
Nonlinear frequency response analysis of forced periodic operation
of non-isothermal CSTR using single input modulations. Part I:
Modulation of inlet concentration or flow-rate

Daliborka Nikolić a, Andreas Seidel-Morgenstern b, Menka Petkovska c,n

a University of Belgrade/Institute for Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
b Otto-von-Guericke University and Max-Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
c University of Belgrade/Faculty of Technology and Metallurgy, Department of Chemical Engineering, Karnegijeva 4, 11120 Belgrade, Serbia

H I G H L I G H T S

� Evaluating single input periodic operations of non-isothermal CSTR by NFR method.
� Analysis for the non-isothermal, homogeneous, simple n-th order reaction in a CSTR.
� Derivation of asymmetrical second order FR functions and sign analysis.
� Conditions for process improvement by modulating inlet concentration or flow-rate.
� Comparison between results obtained by NFR method and by numerical simulations.

a r t i c l e i n f o

Article history:
Received 20 January 2014
Received in revised form
30 May 2014
Accepted 5 June 2014
Available online 14 June 2014

Keywords:
Non-isothermal CSTR
Nonlinear dynamics
Mathematical modelling
Chemical reactors
Simulation
Nonlinear frequency response method

a b s t r a c t

Periodic operations of a non-isothermal CSTR with n-th order reaction, subject to a single input
modulation, is analysed using the nonlinear frequency response (NFR) method, introduced in our
previous publications. The method is based on deriving the asymmetrical second order frequency
response function (FRF) and analysing its sign. In Part I of this paper, periodic operation with modulation
of the inlet concentration or flow-rate of the reaction stream is analysed. As a result, conditions
regarding the reaction order, process parameters and frequency of the input modulation are identified
that need to be fulfilled in order to achieve process improvement through the periodic operation
compared to conventional steady state operation. The method is applied for a numerical example from
literature and the results obtained by the NFR method are compared with the results of numerical
simulation. Good agreement is obtained, except for imposed forcing frequencies close to the resonant
frequency and high forcing amplitudes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic operation of different chemical engineering processes,
especially chemical reactors, has been a research topic of a number
of research groups in the last 50 years (Douglas and Rippin, 1966;
Douglas, 1967; Horn and Lin, 1967; Renken, 1972; Bailey, 1973;
Watanabe et al., 1981; Schadlich et al., 1983; Silveston 1987;
Sterman and Ydstie, 1990a, 1990b, 1991; Chen and Hwang, 1994;
Silveston et al. 1995; Silveston, 1998).

Periodic modulation of one or more inputs can provide better
average performance compared to the optimal steady-state operation
(increased conversion, improved selectivity, increased yield, increased

catalytic activity etc.). The source of possible improvement lies in the
process nonlinearity. Many experimental and simulation studies verify
that it is often advantageous to exploit the nonlinear behaviour of
chemical reactions and to operate in a dynamic regime by periodic
modulation of one or more inputs (Sterman and Ydstie, 1991).

For nonlinear systems with periodic modulation one or more
inputs, the average value of the output is different from the steady-
state value. Although this difference is small for mild nonlinearities, for
highly nonlinear systems or those which exhibit resonance, the
deviations might be very significant (Douglas, 1967).

Identification of candidate systems for process enhancement
through periodic operation and estimation of the magnitude of
such enhancement have occupied many researchers. More details
about previously proposed criteria or techniques for evaluation of
periodically operated processes can be found in Petkovska and
Seidel-Morgenstern (2013).
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These previous theoretical approaches have not provided yet
general methods to predict the possibility of process improve-
ments (Petkovska and Seidel-Morgenstern, 2013). In practice,
testing whether a periodic operation leads to an increased pro-
ductivity as compared to the corresponding steady-state opera-
tion, is usually performed by long and tedious experimental and/or
numerical work. Therefore, there is still a need for developing
simple and reliable methods which would enable quantitative
evaluation of the possibility of process improvements through
periodic operations (Petkovska and Seidel-Morgenstern, 2013).

In our previous work, we introduced the nonlinear frequency
response (NFR) method, which can give in early development stages
a fast answer whether working under periodic conditions could be
favourable. The NFR method, which is applicable for weakly nonlinear
systems (Weiner and Spina, 1980), is based on Volterra series, general-
ized Fourier transform and the concept of higher order frequency
response functions (FRFs) (Marković et al., 2008). The NFR method also
enables approximate evaluation of the magnitude of the improvement
for weakly nonlinear systems if it can be achieved by periodic operation.

Till now, the NFR method has been applied for evaluation of
periodic operations of different types of reactors (continuous
stirred tank reactor (CSTR), plug flow tubular reactor and disper-
sive flow tubular reactor) with feed concentration modulation for
simple isothermal homogeneous n-th order reactions (Marković et
al., 2008). The same type of analysis was used for periodic
operation of a CSTR with a simple isothermal heterogeneous
catalytic n-th order reaction (Petkovska et al., 2010).

In one of our previous papers, the NFR method was extended
for evaluation of periodic operation with simultaneous modula-
tion of two inputs, and tested on an isothermal CSTR in which a
simple isothermal n-th order homogeneous reaction takes place
and inlet concentration and flow-rate are modulated simulta-
neously (Nikolić-Paunić and Petkovska, 2013).

In this paper, for the first time the NFR method is applied for
evaluation of periodically operated non-isothermal reactors, for which
the temperature effects of the chemical reaction cannot be neglected.
This problem has already been treated in the literature (Ritter and
Douglas, 1970; Sterman and Ydstie 1990a, 1990b; Dorawala and
Douglas, 1971; Silveston and Hudgins, 2004). There are several
parameters which could be periodically modulated: the inlet concen-
tration, the flow-rate, the temperature of the feed stream and the
temperature of the heating/cooling fluid. Since the potential for
improvement through periodic operation strongly depends on the
degree of the nonlinearity of the system, it is expected that the non-
isothermal CSTR, which is highly nonlinear, would offer a lot of
potential for process improvement. The non-isothermal CSTR is also
a good test for the NFR method, considering that the method is valid
for weakly nonlinear systems.

It is well-known that a non-isothermal CSTR can in principle
exhibit unstable behaviour (Douglas, 1972). It should be noticed
that the NFR method is applicable only for stable systems, so
stability analysis should always be performed first.

In this paper, the NFR method is applied for evaluation of periodic
operation of a non-isothermal CSTR in which a simple n-th order
homogeneous reaction takes place, when either the inlet concentra-
tion and or the flow-rate are modulated inputs. In Part II of this paper,
we will analyse the periodic operation of the non-isothermal CSTR
when the modulated inputs are the temperature of the inlet reaction
stream or the temperature of the cooling/heating fluid.

2. Nonlinear frequency response method for evaluating
periodic processes

Frequency response (FR) represents a quasi-stationary response
of the system to a periodic (sinusoidal or co-sinusoidal) input

modulation, which is achieved when the transient response
becomes negligible (theoretically for infinite time) (Douglas, 1972).

FR of a linear system is a periodic function of the same shape
and frequency as the input, but with different amplitude and
phase from the input values. The mean value of this periodic
function is equal to the steady state value. Frequency response
function of a linear system is defined by the amplitude ratio and
the phase difference of the output and input in the quasi-
stationary state (Douglas, 1972).

On the other hand, FR of a nonlinear system is a complex
periodic function and it cannot be represented by a single
frequency response function. FR of a nonlinear system, in addition
to the basic harmonic, which has the same frequency as the input
modulation, also contains a non-periodic, the so called DC com-
ponent, and an infinite number of higher harmonics (Douglas,
1972; Weiner and Spina, 1980; Petkovska and Seidel-Morgenstern,
2013). One approach for analysing FRs of nonlinear systems is the
concept of higher order frequency response functions (FRFs) which
is based on Volterra series and the generalized Fourier transform
(Weiner and Spina, 1980).

