one of the main reasons why gran-
ular matter as one of the most frequently manipulated
materials in human trade history is so little elaborated
in exact way. The first break- through has been maid by
S.E. Edwards and his group at Cambridge [7]. In short,
they used free volume in the cluster of particles as the
conserved quantity that takes over the place that has en-
ergy in the Boltzmann statistics. Than for the heap of
send in a box of volume V with N send grains under given
conditions as described above, there is Ω(N, V ) distinct
mechanically stable states. Now in analogy to Boltzmann
definition of temperature can be written

1
X

=
(

∂ lnΩ
∂V

)

N

(1)

Here, X is compactivity of the system that describes
spreading of particles inside the cluster. As the particles
are more spread around (inside the cluster!) the packing
is looser and there is more free volume in the cluster what
indicates less interactions and relatively weaker interac-
tion forces in that state of the cluster [7, 8]. That makes
in Edwards’s theory the link to the energy approach of

the classical statistical mechanics. Indeed, if the energy
is broth to the pile of sand e.g. vibrating it, the packing
of reproducible densities will be obtained, as experiments
indicate [1, 8–19]. It enables proposal of steady state dis-
tribution of configurations providing link to equilibrium
based distributions in statistical mechanics [15–19]. In
this new formalism the partition function for the cluster
of grains, considered as canonical ensemble, can be writ-
ten

ZW =
∫

θ(qn)e
−Wd(qn)

λX

∏
n

{dqn} (2)

where qn are degrees of freedom that comprise the phase
space and θ(qn) is probability density of configuration
{qn} at particular point of this space, Wd is called vol-
ume function and represents the analogue of Hamilto-
nian in classical statistical mechanics, X is compactivity
and λ is the constant regulating dimensions for the expo-
nent. For systems of living cells that are of interest here
we can in a similar way define the steady state distribu-
tion of cluster configurations [8]. Some of cell types have
rather stiff outer layer giving them permanent shape as
particles in Edwards’s terms and connect each to other
with receptor –ligand -complex producing kind of fixed
contact points also in terms of Edwards’s model. More-
over, cells in cluster make fluctuation- movements what
changes their orientation in space and in that way change
the free volume distribution in the cluster as well. It fol-
lows that we can describe the steady states of a cluster
by equation analogue to Eq. (2). According to classical
definition [9] free volume of the particle wfr is the differ-
ence between the volume available to the particle for its
oscillations inside a cluster and a volume of the particle
itself. For living cells there is some maximal free volume
wmax over which cell will loose its contact with the clus-
ter and some minimal free volume wmin that cell requires
for its normal life [8]. According to that and Eq. (2) we
can write the partition function of a cluster of N cells

Zcl =
∫

θ(w)
N∏

i

(e
−wi
λX dwi). (3)

In the same way as for particles in the Boltzmann lattice,
exchanging energy states, and here for anchored cells in
the lattice exchanging the free volume around them we
can write

Zcl =
[
θ

∫ wmax

wmin

e−w/(λX)dw

]N

= zN (4)

where z is the volumetric partition function of the cell in
a cluster.

Still, there are some essential differences in formula-
tions of Edwards’s model and the one of interest here:
(1) The large number of cell types changes shape due
to the soft membrane and elastic surface layers, so Ed-
wards’s conditions for free volume estimation can not be
applied strictly [8–19].
(2) Also because cells generate elastic forces to its en-
vironment, especially to overcome resistance of the sur-
rounding gels to cluster growth.
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(3) The interactions between cells are much more com-
plex than the friction between send grains in Edwards’s
model. To describe those phenomena we need to for-
mulate Hamiltonian for elastic – and binding- energies
between cells in cluster.

Since Bell’s seminal paper [20] numerous investigations
have been published considering cell-cell interaction and
formulating different equations for interaction relations
but all consider cell- cell interactions as kinetic process
that can be described by reversible equation

Rec + Lig
kf®
kr

RecLig

where Rec are receptor molecules and Lig are ligands, kf

is kinetic constant of receptor –ligand complex formation
and kf kinetic constant for its break. According to Bell:
kr = k0 exp(r0Fb/kBT ) where kB is Boltzmann constant
T temperature r0 is critical distance and Fb the bond
strength. With progress of experimental measurements
at nano-level including different peeling tests and espe-
cially dynamic force spectroscopy [21–23] last years are
available good experimental data for different systems
what opens new possibilities for quantitative treatment
and theoretical predictions. But, description of force
transfer and binding connections between cells requires
still further elaboration. In that purpose and starting
from principles and properties of polymer networks [9]
applied to the network interpenetrating the cluster as
described above, we write Hamiltonian of cell- cell inter-
action contact in the form

