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Wall-to-bed heat transfer in particulate fluidized beds of spherical particles was studied. Experiments were
performed using spherical glass particles of 0.80–2.98 mm in diameter with water in a 25.4 mm I.D. copper
tube equipped with a steam jacket.
Heat transfer data related to the fluid–particle interphase drag coefficient were obtained and compared with
previous results for wall-to-bed mass transfer in fluidized beds [Bošković et al., Powder Technol., 79 (1994) 217].
All the data formomentum, heat andmass transfer in particulatefluidized beds of spherical particles, showed the
existence of an analogy among these three phenomena.

© 2014 Elsevier B.V. All rights reserved.
Heat transfer in liquid–solid systems is a very important parameter
to be considered in the design of equipment for different industrial ap-
plications. The design of equipment with fluidized beds is mainly based
on the knowledge of the hydrodynamics and heat transfer betweenwall
and fluidized beds. Numerous studies on wall-to-liquid heat transfer in
particulate fluidized beds have been realized [1–6]. In these studies, the
influence of different parameters, such as liquid velocity, particles size
and voidage on heat transfer in fluidized beds was investigated.

The subject of the present research was the effect of particles on the
wall-to-bed heat transfer. An attempt was made to establish analogy
between heat transfer coefficients and fluid–particle interphase drag
coefficient.

In a previous study, Bošković et al. [7] found that an analogy between
mass and momentum transfer in liquid–solid fluidized beds exists. In
addition, the dimensionless mass transfer factor in liquid-fluidized
beds of active and inert particles and the dimensionless drag coefficient
[8] were shown to be the same.
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Wall-to-bed heat transfer in particulate fluidized beds of spherical
particles was studied. Experiments were performed using spherical
glass particles of 0.80, 1.11, 1.94 and 2.98mm in diameter thatwere flu-
idized with water in a 25.4 mm I.D. copper tube equipped with a steam
jacket. The schematic diagram of the experimental systems is shown in
Fig. 1.

The fluid bed (a, Fig. 1) was the 27.4/25.4 mm OD/ID, 1360 mm long
copper tube, equippedwith a 700mm long steam jacket (b). The heating
section (b)was located far enough (320mm) from the inlet nozzle (d) of
the fluid bed. Water was introduced at the bottom of the bed.

The pressure gradient was measured using piezometers (i) and
temperature was measured using Ni–Cr thermocouples. The wall
temperature was determined at two points, at the inlet and at the exit
of the heating zone; T01 and T02. The junction points were filled
with tin at about 0.2 mm from the inside of the tube wall, as shown
schematically in Fig. 1 (detail A). The temperature of the fluidized
bed was measured with thermocouples located along the tube axis
(T∞1, T∞2). It was assumed that at the inlet and at the outlet of the
heating zone, the particles and the fluid had the same temperature [2].
The heat transfer coefficient in the fluidized bed was calculated as [3]:

α ¼ Gf cp f T∞2−T∞1ð Þ
Dcπ LHΔT ln
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Fig. 1. Schematic diagram of the experimental fluidization system: (a)— fluid bed copper column, 25.4 mm i.d.; (b)— heating section, 700 mm in length; (c)— steam generator, 30 kW;
(d)— inlet nozzle, 20mm i.d.; (e)— screen; (f)— distributor; (g)— fluidized bed; (h)— overflow; (i)— pressure taps; (j)— flowmeter; (k)— valve; (m)—Ni–Cr thermocouple; (n)— copper
tube 8/6 mm; (o) — jacket wall; (p)— column wall; (q)— thermal insulation; V— inlet flow rate.

Table 1
Particle characteristics and range of experimental conditions (at 293.15 K).

dp (mm) 0.80 1.11 1.94 2.98
ρp (kg/m3) 2923 2641 2507 2509
Ut (m/s)a 0.148 0.185 0.299 0.370
Umf, m/sa 0.008 0.013 0.028 0.043
U/Umf 5.224–17.401 3.797–9.417 1.679–6.311 1.883–4.080
εmf 0.398 0.416 0.447 0.462
ε/εmf 1.638–2.393 1.569–2.175 1.126–2.039 1.319–1.883

a Calculated from Kunii and Levenspiel [10].
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The mean logarithmic temperature difference in Eq. (4) is defined
as:
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A total of 156 data points for heat transfer coefficientswere collected
in the experimental runs. The characteristics of the particles and the
employed range of experimental conditions are given in Table 1.
Water was used as the fluidizing medium, and its characteristics were
determined as temperature dependencies [9]: μ = f(Tm), ρf = f(Tm)
and cpf = f(Tm).