The nonlinear model G of a weakly nonlinear system in the
frequency domain can be replaced by an infinite sequence of
frequency response functions (FRFs) of different orders (Weiner
and Spina, 1980). These FRFs are directly related to the DC
component and different harmonics of the response (Weiner and
Spina, 1980).

If the input is defined as a single harmonic periodic function
with forcing amplitude A and forcing frequency ω

xðtÞ ¼ xsþA cos ðωtÞ ð1Þ
for infinite time, the output of a weakly nonlinear system is
obtained as a sum of a DC component and the first, second, …
harmonics

yðtÞ ¼ ysþyDCþyIþyIIþ…

¼ ysþyDCþBI cos ðωtþφIÞþBII cos ð2ωtþφIIÞþ… ð2Þ

The DC component, which is responsible for the time-average
performance of periodic processes and which is most essential in
this paper, can be expressed as the following infinite series
(Weiner and Spina, 1980):

yDC ¼ 2
A
2

� �2

G2ðω; �ωÞþ6
A
2

� �4

G4ðω;ω; �ω; �ωÞþ… ð3Þ

where G2(ω,�ω) represents the asymmetrical second order
frequency response function, G4(ω,ω,�ω,�ω) the asymmetrical
fourth order FRF, etc.

For weakly nonlinear systems, the contributions of the higher
other FRFs decrease with the increase of their order (Petkovska
and Seidel-Morgenstern, 2013).

The dominant term of the DC component is proportional to the
asymmetrical second order FRF, G2(ω,�ω) and the approximate
value of the DC component can be easily calculated from
(Marković et al., 2008)

yDC � 2
A
2

� �2

G2ðω; �ωÞ ð4Þ

In this way, the sign of the asymmetrical second order FRF
G2(ω,�ω) defines the sign of the DC component. Consequently,
in order to decide whether a particular periodic operation is
favourable compared to the optimal steady-state operation, it is
enough to derive and analyse the second order asymmetrical FRF
(Marković et al., 2008). It is also possible to calculate approxi-
mately the magnitude of the improvement, by estimating the
value of the second order asymmetrical FRF for chosen values of
the forcing amplitude and forcing frequency.
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The procedure for derivation of the higher order FRFs is
standard and can be found in Petkovska (2001), Petkovska et al.
(2006), Petkovska and Do (1998), Petkovska and Marković (2006),
Marković et al. (2008). The derivation process is recurrent, mean-
ing that the first order FRFs have to be derived first, than the
second order FRFs, etc. For our current application, we limit our
derivations to the first order and the asymmetrical second
order FRFs.

2.1. NFR method for evaluation of process improvement in
periodically operated chemical reactor

Let us consider a continuously operated chemical reactor in
which a simple reaction A-product(s) takes place and one of the
inputs is modulated periodically around a previously established
steady-state. If conversion is of interest, the outlet concentration of
the reactant A can be considered as the output of interest. If the
reactor is a nonlinear system, the mean value of the outlet
concentration of the reactant ðcmA Þ during periodic operation will
be different from the outlet steady-state concentration ðcA;sÞ. The
difference Δ¼ cmA �cA;s, which is the indicator of the process
improvement, depends on the type of nonlinearity. If Δo0, the
periodic operation can be considered as favourable, as it corre-
sponds to increased conversion, in comparison to the steady-state
operation (Marković et al., 2008).

On the other hand, the difference between the time-average of
the output of a periodically perturbed system and its steady-state
value (Δ) is equal to the DC component of the outlet concentration.
Since the dominant term of the DC component is proportional to
the asymmetrical second order function G2(ω,�ω) (Petkovska
et al., 2010), the time average response can be approximately
estimated from this function

Δ¼ cmA �cA;s � cA;DC � 2
A
2

� �2

G2ðω; �ωÞ
 !

cA;s ð5Þ

If the second order asymmetrical FRF is negative (G2(ω,�ω)o0)
than the average concentration of the reactant cmA will be lower
than the steady-state outlet concentration cA;s (Δo0), i.e. the
conversion will be increased.

By using Eq. (5) the magnitude of the process improvement can
be approximately calculated, for any chosen forcing frequency and
forcing amplitude.

3. Mathematical model of a non-isothermal CSTR carrying out
a simple reaction

In this work, the NFR method is used to analyse the perfor-
mance of a periodically operated non-isothermal CSTR in which a
homogeneous n-th order reaction A-product(s) takes place. The
effects of modulating the concentration of the reactant in the inlet
stream and the flow-rate of the feed stream on the reactor
performance are analysed in this first part.

The rate law is

r¼ koe�ðEA=ðRTÞÞcnA ð6Þ
where cA is the reactant concentration, T temperature, ko the
preexponential factor in the Arrhenius equation, EA activation
energy and R the universal gas constant.

The material balance for the reactant A is

V
dcA
dt

¼ FcA;i�FcA�koe�ðEA=ðRTÞÞcnA V ð7Þ

and the energy balance

Vρcp
dT
dt

¼ FρcpTi�FρcpTþð�ΔHRÞkoe�ðEA=ðRTÞÞcnAV�UAwðT�TJÞ ð8Þ

where t is time, F the volumetric flow-rate of the reaction stream,
V the volume of the reactor, ΔHR heat of reaction, U the overall
heat transfer coefficient, Aw the surface area for heat exchange, ρ
density, cp specific heat capacity. The following subscripts are used
in the balance equations: i for inlet and J for heating/cooling fluid
in the reactor jacket.

It is assumed that volume is constant (V¼const), i.e. that the
inlet and outlet flow-rates are equal, that the temperature of the
heating/cooling fluid does not change from inlet to outlet and that
all physical and chemical properties are independent on tempera-
ture (ρcp ¼ const, ΔHR ¼ const).

In steady-state, the material and energy balances are given
with the following expressions:

cAi;s
cA;s

¼ 1þkoe�ðEA=ðRTsÞÞcn�1
A;s

V
Fs

¼ 1þα ð9Þ

Ti;s

Ts
¼ 1�ð�ΔHRÞkoe�ðEA=ðRTsÞÞcnA;s

ρcpTs

V
Fs
þ UAw

Fsρcp
�UAwTJ;s

FsρcpTs
¼ 1þβþSt�δ

ð10Þ
where subscript s denotes the steady-state values and the follow-
ing auxiliary parameters have been introduced:

α¼ koe�ðEA=ðRTsÞÞcn�1
A;s

V
Fs
; β¼ΔHRkoe�ðEA=ðRTsÞÞcnA;s

ρcpTs

V
Fs
; δ¼UAwTJ;s

FsρcpTs
;

γ ¼ EA
RTs

; St ¼ UAw

Fsρcp
ð11Þ

These parameters are functions of the physical parameters of the
reactor, as well as the steady-state values of the concentration and
temperature in the reactor (cA,s and Ts).

For analysis in frequency domain, it is convenient to transform
the model equations into dimensionless form, by introducing
dimensionless variables as relative deviations from their steady-
state values. The definitions of the dimensionless variables are
given in Table 1.

Hereby Ti,s and TJ,s represent constant steady-state values of the
temperatures of the feed stream and in the jacket. Since these
temperature are not modulated, the corresponding θi and θJ are
zero in this study.

After introducing the dimensionless variables and the auxiliary
parameters in model Eqs. (7) and (8), the model equations
become:

dC
dτ

¼ ð1þαÞðΦþ1ÞðCiþ1Þ�ðΦþ1ÞðCþ1Þ

�kocn�1
A;s

V
Fs
e�ðEA=ðRTsðθþ1ÞÞÞð1þCÞn ð12Þ

dθ
dτ

¼ ð1þβþSt�δÞðΦþ1Þðθiþ1Þ�ðΦþ1Þðθþ1Þ�Stðθþ1ÞþδðθJþ1Þ

�ΔHRkocnA;sV

ρcpTsFs
e�ðEA=ðRTsðθþ1ÞÞÞð1þCÞn ð13Þ

Table 1
Definitions of the dimensionless variables.