Hc(r) = Hel(r) + Hbind(r) (5)
Dynamics of network segments and dangling chains can
be described as dynamics of bead and spring oscillators
by harmonic potentials. But one cell i is under influence
of j cells in contact with it. For elastic energy of such
system we can write

Hel(r)i =
∑

j

a2
j

2
kFb(rj − rb)2 (6a)

where kFb is stiffnes constant per unit of cell surface and
a characteristic dimension of the j contact, rj is distance
between contact patches of referent cell an cell j and rb

is the rest length. In the similar way oscilations around
critical distance rbc of Rec binding with Lig can be dis-
crebed by

Hbind(r)i =
∑

jR,jL

a2
j

2
kf,bind(rj − rc,b)2 (6b)

But, the formation of cell-cell interaction complex de-
pends also on the space configuration of cell-cell surface
pairs in interaction and further receptor –ligand pairs at
those surfaces. So we have to formulate partition func-
tion of contact probabilities between cells in cluster

ZCint =
∑

i

∏

i

∑

j

θe
∑

i,j Hi,j
kBT (7)

As values for pagebreak reference energy kBT in Eq. (7)
can be used 4.2 pN nm at physiological temperature 310
K, based on data from nano- measurements but, gener-

ally it is rather difficult to estimate ZCint numerically.
Also, the Hamiltonian in the exponent can be trans-
formed rearranging Eq. (6a) and Eq. (6b) to united
potential but keeping in mind that frequencies and am-
plitudes of two kinds of oscillations described can be quite
different. In that way we come to the potential

Uef = KFb(τ, rc, E0)(ri,j − rc,b)2 (8)
The new stiffness parameter KFb is now function of time
and amplitudes but similar united parameters are formu-
lated by some other authors and can be used at relevant
time scales with KFb practically constant as a number
of experiment indicate and will be discussed later [21].
Anyway, we can suppose that the same potential holds
for all contacts between the same cells in a cluster (but
the interaction forces differ depending of the distance).
Then stress tensor in a cluster of volume Vcc with N cells
reads

σcc =
1

2Vcc

∑

i,j

Li,jF i,j (9)

where F ij is interaction force between cells i and j and
Li,j = li,j − lj,i is connection vector between cells with
lij contact vectors from relevant center of correspond-
ing cell in a pair to the contact. The stress σcc can
be related to the free volume of the cluster in the sense
that interactions forces F i,j keeping in balance a partic-
ular cluster configuration in space , generate at the same
time interstitial space e.g. voids and holes in the cluster
or free volume. Let be the measure of each such void ν
surrounding cell i some vector gi,j and call it generated
void vector and let the contact pint separate two voids
ν(h, j) and ν(j, o) around the cell i. Based on previous
statements we can write

gi,(h,j) − gi(j,o) = F i,j . (10)
The possibility to establish univocal correspondence be-
tween generated void vectors, measuring free volume and
the stress tensor of the cluster, can be easily shown in the
case of stable position of a cell i in contact with 3 cells at
the flat surface. It follows that contact points can be des-
ignated by j = 1, 2, 3 and voids in-between by ν = (1, 2),
(2,3),(3,1). For the cell i we write the balance of interac-
tion forces

F i,1 + F 1,2 + F 1,3 = 0. (11)
Let the measure of void ν = (1, 2) be gi(1,2) = g0. Based
on Eq. (9) we can write

gi(3,1) − gi(1,2) = −F i,1, (12a)
gi(2,3) − gi(3,1) = −F i,3, (12b)
gi(1,2) − gi(2,3) = −F i,2. (12c)

Substituting Eq. (12a), (12b) and Eq. (11) into Eq.
(12c) we obtain always the same measure:

g0 = gi(1,2) = gi(2,3) − F i,3 = gi(1,2) − F i,1

−F i,2 − F i,3 = gi(1,2). (13)
The identity Eq. (13) can be extended to larger number
of particles and always in the same way calculate moment
of forces laid upon cell i defined as:
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σi =
∑

j

li,jF i,j =
∑

j

li,j(gi(i,j) − gi(j,i))

=
∑

j

(li,j − lj,i)gi,ν =
∑

ν

si,vgi,v (14)

Vectors si,v we call segment vectors connecting contact
points of i and neighboring cells to be much easier to
determine then vectors li,j and Li,j . It is in fact univer-
sally defined parameter for the whole cluster. Segment
vectors extend through the whole cluster making contin-
ual connectivity network between all contact complexes.
It is at the same time topological network and interaction
network as we will see, directly related to free volume by
products with void generating vectors giv as can be seen
from Eq. (14). Now, based on the same principle, the
procedure can be extended to define interaction force mo-
ment tensor for the whole cluster ΦCC :