The variation in the wall-to-bed heat transfer factor and the dimen-
sionless drag coefficient in dependence on the bed voidage for the
2.98 mm diameter particles are illustrated in Fig. 2 from which it is
evident that the heat transfer factor decreased with increasing bed
voidage. It could be registered that this plot is very similar to the varia-
tion of the dimensionless fluid–particle interphase drag coefficient with
bed voidage.
The present experimental data for heat transfer factor, analogous to
the work of Bošković et al. [7], can be represented as (Eq. (1)):
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jHm f
− jH 1

: ð7Þ



Fig. 2. The experimental data for the heat transfer factor and dimensionless drag coeffi-
cient vs. voidage, for a fluidized bed (dp = 2.98 mm).

Fig. 4. A comparison of the data for heat transfer against mass transfer [7] and the friction
factor in a fluidized bed.
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If Eq. (3) is substituted into Eq. (7) then:
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The data for the heat transfer factor at the terminal velocity, jH1
, and

for the heat transfer factor at minimum fluidization velocity, jHm f
, could

be acquired by extrapolating experimental data that are given as the
dependency of the heat transfer factor, jH, on the dimensionless fluid–
particle interphase drag coefficient, β⁎. The parameters jH1

and jHm f
are

determined for both: β/βmf = 0 (terminal velocity) and for β/βmf = 1
(minimum fluidization), as can be seen in Fig. 3.

All the data for the dimensionless jH⁎ factor acquired in the present
experimental runs, the experimental data for the dimensionless jD⁎

factor from the previous work of Bošković et al. [7], and the data for
the dimensionless fluid–particle interphase drag coefficient β* are
plotted against the dimensionless bed voidage ε* = (ε − εmf)/(1 − εmf)
in Fig. 4.

As can be seen from Fig. 4, the values of jH⁎, jD⁎ and β* are practically
the same in the range of the investigated conditions, clearly indicating
an analogy among these phenomena. From all the presented results, it
Fig. 3.Determination of jH at theminimumfluidization and terminal using the relationship
jH vs. β⁎.
could be concluded that all data for fluidized bed could be described
by the following correlation:

j�H ¼ j�D ¼ β�
: ð9Þ

The mean absolute deviation between the experimental data of the
dimensionless heat transfer factor and Eq. (3) is 18.33%.

The analogy established in this work enables the application of the
proposed model for the determination of the fluid–particle interphase
drag coefficient (Eq. (3)) and of heat and mass transfer factors in
liquid–solid fluidized beds (Eq. (9)).

Nomenclature
C1 variational constant in Eq. (3)
C2 variational constant in Eq. (3)
cpf specific heat of fluid, J/(kg K)
dp particle diameter, m
Dc column diameter, m
Gf fluid mass flowrate in the column, kg/s
jH Nu/Re Pr1/3, heat transfer factor
jH1

heat transfer factor at the terminal velocity
jHm f

heat transfer factor at minimum fluidization

jH⁎ jH− jH 1

� �
= jHm f

− jH1

� �
; dimensionless jH factor

jD Sh/ReSc1/3, mass transfer factor
jD1

mass transfer factor at the terminal velocity
jDm f

mass transfer factor at minimum fluidization

jD⁎ jD− jD1

� �
= jDm f

− jD1

� �
; dimensionless jD factor

LH length of heating zone, m
T temperature (К)
T0 temperature of the column wall (К)
T∞ fluid temperature (К)
Tm (T∞,1 + T∞,2)/2, means temperature (К)
Ut terminal velocity, m/s
Umf superficial fluid velocity at minimum fluidization, m/s
V water flowrate at the column inlet (m3/s) (Fig. 1)

Greek letters
α heat transfer coefficient, W/(m2 K)
β fluid–particle interphase drag coefficient, kg/m4

βmf fluid–particle interphase drag coefficient at minimum fluidi-
zation, kg/m4

β⁎ β/βmf, dimensionless fluid–particle interphase drag coefficient
ε averaged voidage in the fluidized bed
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εmf voidage at minimum fluidization
ε⁎ (ε − εmf) / (1− εmf), dimensionless bed voidage
λ variational constant in Eq. (3)
μ fluid viscosity, Pa·s
ρf fluid density, kg/m3

ρp particle density, kg/m3

δsr. the mean absolute deviation ¼ 100 � 1n∑
n

1
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