Inlet concentration of the reactant Ci ¼ cAi � cAi;s
cAi;s

Flow-rate Φ¼ F�Fs
Fs

Outlet concentration of the reactant C ¼ cA � cA;s
cA;s

Inlet temperature θi ¼ Ti �Ti;s
Ti;s

Temperature in the reactor θ¼ T �Ts
Ts

Temperature of the heating/cooling fluid θJ ¼ TJ �TJ;s

TJ;s

Time τ¼ t
V=Fs

Frequency ω¼ωd
V
Fs
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For applying the NFR method, all nonlinearities in the model
equations should be given in the polynomial form (Weiner and
Spina, 1980). After expanding the nonlinear terms e�ðEA=ðRTsðθþ1ÞÞÞ

and ð1þCÞn in the Taylor series form, the dimensionless model
equations are transformed into the following form:

dC
dτ

¼ ð1þαÞðΦþ1ÞðCiþ1Þ�ðΦþ1ÞðCþ1Þ

�α 1þnCþγθþnγCθþ γ2

2
�γ

� �
θ2þ1

2
nðn�1ÞC2þ…

� �
ð14Þ

dθ
dτ

¼ ð1þβþSt�δÞðΦþ1Þðθiþ1Þ�ðΦþ1Þðθþ1Þ�Stðθþ1ÞþδðθJþ1Þ

�β 1þnCþγθþnγCθþ γ2

2
�γ

� �
θ2þ1

2
nðn�1ÞC2þ…

� �
ð15Þ

The Taylor series expansions of the nonlinear terms e�ðEA=ðRTsðθþ1ÞÞÞ

and ð1þCÞn in the dimensionless model equations are given in
Appendix A. In Eqs. (14) and (15) only the first and second order
terms are shown.

4. Frequency response functions of the non-isothermal CSTR

4.1. Definitions of the FRFs

In the case of a single input modulation, the non-isothermal
CSTR represents a nonlinear systemwith one modulated input and
two outputs. The modulation of a chosen input, for the non-
isothermal reactor, will cause changes of both the concentration
and the temperature in the reactor. Consequently, in order to
describe the behaviour of non-isothermal CSTR for a single input
modulation, for each modulated input it is necessary to derive two
sets of FRFs, as presented in Fig. 1.

The following notations are used in Fig. 1 X for dimensionless
input modulation (in this work, inlet concentration or flow-rate),
C dimensionless outlet concentration of reactant, θ dimensionless
outlet temperature, GnX

n the n-th order FRF correlating the outlet
concentration to the modulated input X and Fn,X the n-th order
FRFs correlating the outlet temperature to the modulated input X.
Accordingly, the following four sets of FRFs need to be derived

Set 1: FRFs which correlate the outlet concentration of the
reactant with the modulated inlet concentration (G1;CðωÞ;G2;CC

ðω; �ωÞ;…).
Set 2: FRFs which correlate the outlet temperature with the
modulated inlet concentration (F1;CðωÞ; F2;CCðω; �ωÞ;…).
Set 3: FRFs which correlate the outlet concentration with the
modulated flow-rate (G1;F ðωÞ;G2;FF ðω; �ωÞ;…).
Set 4: FPFs which correlate the outlet temperature with the
modulated flow-rate ðF1;F ðωÞ; F2;FF ðω; �ωÞ;…Þ.

From the aspect of process improvement, the change of the
outlet temperature is not of particular interest, but it might be
relevant from the aspect of safety and equipment limitations. In
that case, the change of outlet temperature owing to periodic
operation could be estimated in an analogous way as the outlet
concentration, from the asymmetrical second order FRF which

correlates the outlet temperature with the modulated input.

ΔT ¼ 2
A
2

� �2

F2;XXðω; �ωÞ
 !

Ts ð16Þ

The F-functions are not subject of the analysis reported here, since
we are mainly interested in the outlet concentration and the
conversion change of the periodically operated non-isothermal
CSTR. However, the F-functions have to be derived since they are
necessary in the derivation process of the G-functions. Therefore,
the derivation of the F-functions will be provided without further
analysis.

4.2. Derivation of the FRFs

The basic steps of the procedure for derivation of the frequency
response functions are

1. The input modulation (inlet concentration CiðτÞ or flow-rate
ΦðτÞ) is defined in the form of a co-sinusoidal function.

2. The outlet concentration CðτÞ and temperature θðτÞ are
expressed in the Volterra series form.

3. The expression for the modulated input (CiðτÞ or ΦðτÞ) and for
CðθÞ, τðθÞ from step 1 and step 2, are substituted into the
corresponding dimensionless model equations (Eqs. (14) and
(15)).

4. The method of harmonic probing is applied to the equations
obtained in step 3, i.e., the terms with the same amplitude and
frequency are collected and equated to zero.

5. The equations obtained in step 4 are solved.

The final expressions for the asymmetrical second order FRFs
which correlate the outlet concentration with the modulated input
are given below while and the most important steps of the
derivation procedure are given in Appendix B.

4.2.1. Periodic operation with modulation of the inlet concentration
Starting from the dimensionless model Eqs. (14) and (15), in

which all input variables except the inlet concentration are set to
zero ðΦ¼ 0; θi ¼ 0; θJ ¼ 0Þ, the GC- and FC-functions are derived.
Both first order and asymmetrical second order FRFs are given in
Appendix B.1, together with the main steps of the derivation
procedure.

Here we consider only the asymmetrical second order FRF
corresponding to the outlet concentration, G2;CCðω; �ωÞ, as it
contains information regarding the conversion change owing to
periodic operation. The final expression of G2;CCðω; �ωÞ is

G2;CCðω; �ωÞ ¼ �1
2

αð1þStÞ
1þnαþβγþnαStþSt

� ð1þαÞ2Λ
½ð1þnαþβγþnαStþStÞ�ω2�2þω2ð2þβγþStþnαÞ2

ð17Þ

where the term in the numerator Λ is defined as:

Λ¼ nðn�1Þω2þ½ð1þStÞ2�2β2γ�n2�½ð1þStþβγÞ2�n¼Λ1ω
2þΛ2

ð18Þ

4.2.2. Periodic operation with modulation of the flow-rate
The GF- and FF-functions are again derived starting from the

dimensionless model Eqs. (13) and (14), in which, this time, all input
variables except the flow-rate are set to zero ðCi ¼ 0; θi ¼ 0; θJ ¼ 0Þ.
The first order and asymmetrical second order FRFs are given in
Appendix B.2, together with the main steps of the derivation
procedure.

Here we give the final expression for the asymmetrical second
order FRF which correlates the outlet concentration to theFig. 1. Block diagram of a non-isothermal CSTR for single input modulation.
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modulated flow-rate

G2;FF ðω; �ωÞ ¼ �1
2

1
1þnαþβγþnαStþSt

� Ω
½ð1þnαþβγþnαStþStÞ�ω2�2þω2ð2þβγþStþnαÞ2

ð19Þ

where the term Ω in the numerator can be expressed in the form
of a polynomial with respect to the forcing frequency

Ω¼Ω1ω
2þΩ2 ð20Þ

with Ω1 and Ω2 which are complex functions of the reaction order
n and the model parameters α, β, γ, δ and St

Ω1 ¼ α3ð1þStÞn2þα2ð1þStÞð2�αþ2γðβþSt�δÞÞnþ2αð1þStþβγÞ

þαγðγ�2Þð1þStÞðβþSt�δÞ2 ð21Þ

Ω2 ¼ ½α3γðγ�2Þð1þStÞðSt�δÞ2�2α3γðSt�δÞð1þStÞ
þα3ð1þStÞð1þSt�γStþγδÞ2
þ2α3γð1þStÞð1þSt�γStþγδÞðSt�δÞn2�
þ½2α2ð1þStþβγÞð1þSt�γStþγδÞð1þStÞ
�2α2γð1þStÞðβþSt�δÞ�2α2γðSt�δÞð1þβγþStÞ
þ2α2γðγ�2Þð1þStÞðSt�δÞðβþSt�δÞ
�α3ð1þStÞð1þSt�γStþγδÞ2
þ2α2γð1þStÞð1þSt�γStþγδÞðβþSt�δÞ�n
þ½2αð1þStþβγÞ2ð1þSt�γStþγδÞ�2αγð1þβγþStÞðβþSt�δÞ

þαðγ2�2γÞð1þStÞðβþSt�δÞ2� ð22Þ

4.3. Stability analysis

Considering that the NFR method is applicable only for stable
systems and the fact that non-isothermal CSTR can be unstable, it
is important to determine the domain in which the system is
stable.