ΦCC = VCCσ =
1
2

∑

i,j

Li,jF i,j

=
1
2

∑

i,j

(li,j − lj,i)F i,j =
1
2

∑

i,j

(li,jF i,j + lj.iF j,i)

=
∑

i,j

li,jF i,j =
∑

i

σi =
∑

i

∑
v

si,vgi,v. (15)

Several authors related in a similar way force moment
tensor with free volume measuring parameters for clus-
ters of micro particles and grains [10–20] but not for liv-
ing cells. Some of constellations around voids for the par-
ticles considered were much more complicated but from
all the cases can be derived conclusion that ΦCC is addi-
tive over subsystems of cluster particles closing the voids
and that ΦCC is conserved for such a system in a box with
fixed boundary conditions. It follows that such systems
satisfy basic requirements for treatment as statistical me-
chanical ensembles and can be called stress ensemble. In
Edwards’s terms for the number of states Ω(ΦCC) we can
write angoricity in the form

α =
(

∂ lnΩ
∂ΦCC

)

N

(16)

Considering cluster environment as large enough reser-
voir in energy balance with the cluster probability for
state h is

P (Φcc)κ ∝ Ωe(−αΦcc)
κ (17)

what also requires extensive insight for elaboration. But
for the cell cluster, we should be aware of coupling be-
tween elastic responses and contact coupling, binding and
rebinding contacts as described by Eq. (5)–(8). More-
over, experiments indicate that cells in clusters keep some
permanent and unified tension upon substrate, probably
as cooperative activity of cytoskeleton and cell adhesion
complexes. Indeed, some very interesting experimental
results of several groups of authors [21–23] show that
size of mature focal adhesion complex can adduce itself
keeping constant pressure even for cells that are not un-
der constrains from environment. In that case the ten-
sion per unit of area (stress) is 5.5 k Pa and remarkable
constant among different cell types [25, 26]. It provides

background for mean field approach considering cluster
states under isotropic compression, in balance with envi-
ronment and substituting tensor ΦCC with scalar, simply
with pVcc where p is pressure in the cluster and Vcc is its
volume:

ϕ = pVCC =
1
2

∑

i,j

Li,jFi,j (18)

Then Eq. (17) reads
P (ϕ)κ ∝ e−αϕκ (19)

and partition function of the cluster is

ZCC(α) =
∑

κ

e−αϕκ (20)

Keeping in mind that cell under conditions described can
change their shape but not the volume, under isotropic
deformation field we can eliminate variable Li,j from Eq.
(18)–(20) and write partition function just in terms of
Fi,j , because of one to one relation between {Li,j} and
{Fi,j} sets. Denoting average volume of a cell in the clus-
ter by wc,avr we can instead L use equivalent distance
(6wc,avrπ)1/3 and the partition function reeds

ZCC(α) =
∑

{F}
e−α

6wc,avr
π )

1
3

∑
i,j Fi,j (21)

Analogue to Eq. (4), voids we can decuple in the first
approximation of interaction pairs and obtain

ZCC(α) =

Nξ0
2∏

i,j

∫ ∞

0

dF e−α(6w/π)F

=

(
π

1
3

α(6wc,avr)
1
3

)Nξ0
2

(22)

where ξ0 is number of contacts per cell. It is equal to
number of degrees o0f freedom of a cell in a cluster [8].
From Eq. (18)–(22) we obtain the average value of φ.

〈pVCC〉 =
−∂ ln ZCC

∂α
(23)

From Eq. (22)–(23) and denoting number density of cells
by (N/VCC) = ρcc, we obtain equation of state for clus-
ter

p
2α

ξ0
= ρcc (24)

Considering derivatives with time in the sense of cluster
grow with increase of cell number N under conditions
described, we obtain

wp
2α

ξ0
= Wccc (25)

where wp is the rate of pressure increase and Wccc =
(ρ − ρ0)/(t − t0) we call the rate of cumulative increase
of cluster density or rate of cluster density increase. The
increase of number of cells in a cluster due to prolifera-
tion, we can describe using effective rate constant kc,ef :

dN

dt
= kc,efN (26)

Integrating Eq. (26) from N0 to N we obtain for the in-
crease of cluster density, in particular period of time t-t0
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starting with density ρ0:

Wccc =
1

t− t0

[
N

V0 −Nwc,avr
− N0

V0

]

=
1

t− t0

[
N0 ekc,ef t

V0 −N0 ekc,ef t
− N0

V0

]

≈ ekc,ef t − 1
t− t0

N0

V0
(27)

The approximation is valid if space available in time t for
a cell is much larger than cell’s average size (in the sense
that we discussed with Eq. (4)). Finally, integrating Eq.
(25) over some period of time from t0 to t we obtain the
increase of pressure in the cluster in the form

2α

ξ0
(p− p0) = ρ0

(kc,ef t

1 · 1!
+

(kc,ef t)2

2 · 2!