By analysis of the characteristic equation which corresponds to
the linear model, we can determine the domain of stability and

oscillatority. The characteristic equation of the linearized model
can be obtained by equating the denominator of the first order FRF
(G1C, F1C, G1F and F1C, given in Appendix B all have the same
denominator) with zero, after replacing jω with the Laplace
complex variable s. For the non-isothermal CSTR defined by model
Eqs. (11) and (12) the characteristic equation of the system is the
following second-order equation:

s2 þsð2þβγþStþnαÞþð1þnαþβγþnαStþStÞ ¼ 0 ð23Þ

The roots of this characteristic equation are

p1;2 ¼ Aps7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2

ps�BpsÞ
q

ð24Þ

where

Aps ¼ �ð2þnαþStþβγÞ
2

and Bps ¼ ð1þnαþβγþnαStþStÞ ð25Þ

The necessary and sufficient condition that a linear system is
stable is that all roots of characteristic equation are negative or
have negative real parts (Douglas, 1972). Although this stability
condition is valid only for linear systems, this analysis can provide
valuable information about the stability of a nonlinear system in
the vicinity of the steady-state, based on the Lyapunov theorem
(Douglas, 1972). The oscillatority of the system is also determined
by the position of the roots of the characteristic equation. If all
roots of the characteristic equations are real, the system will be
non-oscillatory, otherwise, if the roots of characteristic equations
are conjugate-complex, the system will be oscillatory.

Based on all this, we can conclude that for

Apso0 and Bps40 and A2
ps4Bps – the system is stable and

nonoscillatory,
Apso0 and Bps40 and A2

psoBps – the system is stable and
oscillatory,
Aps40 and Bps40 and A2

ps4Bps – the system is unstable and
nonoscillatory,
Aps40 and Bps40 and A2

psoBps – the system is unstable and
oscillatory.

Fig. 2. Areas of stability and oscillatority for a non-isothermal CSTR.
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The areas of stability and oscillatority, depending on the
auxiliary stability parameters Aps and Bps are graphically presented
in Fig. 2.

The nonlinear frequency response method and the concept of
higher order FRFs can be applied only in the domain in which the
system is stable, i.e. for Apso0; Bps40:

If the characteristic equation of the non-isothermal CSTR (Eq.
(23)) is given in its standard form (Douglas, 1972)

s2þ2ξωnsþω2
n ¼ 0 ð26Þ

the commonly used model parameters, damping coefficient ξ and
natural frequency ωn, can be defined. It is a well known fact that a
stable oscillatory system, with a damping coefficient ξ less than
0.707 exhibits resonance (amplification of the inlet modulation for
some input frequencies) (Douglas, 1972). The frequency at which
the amplitude of the outlet is maximal is called resonant fre-
quency and depends on ξ and the natural frequency ωn of the
oscillatory system (Douglas, 1972)

ωr ¼ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2ξ2

q
ð27Þ

It can be shown that this resonant frequency can be calculated
from the stability parameters Aps and Bps, in the following way

ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bps�2Aps

2
q

ð28Þ

Previous investigations suggest that the maximum improvement
of a forced periodic operation in comparison with the optimal
steady-state operation can be achieved around the resonant
frequency (Ritter and Douglas, 1970).

5. Analysis of the signs of the asymmetrical second order FRFs

5.1. Modulation of the inlet concentration

By using the stability parameters Aps and Bps defined in
Eq. (25), Eq. (17) for the second order asymmetrical FRF G2;CC

ðω; �ωÞ can be written in the following way:

G2;CCðω; �ωÞ ¼ �1
2
αð1þStÞ

Bps

ð1þαÞ2Λ
4A2

psω
2þðBps�ω2Þ2

ð29Þ

It is necessary to point out that all auxiliary parameters (α; γ; St; δ)
are always positive, except βwhich is positive for endothermic and
negative for exothermic reactions.

Considering that for a stable system Apso0; Bps40, it can
easily be concluded that sign of the second order asymmetrical
FRF G2;CCðω; �ωÞ depends only on the sign of the term Λ and that:

signðG2;CCðω; �ωÞÞ ¼ �signðΛÞ ð30Þ

Based on this, the sign analysis of FRF G2;CCðω; �ωÞ is reduced to
sign analysis of the term Λ, which depends on the reaction order n,
values of the auxiliary parameters β; γ; St and the forcing
frequency ω. The reaction order n and the values of the auxiliary
parameters are characteristics of the particular system. Consider-
ing this and the fact that forcing frequency can be chosen, it is
interesting to analyse how the sign of the second order asymme-
trical FRF depends on the forcing frequency ω.

The sign of G2;CCðω; �ωÞ will change at certain frequency, if the
following equation has real solutions:

G2;CCðω; �ωÞ ¼ 03Λ¼ 03

nðn�1Þω2þ½ð1þStÞ2�2β2γ�n2�½ð1þStþβγÞ2�n¼ 0 ð31Þ

If Eq. (31) has no real solution for ω, the function G2;CCðω; �ωÞ is
either positive or negative in the whole frequency range.

The solutions of Eq. (31) are

ω1;2 ¼ 7ωC ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þStþβγÞ2�nðð1þStÞ2�2β2γÞ

n�1

s
ð32Þ

These solutions will be real if the numerator and denumenator of
the rational function under the square root have the same sign.
The sign of the denominator depends on the reaction order and
changes for n¼1. The sign of the numerator also depends on the
reaction order and changes for

n¼ nC ¼
ð1þStþβγÞ2

ð1þStÞ2�2β2γ
ð33Þ

The results of the sign analysis in respect to the reaction order and
the frequency range are summarized in the Table 2.

5.2. Modulation of the flow-rate

The final expression for the asymmetrical second order FRF
G2;FF ðω; �ωÞ, defined by Eq. (19) can again be transformed into
more appropriate form for sign analysis, by using the definitions of
the stability parameters Aps and Bps:

G2;FF ðω; �ωÞ ¼ � 1
2Bps

Ω
4A2

psω
2þðBps�ω2Þ2

ð34Þ

In principle, the sign of G2;FF ðω; �ωÞ, depends on the reaction order
n, forcing frequency ω, and the auxiliary parameters α; β; γ; δ and St.
From Eq. (34) it can be easily concluded that the sign of
G2;FF ðω; �ωÞ depends only on the sign of the auxiliary function
in the numerator, Ω in the following way

signðG2;FF ðω; �ωÞÞ ¼ �signðΩÞ ð35Þ
Thus, the sign analysis of G2;FF ðω; �ωÞ can be further reduced to
sign analysis of Ω, which was defined in Eq. (20) as Ω¼Ω1ω

2þΩ2

(Ω1 and Ω2 are complex functions of the reaction order, defined in
Eqs. (21) and (22)).

The frequency for which the function G2;FF ðω; �ωÞ changes its
sign is obtained from the following condition:

G2;FF ðω; �ωÞ ¼ 03Ω¼ 03Ω1ω
2þΩ2 ¼ 0 ð36Þ

If the solutions of Eq. (36)

ω1;2 ¼ 7ωF ¼ 7

ffiffiffiffiffiffiffiffiffiffiffi
�Ω2

Ω1

r
ð37Þ

are real, which will happen if Ω1 and Ω2 have opposite signs,
G2;FF ðω; �ωÞ will change its sign for ωF, while if they are complex-
conjugates, G2;FF ðω; �ωÞ will be positive or negative in the whole
frequency range. A summary of the sign analysis for the
G2;FF ðω; �ωÞ function is given in Table 3.

Table 2
A summary of the sign analysis for the G2;CC ðω; �ωÞ function for forced periodic
operation of a non-isothermal CSTR (attractive are negative signs).

Condition Frequency range Sign of G2;CC ðω; �ωÞ

n¼ 0 8ω 0
nonC and no0 8ω negative
nonC and 0ono1 8ω positive
nC o1 and n¼ 1 8ω negative
nonC and n41 ωoωC positive

ω4ωC negative
n4nC and no0 ωoωC positive

ω4ωC negative
n4nC and 0ono1 ωoωC negative

ω4ωC positive
1
nC
o1 and n¼ 1 8ω positive

n4nC and n41 8ω negative
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6. Numerical example

6.1. Definition of the numerical example

In order to clarify the results given in Sections 4 and 5,
a numerical example is chosen for simulation of the asymmetrical
second order FRFs and analysis of their sign, and for comparison of
the results obtained by the NFR method and with numerical
simulation. The values of the model parameters used for simula-
tions are given in Table 4. The parameters listed in Table 4
correspond to an exothermal first-order reaction and were taken
from a classical textbook by Marlin, (2000) (Example 3.10).

For the numerical example and the steady state input variables
defined in Table 4, it was determined that there exists only one
steady state solution, defined by cA;s ¼ 0:3466 kmol=m3 and
Ts¼388 K. It should be pointed out that this steady-state has not
been optimized.

6.2. Stability analysis for the numerical example

Using the parameter values defined in Table 4, the following
values of the stability parameters are calculated using Eq. (24):
Aps ¼ �0:7o0, Bps ¼ 3240, A2

ps�Bps ¼ 31o0. Based on these
values we can conclude that the system is oscillatory stable,
therefore application of the NFR method makes sense for this
forced periodically operated non-isothermal CSTR.

The damping coefficient for this system, which was calculated
based on Eqs. (23) and (26), is quite low, ξ¼0.126, so extensive
resonance is expected. The resonant frequency is ωr¼5.53 (Eq.
(28)).

It is also important to choose the amplitudes of the input
modulation for which the system remains stable. In Figs. 3 and 4
we show the stability parameter Aps and Bps vs. cAi,s and Fs,
respectively, with steady-state values of all other inputs fixed at

their values given in Table 4. As it can be seen from these figures,
the parameter Aps is negative and the parameter Bps positive for all
values of cAi,s and Fs, i.e. the amplitudes of the inlet concentration
and flow-rate are not limited from the stability aspect. However,
considering physical restrictions, the maximal forcing amplitudes
are 100% (the inputs cannot be negative).

6.3. Simulation of the asymmetrical second order FRFs

In Figs. 5 and 6, graphical representations of the asymmetrical
second order FRFs G2;CCðω; �ωÞ and G2;FF ðω; �ωÞ vs. frequency
are given.

From the graphical representation of the asymmetrical second
order FRFs (Figs. 5 and 6) for this investigated numerical example
and from Eqs. (17)–(22) or (29) and (34), it can be concluded that

� The asymmetrical second order FRFs tend to zero for high
frequencies which is in accordance with conclusions of our
previous investigations that high frequency modulations have
no influence on the reactor performance.

� For low forcing frequencies the asymmetrical second order
FRFs tend to asymptotic values

lim
ω-0

G2;CCðω; �ωÞ ¼ �1
2
αð1þαÞ2ð1þStÞ

B3
ps

Λ2 ð38Þ

lim
ω-0

G2;FF ðω; �ωÞ ¼ � 1

2B3
ps

Ω2 ð39Þ

� G2;CCðω; �ωÞ is negative in the whole frequency range, so an
increase of conversion is expected with periodic modulation of
the inlet concentration in the whole frequency range. This is an
expected results, as for our numerical example the parameter
nC¼0.4348, so n¼14nC. From the results of sign analysis given
in Table 2, for this case negative values of the G2;CCðω; �ωÞ
function are expected in the whole frequency range.

� G2;FF ðω; �ωÞ is negative for dimensionless forcing frequencies
ωo6.71 and positive for ω46.71 Consequently, increase of
conversion can be expected only with flow modulations
with frequencies lower than 6.71. These results are also in
accordance with the results obtained by sign analysis in
Section 5.2. From the values of parameters Ω1 ¼ �510o0 and
Ω2 ¼ 2:3 � 10440 and Table 3, it can also be concluded
that the G2;FF ðω; �ωÞ function changes its sign for
ω¼ωF ¼ 6:71; and that for ω¼ ωF ¼ 6:71; the FRF
G2;FF ðω; �ωÞ is negative, and for ω4ωF ¼ 6:71 it is positive.

� The highest improvement in both cases of periodical modula-
tion is expected when the forcing frequency has a value close to
the resonant frequency ðωr ¼ 5:53Þ for which the asymmetrical
second order FRFs have extensive minima.

� From the graphical representation of the FRFs, we can expect
that larger improvements can be achieved with modulation of
the inlet concentration than with modulation of the flow-rate
for the same values of frequency and forcing amplitude.

6.4. Comparison with results obtained by numerical integration

The DC components of the outlet concentration, calculated
approximately by application of the NFR method, are compared
with the results obtained by numerical integration of the model
Eqs. (7) and (8), with the model parameters defined in Table 4 and
for modulation of the inlet concentration of the reactant and flow-
rate. The equations were solved by using a standard Matlab
function ode15s.

Table 3
A summary of the sign analysis for the G2;FF ðω; �ωÞ function for forced periodic
operation of a non-isothermal CSTR (attractive are negative signs).

Sign of Ω1 Sign of Ω2 Frequency range Sign of G2,FF(ω,�ω)

positive negative ωoωF positive
ω4ωF negative

negative positive ωoωF negative
ω4ωF positive

positive positive 8ω negative
negative negative 8ω positive
zero negative 8ω positive

positive 8ω negative
positive zero 8ω negative
negative 8ω positive

Table 4
Parameters for the numerical example.

Parameter Value

Reaction order, n 1
Volume of the reactor, V [m3] 1
Preexponential factor of the reaction rate constant,ko [1= min] 1�1010

Activation energy, EA [kJ=kmol] 69256
Heat of reaction, ΔHR [kJ=kmol] �543920
Heat capacity, ρcp [kJ=K=m3] 4.184�103

Steady-state flow-rate, Fs [m3= min] 1

Steady-state inlet concentration, cAi;s [kmol=m3] 2
Steady-state inlet temperature, Ti;s [K] 323
Steady-state temperature of the coolant, TJ;s [K] 365
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As illustration, in Fig. 7 we show some simulation results
(the outlet concentration and outlet temperature vs. time). This
figure corresponds to modulation of the inlet concentration, with
amplitude A¼50% and forcing frequency equal to the resonant
frequency (ωd¼5.53 rad/min). The starting steady-state values and
the mean values during periodic operation, are also shown.

For the case presented in Fig. 7 the outlet concentration of the
reactant oscillates between 0.03 and 0.66 kmol/m3, while the
temperature oscillates between 369 and 425 K. The mean value
of the outlet concentration cmA ¼ 0:3083 kmol=m3 is lower
than the steady state value (0.3466 kmol/m3), which makes the

periodic operation attractive. It is interesting to notice that,
although the temperature response is also highly nonlinear, the
mean temperature Tm¼388.8 K is close to the steady state value
Ts¼388 K.

An overview comparing the results of the NFR method with the
ones obtained by numerical simulations is given in Table 5. The
difference between the mean outlet concentration of the reactant,
when the selected input is periodically modulated, and the outlet
concentration of the reactant for steady-state operation

Δnum ¼ cmA �cA;s ð40Þ

Fig. 3. Stability parameters Aps (a) and Bps (b) vs. steady-state inlet concentration.

Fig. 4. Stability parameters Aps (a) and Bps (b) vs. steady-state flow-rate.
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Fig. 5. The second order asymmetrical FRF G2,CC(ω,�ω) as a function of frequency (numerical example).