+
(kc,ef t)3

3 · 3!
+ · · ·

)
(28)

In previous equations we consider α and ξ0 constant, that
means the same organization and degrees of freedom in
the cluster. But with increase of number of cells in the
cluster its state approaches to singularity as described in
Eq. (27).Cells in the cluster can overcome such situation
( to some extent also depending on organization of the
cluster) by adducing their positions, to decrease in that
way the average volume they use in the cluster. But, the
change of wc,avr means also the changes of α and ξ0 .
This is directly related to Eq. (23) in our previous pa-
per on jammed states in living cell clusters [8]. In this
way our theory covers behavior of cell clusters from the
very beginning of its organization till stop of growth due
to increase of density and decrease of free volume in the
cluster indicated by some critical value of volume per cell
wmin.

3. Results and discussion

The theory proposed in previous section relates rheo-
logical properties of a single cell (with data in remark-
able progress of quality and accumulation last years due
to measurements on nano-level) with properties of cell-
clusters, been of high importance for understanding de-
velopment and behavior of cell cultures and tissues [20–
35]. In the theory are also considered very serious diffi-
culties in quantitative description of cell cluster behavior
using micromechanics and rheology. In literature it is
explained by changes of cell interactions and relations
in space with proliferation, grow and self-assembling of
clusters [1–4, 32–35]. But, in derived relations of the
theory proposed a significant number of such difficulties
is eliminated by appropriate averaging over cluster sub
-systems in space and time. In that way the method pro-
posed is incorporating into modern approach in physics
of jammed state where accumulated mechanical energy
of subsystems, appropriately averaged, can be added ac-
cording to the principles of adding energy in thermody-
namics [6–12]. For example

∑
σi in Eq. (15) can be

extended substituting segment vectors by si,j that are
bond to cell, by si,j = qi,v + hi,v that gives now sum of

vectors related to voids :
Φs =

∑

i

σi =
∑

i∈S

∑
v

(qi,v + hi,v)gi,v (29)

So, contributions from the interior boundaries in area S
cancel pair -wise due to adding the terms going contra
clockwise around the boundary of cell i and the terms
from going contra -clockwise around its neighboring cell
j through the voids common to grains i and j.In such
a way we obtain contributions for expansion of cluster
and changes of density from generated void variables at
the boundaries to insert in Eq. (15). One of parameters
that incorporate such coupling is rate of cluster density
increase Wccc presented in Fig. 1.

Fig. 1. Scaling of rate of cluster density increase Wccc

with time t [hours].

The change of cluster density with time due to the in-
crease of number of cells N according to those principles
and the model derived from our theory can scale in Eq.
(27) in two ways :(a)If there is a lot of space for expan-
sion of cluster ln Wccc will be proportional to kc,ef t (b)
if the space available for cell in the cluster is close to
wc,av than ln Wccc ∼ − ln[wc(t) − wc,avr] − ln t. From
experiments on yeast cells in alginate beads described in
our previous papers [24–30] and Eq. (27) we calculated
results presented in Fig. 1. The results indicate cumula-
tive increase of cluster density and shortage of space, as
expected. Moreover, incorporation of Eq. (8) in calcu-
lations provides possibilities to translate the system pa-
rameters into topology –geometry relations scaling with
time.

4. Conclusions

Interactions of living cell with neighboring cells in a
cluster arising from interactions in cell cultures, tissues
and encapsulating polymer beads or micro-capsules are of
essential importance for their life, realization of different
targets of their cultivation. In spite to that, a number
of issues as early stop of colony growth, early decrease
of performances and understanding of some transitions
of cluster structure [8] related to criticality issues, re-
quire further investigations. But, standard protocols of
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cell colony cultivation and characterization do not pro-
vide adequate data for many of such investigations. In
the theoretical part of this work, we proposed equations
relating standard parameters from cell colony character-
ization with basic interactions influencing grow and or-
ganization of cell clusters. Moreover, the model provides
possibilities for incorporating data from nano-rheological
single –cell behavior measurements giving promising data
of high interest, last years.
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