Fig. 6. The second order asymmetrical FRF G2,FF(ω,�ω) as a function of frequency (numerical example).

Fig. 7. An example of the simulated outlet concentration (up) and temperature (down) for modulation of the inlet concentration with amplitude 50% and frequency
ωd¼5.53 rad/min.
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which indicates the increase of conversion through periodic
operation, and its estimate calculated based on the NFR method

cA;DC � cA;s 2
A
2

� �2

G2;XXðω; �ωÞ
 !

ð41Þ

(where XX¼CC,FF, for modulation of the inlet concentration or
flow-rate, respectively), are given in Table 5. The results for a
number of forcing frequencies, including the resonant one, and for
different values of forcing amplitudes, in the range from 5% to 50%,
are given for both modulated inputs.

From the results given in Table 5, we can conclude that

� The conclusions which have been made by the sign analysis
could be confirmed by numerical simulations, i.e. increased
conversion was achieved in the whole frequency range for
inlet concentration modulations, and for forcing frequencies
ωoω0;F ¼ 6:71 for flow-rate modulations. The sign of the
predicted concentration change by the NFR method is correct
for both inputs and for all forcing frequencies and input
amplitudes used for simulation.

� When the input amplitude is kept low (5%), very good agree-
ments between the approximate (NFR method) and exact
(numerical) values of the concentration change are obtained,
for both inputs and in the whole frequency range, including the
resonant frequency.

� For higher input amplitude (15%), the agreement between the
concentration changes predicted by numerical simulation and
the NFR method is still very good, for low and high frequencies,
and somewhat worse at and near the resonant frequency. In
this frequency range the NFR method overestimates the con-
version improvements.

� Finally, for the highest input amplitude (50%) the results
obtained by numerical integration and by NFR method are in
a relatively good agreement for low and high forcing frequen-
cies, but differ even for an order of magnitude, for frequencies

at and near the resonant one. Again, the NFR method by far
overestimates the conversion improvements.

6.5. Explanation of the largest disagreement observed around
the resonant frequency

The explanation of the disagreement between the results of
numerical simulations and the NFR method, for forcing frequen-
cies near the resonant frequency, is due to the fact that the system
nonlinearity becomes more pronounced around the resonant
frequency (Ritter and Douglas, 1970), and the second order
approximation, used in our NFR method (Eq. (4)), is not good
enough. In the case of more pronounced nonlinearity, a consider-
able amount of higher harmonics is expected in the system output.
In order to investigate the influence of higher order nonlinearities,
harmonic analysis of the outlet concentration obtained by numer-
ical simulation was performed, by Fourier analysis.

For illustration, the amplitude spectrum of the outlet concen-
tration, for the case of inlet concentration modulation, with a
forcing frequency equal the resonant frequency (ωr ¼ 5:53
ððradÞ=ðminÞÞ) and high forcing amplitude (A¼50%) (the data
presented in Fig. 7) is graphically presented in Fig. 8. For compar-
ison, the amplitude spectrum obtained with the same forcing
frequency, but with low amplitude (A¼5%) is also presented in
Fig. 9.

From Fig. 8, it is evident that for the resonant frequency
and high forcing amplitude, the output exhibits a considerable
amount of higher harmonics with large gains, which means that
the non-linearities of the order higher than two should not be
neglected. In the DC component which is of our interest, these
higher nonlinearities are defined by the FRFs G4ðω;ω; �ω; �ωÞ;
G6ðω;ω;ω; �ω; �ω; �ωÞ;… (Eq. (3)), which have been neglected in
our approximation of the DC component (Eq. (4)). As a conse-
quence, the disagreement between the NFR method and numerical
integration is significant. Therefore, in order to evaluate the

Table 5
Concentration change estimated by numerical simulation and by the NFR method.

Dimensionless forcing frequency, ω Inlet concentration modulation

Input amplitude 50% Input amplitude 15% Input amplitude 5%

Δnum
kmol
m3

� �
NFRcA; DC kmol

m3

� �
Δnum

kmol
m3

� �
NFR cA;DC kmol

m3

� �
Δnum

kmol
m3

� �
NFR cA;DC kmol

m3

� �
1 �0.0296 �0.0216 �0.0020 �0.0019 �0.00022 �0.00022
2 �0.0313 �0.0263 �0.0026 �0.0024 �0.00027 �0.00027
3 �0.0315 �0.0383 �0.0030 �0.0034 �0.00038 �0.00038
5 �0.0368 �0.2159 �0.0102 �0.0194 �0.0020 �0.0022
5.53 �0.0383 �0.3237 �0.0123 �0.0291 �0.0027 �0.0032
6 �0.0373 �0.2203 �0.0115 �0.0198 �0.0021 �0.0022
7 �0.0289 �0.0504 �0.0043 �0.0045 �0.0005 �0.0005
10 �0.0041 �0.0041 �0.0003 �0.0004 �0.00004 �0.00002

Dimensionless forcing frequency, ω Flow�rate modulation

Input amplitude 50% Input amplitude 15% Input amplitude 5%

1 �0.0178 �0.0164 �0.0015 �0.0015 �0.0002 �0.0002
2 �0.0193 �0.0186 �0.0017 �0.0017 �0.0002 �0.0002
3 �0.0148 �0.0238 �0.0020 �0.0021 �0.0002 �0.0002
5 �0.0154 �0.0747 �0.0050 �0.0067 �0.0007 �0.0007
5.53 �0.0099 �0.0808 �0.0043 �0.0073 �0.0007 �0.0008
6 �0.0041 �0.0344 �0.0021 �0.0031 �0.0003 �0.0003
7 0.0043 0.0035 0.0003 0.0003 0.00004 0.00004
10 0.0039 0.0039 0.00036 0.00035 0.00004 0.00004
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average output concentration for high amplitudes near the reso-
nant frequency more accurately, for the system which exhibit
resonance, it would be necessary to derive the higher order FRFs
and take them into account.

For the resonant frequency and low forcing amplitude (5%), the
harmonics of order higher than 3 are negligible small (Fig. 9), so in
this case Eq. (4), which takes into account only the contribution of
second order FRF in the DC component gives a good estimate of
the concentration change.

Harmonic analysis of the numerical results obtained for flow-
rate modulation give very similar results and the same conclusions
can be drawn.

7. Conclusions

The nonlinear frequency response method is used for evalua-
tion of the possible improvement of a non-isothermal CSTR with
simple homogeneous n-th order reaction when inlet concentration
or flow-rate is periodically modulated. The results presented in
this material can be summarized as follows

� The NFR method is applicable only for stable systems, so, before
applying it for analysis of periodic operations of a non-isothermal
CSTR, it is necessary to analyse the stability of the system.

� Derivation of the asymmetrical second order FRFs for the non-
isothermal CSTR is much more complicated than for an iso-
thermal CSTR. The derived FRFs are also much more complex,
as is, consequently, the analysis of their sign.

� Contrary to the isothermal CSTR, for which the signs of the
G2;CCðω; �ωÞ and G2;FF ðω; �ωÞ functions depend only on the
reaction order (Nikolić-Paunić and Petkovska, 2013), the signs
of these functions for the non-isothermal CSTR depend on the
reaction order n, model parameters α, β, γ, δ and St (which
depend on the chosen steady-state point) and, in some cases,
on the forcing frequency ω.

� When the non-isothermal CSTR is oscillatory stable and the
system shows resonant behaviour, the asymmetrical second
order FRFs have extrema around the resonant frequency.

� The numerical example shows that the NFR method predicts
correctly the sign of the concentration change owing to

periodic modulation of the inlet concentration or flow-rate, for
all frequencies, including the resonant one, and in a wide range
of amplitudes.

� Regarding the magnitude of the concentration change owing to
periodic modulation of the inlet concentration or flow-rate, the
NFR method gives very good predictions in all cases except for
high input amplitudes and forcing frequencies at and around
the resonant one, where the NFR method highly overestimates
the conversion improvement through periodic operation. Wide
parameter regions could be identified which provided advan-
tages of forced periodic operation compared to steady state
operation. For the particular example case considered, mod-
ulating the inlet concentration is more attractive than mod-
ulating the feed flow-rate. In the numerical example used in
this paper, the steady-state used for comparison was not
optimized, so the results presented here cannot be used for
drawing conclusions about the optimal periodic vs. optimal
steady-state operation.

� The discrepancies between the NFR method and numerical
simulation that occurred around the resonant frequencies
when high input amplitudes were used, were explained by
the extensive nonlinearity, which was proved by harmonic
analysis of the numerically simulated output, and cannot
properly be approximated by using only the second order
asymmetrical FRFs. Including the fourth, and possibly higher
order asymmetrical FRFs in the approximation of the DC
component is foreseen as a solution for this problem. This
issue will be analysed in one of our future publications.

In the second part of this paper (Nikolić et al., 2014) we will apply
the nonlinear FR method for analysis of forced periodic operations of a
non-isothermal CSTR with modulation of the temperature of the feed
stream or the temperature of the cooling/heating fluid.

Finally, we need to point out that, although in this and our
previous applications we used the NFR method to predict whether
reactant conversion can be increased through periodic operation,
in principle the method can also be used to predict possible
improvements regarding product selectivity. When conversion is
of interest, the FRFs that correlate the outlet reactant concentra-
tion and the input modulation are derived and analysed. If,
however, the product selectivity is of interest, the FRFs relating
the outlet product concentrations to the modulated input need to

Fig. 8. Amplitude spectrum of the outlet concentration when the inlet concentra-
tion is periodically modulated in co-sinusoidal way, with forcing amplitude A¼50%
and forcing frequency ωd¼5.53 rad/min.

Fig. 9. Amplitude spectrum of the outlet concentration when the inlet concentra-
tion is periodically modulated in co-sinusoidal way, with forcing amplitude A¼5%
and forcing frequency ωd¼5.53 rad/min.
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be derived and analysed. Also, although most of our applications
have been developed for a CSTR, which is a lumped parameter
system, the NFR method is, in principle, also applicable to
distributed parameter systems. This was shown in (Marković et
al., 2008), where we applied the NFR method to analysis of
periodic operations of plug-flow and dispersed plug-flow reactors.
We need to point out that in the case of distributed parameter
systems the final FRFs are obtained by solving sets of linear ODEs
which are obtained after transforming the equations into the
frequency domain. This can be much more difficult that solving
sets of algebraic equations, which are obtained for lumped para-
meter systems.

Nomenclature

A input amplitude
Aw surface area for heat exchange
Aps stability parameter
B output amplitude
Bps stability parameter
cA concentration of reactant A
cp specific heat capacity
C dimensionless concentration of reactant A
EA activation energy
F volumetric flow-rate
Fn n-th order frequency response function which correlates

the outlet temperature with the modulated input
Gn n-th order frequency response function, general and

which correlates the outlet concentration with the
modulated input

k0 preexponential factor in Arrenius equation
n reaction order
p roots of characteristic equation
r reaction rate
R universal gas constant
s Laplace complex variable
St Stanton number
t time
T temperature
U overall heat transfer coefficient
V volume of the reactor
x input
X dimensionless input
y output

Greek symbols

α auxiliary parameter
β auxiliary parameter
γ auxiliary parameter
δ auxiliary parameter
θ dimensionless temperature
ξ damping coefficient
ρ density
τ dimensionless time
ω frequency, general and dimensionless
ωd dimensional frequency
ωr resonant frequency
ωn natural frequency
Δ difference between the time-average and the steady-

state concentration
ΔT difference between the time-average and the steady-

state temperature
Φ dimensionless flow-rate

Λ auxiliary function
Ω auxiliary function
ΔHR heat of reaction

Subscripts

C, CC inlet concentration modulation
DC non-periodic term
F, FF flow-rate modulation
i inlet
J heating/cooling fluid (jacket)
num numerical
s steady-state
I first harmonic
II second harmonic

Superscripts

m mean

Abbreviations

CSTR continuous stirred tank reactor
FR frequency response
FRF frequency response functions
NFR nonlinear frequency response
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Appendix A

A. Taylor series expansions of the nonlinear terms in the
dimensionless balance equations (Eqs. (12) and (13))

e�ðEA=ðRTsðθþ1ÞÞÞ ¼ e�ðEA=ðRTsÞÞ þθ
EA
RTs

e�ðEA=ðRTsÞÞ þθ2 � EA
RTs

� �
e�ðEA=ðRTsÞÞ

þθ2

2
� EA
RTs

� �2

e�ðEA=ðRTsÞÞ þ… ðA1Þ

e�ðEA=ðRTsðθþ1ÞÞÞ ¼ e� γð1þθγþ γ2

2
�γ

� �
θ2þ…Þ ðA2Þ

ð1þCÞn ¼ 1þnCþ1
2
nðn�1ÞC2þ… ðA3Þ

ð1þCÞne�ðEA=ðRTsðθþ1ÞÞÞ ¼ e� γð1þγθþnCþnγCθþ γ2

2
�γ

� �
θ2

þ1
2
nðn�1ÞC2þ…Þ ðA4Þ

Appendix B. Derivation of the considered frequency response
functions

The main points of the derivation procedure for the first and
asymmetrical second order FRFs when the inlet concentration or
flow-rate are modulated, are given here. In the main body of the
manuscript, only the final expressions for the second order
asymmetrical FRFs which correlate the outlet concentration with
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the modulated inputs are given. The derivation procedure is based
on the dimensionless material and energy balances, in which the
nonlinearities have been replaced by their Taylor series expansions
(Eqs. (14) and (15)).

Derivation of the FRFs G1,C(ω), F1,C(ω), G2,CC(ω,�ω) and F2,CC(ω,�ω)

Step 1: Defining the inlet concentration modulation:

cAiðtÞ ¼ cAi;sð1þA cos ðωdtÞÞ; ðB1Þ

CiðτÞ ¼ AcosðωτÞ ¼ A
2
ðejωτþe� jωτÞ ðB2Þ

Step 2: Representing the outlet concentration and temperature
in the form of Volterra series:

CðτÞ ¼ A
2
G1;CðωÞejωτþ

A
2
G1;Cð�ωÞe� jωτþ…þ2

A
2

� �2

G2;CCðω; �ωÞe0þ…

ðB3Þ

θðτÞ ¼ A
2
F1;CðωÞejωτþ

A
2
F1;Cð�ωÞe� jωτþ…þ2

A
2

� �2

F2;CC ðω; �ωÞe0þ…

ðB4Þ

Step 3: Substituting the expressions for the inlet concen-
tration, outlet concentration and outlet temperature, defined
with Eqs. (B2)–(B4), into the appropriate model Eqs. (14)
and (15).
Step 4: Collecting the terms with ðA=2Þejωτ , corresponding to the
first order functions and with ðA=2Þ2e0, corresponding to the
asymmetrical second order functions, and equating them to
zero. The resulting equations for the first order FRFs are

jωG1;CðωÞ ¼ ð1þαÞ�ð1þnαÞG1;CðωÞ�αγF1;CðωÞ ðB5Þ

jωF1;CðωÞ ¼ 0�ð1þStþβγÞF1;CðωÞ�nβG1;CðωÞ ðB6Þ
and for the asymmetrical second order FRFs:

0¼ 0�2ð1þnαÞG2;CCðω; �ωÞ�2αγF2;CCðω; �ωÞ

�α 2
γ2

2
�γ

� �
F1;CðωÞF1;Cð�ωÞþnγG1;CðωÞF1;Cð�ωÞ

�
þnγF1;CðωÞG1;Cð�ωÞ

þnðn�1ÞG1;CðωÞG1;Cð�ωÞ
�

ðB7Þ

0¼ 0�2ð1þStþβγÞF2;CCðω; �ωÞ�2nβG2;CCðω; �ωÞ

�β 2
γ2

2
�γ

� �
F1;CðωÞF1;Cð�ωÞþnγG1;CðωÞF1;Cð�ωÞ

�

þnγG1;Cð�ωÞF1;CðωÞþnðn�1ÞG1;CðωÞG1;Cð�ωÞ
�

ðB8Þ

Step 5: After solving equations for the first order FRFs Eqs. (B5)
and (B6) and for asymmetrical second order FRFs Eqs. (B7) and
(B8). The final expressions for these FRFs are:

� The first order FRF which correlates the outlet concentration
with the modulated inlet concentration

G1;CðωÞ ¼
ð1þαÞð1þStþβγþ jωÞ

�ω2þ jωð2þβγþStþnαÞþð1þnαþβγþnαStþStÞ ðB9Þ

� The first order FRF which correlates the outlet temperature
with the modulated inlet concentration

F1;CðωÞ ¼
�nβð1þαÞ

�ω2þ jωð2þβγþStþnαÞþð1þnαþβγþnαStþStÞ ðB10Þ

� The second order FRF which correlates the outlet concentra-
tion with the modulated inlet concentration

G2;CCðω; �ωÞ ¼ �1
2

αð1þStÞ
1þnαþβγþnαStþSt

� ð1þαÞ2ðnðn�1Þω2þ½ð1þStÞ2�2β2γ�n2�½ð1þStþβγÞ2�nÞ
½ð1þnαþβγþnαStþStÞ�ω2�2þω2ð2þβγþStþnαÞ2

ðB11Þ

� The second order FRF which correlate the outlet temperature
with the modulated inlet concentration

F2;CCðω; �ωÞ ¼ �1
2

β

1þnαþβγþnαStþSt

� ð1þαÞ2ðnðn�1Þω2þ½ð1þStÞ2�2β2γ�n2�½ð1þStþβγÞ2�nÞ
½ð1þnαþβγþnαStþStÞ�ω2�2þω2ð2þβγþStþnαÞ2

ðB12Þ

B.2. Derivation of the FRFs and G1,F(ω), F1,F(ω), G2,FF(ω,�ω) and F2,
FF(ω,�ω)

Step 1: Defining the flow-rate modulation in cosine way

FðtÞ ¼ Fsð1þA cos ðωdtÞÞ ðB13Þ

ΦiðτÞ ¼ A cos ðωτÞ ¼ A
2
ejωτþA

2
e� jωτ ðB14Þ

Step 2: Representing the outlet concentration and outlet
temperature in the form of Volterra series

CðτÞ ¼ A
2
G1;F ðωÞejωτþ

A
2
G1;F ð�ωÞe� jωτþ…þ2

A
2

� �2

G2;FF ðω; �ωÞe0þ…

ðB15Þ

θðτÞ ¼ A
2
F1;F ðωÞejωτþ

A
2
F1;F ð�ωÞe� jωτþ…þ2

A
2

� �2

F2;FF ðω; �ωÞe0þ…

ðB16Þ

Step 3: Substituting the expressions for the flow-rate, outlet
concentration and temperature, defined with Eqs. (B14)–(B16),
into the appropriate model Eqs. (14) and (15).
Step 4: Collecting the terms with ðA=2Þejωτ , corresponding to the
first order functions and with ðA=2Þ2e0, corresponding to the
asymmetrical second order functions, and equating them to
zero. The resulting equations, for the first order FRFs are

jωG1;F ðωÞ ¼ α�ð1þnαÞG1;F ðωÞ�αγF1;F ðωÞ ðB17Þ

jωF1;F ðωÞ ¼ ðβþSt�δÞ�nβG1;F ðωÞ�ð1þStþβγÞF1;F ðωÞ ðB18Þ
and for the asymmetrical second order FRFs:

0¼ 0�2ð1þnαÞG2;FF�2αγF2;FF ðω; �ωÞ�G1;F ðωÞ�G1;F ð�ωÞ

�α 2
γ2

2
�γ

� �
F1;F ðωÞF1;F ð�ωÞþnðn�1ÞG1;F ðωÞG1;F ð�ωÞ

�

þnγG1;F ðωÞF1;F ð�ωÞþnγG1;F ð�ωÞF1;F ðωÞ
�

ðB19Þ

0¼ 0�2nβG2;FF ðω; �ωÞ�2ð1þStþβγÞF2;FF ðω; �ωÞ

�F1;F ðωÞ�F1;F ð�ωÞ�β 2
γ2

2
�γ

� �
F1;F ðωÞF1;F ð�ωÞ

�
þnðn�1ÞG1;F ðωÞG1;F ð�ωÞþnγG1;F ðωÞF1;F ð�ωÞ

þnγG1;F ð�ωÞF1;F ðωÞ
�

ðB20Þ
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Step 5: After solving the equations for the first order FRFs,
Eqs. (B17) and (B18), and for the second order asymmetrical FRFs,
Eqs. (B19) and (B20)), the following final expressions are obtained:

� The first order FRF which correlates the outlet concentration
with the modulated flow-rate

G1;F ðωÞ ¼
αð1þSt�γStþγδÞþ jαω

�ω2þ jωð2þnαþStþγβÞþð1þnαþβγþnαStþStÞ
ðB21Þ

� The first order FRF which correlates the outlet temperature
with the modulated flow-rate

F1;F ðωÞ ¼
ðβþSt�δþnαðSt�δÞÞþ jωðβþSt�δÞ

�ω2þ jωð2þnαþStþγβÞþð1þnαþβγþnαStþStÞ
ðB22Þ

� The asymmetrical second order FRF which correlates the
outlet concentration with the modulated flow-rate

G2;FF ðω; �ωÞ ¼ 1
2

1
nαβγ�ð1þnαÞð1þStþβγÞ

� 1
ðð�ω2þ1þnαþβγþnαStþStÞ2þω2ð2þnαþStþγβÞ2Þ

�ð2αð1þStþβγÞð1þSt�γStþγδÞð�ω2þ1
þβγþStþnαð1þStÞÞ
þ2αω2ð1þStþβγÞð2þStþβγþnαÞ
�2αγðβþSt�δþnαðSt�δÞÞð�ω2þ1þβγþStþnαð1þStÞÞ
�2αγω2ðβþSt�δÞð2þStþγβþnαÞ
þαγðγ�2Þð1þStÞðβþSt�δþnαðSt�δÞÞ2
þαω2γðγ�2Þð1þStÞðβþSt�δÞþnðn�1Þα3ð1þStÞ
ð1þSt�γStþγδÞ2þnðn�1Þα3ω2ð1þStÞ
þ2nα2γð1þStÞð1þSt�γStþγδÞðβþSt�δþnαðSt�δÞÞ
þ2nα2γω2ð1þStÞðβþSt�δÞÞ ðB23Þ

� The asymmetrical second order FRF which correlates the
outlet temperature with the modulated flow-rate

F2;FF ðω; �ωÞ ¼ 1
2

1
nαβγ� 1þnαð Þ 1þStþβγð Þ

� 1

ðð�ω2þ1þnαþβγþnαStþStÞ2þω2 2þnαþStþγβð Þ2Þ
�ð2ð1þnαÞððβþSt�δþnαðSt�δÞÞð�ω2þ1þβγþStþnαþnαStÞ
þ2ð1þnαÞðω2ðβþSt�δÞð2þnαþStþβγÞÞ
�2nαβð1þSt�γStþγδÞð�ω2þ1þβγþStþnαþnαStÞ
�2nαβω2ð2þStþγβþnαÞ
þβγðγ�2ÞððβþSt�δþnαðSt�δÞÞ2þω2ðβþSt�δÞ2Þ
þnðn�1Þα2βðð1þSt�γStþγδÞ2þω2Þ
þ2nαβγðð1þSt�γStþγδÞðβþSt�δþnαðSt�δÞÞþω2ðβþSt�δÞÞÞ

ðB24Þ
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