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In the present paper, the Nonlinear Frequency Response (NFR) analysis is applied for theoretical study of kinetics of adsorption
governed by pore-surface diffusion.The concept of higher-order frequency response functions (FRFs) is used. Based on a nonlinear
mathematical model for adsorption of pure gas and spherical adsorbent particles, the theoretical first- and second-order FRFs,
which relate the adsorbate concentration in the particle to the surrounding pressure (F1(𝜔) and F2(𝜔,𝜔)), have been derived. The
obtained FRFs have been simulated for different steady-state pressures and different ratios (between zero and one) of surface to
pore diffusion coefficients. The results show that, unlike F1(𝜔), F2(𝜔,𝜔) exhibits features which unambiguously distinguish the
pore-surface diffusion model from pure pore diffusion and micropore diffusion. Based on the characteristic features of F1(𝜔) and
F2(𝜔,𝜔), a new methodology for direct estimation of the separate values of the pore and surface diffusion coefficients has been
established.

1. Introduction

Although the processes in chemical engineering are mostly
nonlinear in nature, it has been a common practice in
chemical engineering to use linear tools for analysis of
those processes, providing thus significant simplifications on
the cost of limited applicability. However, modern trends
of design, which include intensification and optimization
methods, imply the necessity of implementation of rigorous
procedures and nonlinear mathematical tools.

Adsorption processes are one of the examples of nonlin-
ear processes with complex dynamic behavior. If we consider
adsorption of a gas on a porous adsorbent bead, then the
overall rate of the process may be controlled by the following
individual processes: mass transfer through the fluid film
around the particle, macropore diffusion, surface diffusion,
micropore diffusion, and adsorption/desorption [1]. Since
the intrinsic rate of the adsorption/desorption on the active
site is usually fast, the overall rate is usually controlled
by diffusional resistances. Depending on the properties of

the adsorbate/adsorbent system and operating conditions,
relative contributions of individual resistances may vary.
Reliable identification of relative dominancy of the individual
resistances is still a challenging issue. In the literature, a num-
ber of methods for measuring diffusion coefficients in solid
adsorbents have been reported: uptake rate [2, 3], piezometric
method [4], chromatographic method [5], infrared spec-
troscopy [6], vacuum temperature-programmed desorption
(TPD) [7], electrochemical impedance spectroscopy (EIS)
[8], combination of TPD and EIS [9], frequency response
(FR) method [10–15], and temperature FR method [16].

Since the FR method uses the response of the system
to sine-wave excitations, it introduces additional degree
of freedom (frequency of the sine-wave) compared to the
step and pulse response techniques, which makes the FR
method advantageous regarding distinguishing individual
time constants of multikinetic processes [17].

Adsorption of gases in commercial porous adsorbents
is often controlled by pore-surface diffusion, where pore
and surface diffusion take place in parallel and their rates
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are characterized by pore diffusion coefficient (Dp) and
surface diffusion coefficient (Ds). Classical FRmethod, which
uses the small amplitudes of input oscillations in order to
obtain the first-order (linear) frequency response function
(FRF), fails to identify the pore-surface diffusion mecha-
nism. Namely, the first-order FRFs for micropore diffusion,
macropore diffusion, and pore-surface diffusion have the
same shapes [18] making the distinguishing between them
impossible. For the pore-surface diffusion mechanism, the
linear FR allows estimation of only an effective diffusion
coefficient, Deff [18], but not the separate values of Dp and Ds.

The pioneering work of Petkovska and Do [19] has made
a step forward in adsorption kinetic studies by extending
the linear FR to the nonlinear range. They considered the
nonlinear response of the system (for larger input amplitude
excitations) and used the Volterra-Weiner concept of higher-
order FRFs in order to obtain the first-, second-, and third-
order FRFs for nonlinear adsorption models. Their early
results for single mechanism models (Langmuir, film resis-
tance control, and micropore diffusion) [20], which showed
that the second-order FRFs for different mechanisms had
different shapes, indicated the potential of the nonlinear
FR analysis for identification of the kinetic mechanism,
based on the pattern of the second-order FRF. In the later
work, the derivation of FRFs up to the second-order for
more complex models (micropore-macropore diffusion with
and without film resistance) confirmed that the second-
order FRFs have enough specific features for distinguishing
between different mechanisms [21]. The methodology was
also applied for some cases of nonisothermal adsorption
(nonisothermal micropore diffusion [22] and nonisothermal
macropore diffusion [23]). A procedure for estimating the
equilibrium and kinetic parameters was also developed [18,
22, 23].

In practical applications of the nonlinear frequency
response (NFR) approach, the identification of the kinetic
mechanism is done by comparison of the experimental
second-order FRF with the theoretical ones corresponding
to different kinetic models. The procedure for obtaining the
experimental FRFs up to the second-order has already been
established [24, 25] and validated [26].Thebroader exploiting
of the NFR concept is partially limited by the fact that
derivation of the theoretical second-order FRF for complex
kineticmodelmay become rather tedious and that sometimes
no analytical solution for the second-order FRF can be
obtained. However, the FRFs need to be derived only once
and then can be recalled from the library whenever needed.
The existing library of theoretical FRFs comprises mostly the
FRFs for plane geometry of the adsorbent particles, while the
FRFs for the spherical geometry, which is, in many cases,
much better approximation of the real adsorbent shape, are
strongly needed.

The aim of this work was to check the ability of the
NFR concept for identification and characterization of the
pore-surface diffusion control kinetics, for spherical particles.
Firstly, the FRFs up to the second-order for the nonlinear
pore-surface diffusion model for spherical particle geometry
have been derived. Numerical simulations of the FRFs for
different parameters were employed in order to recognize the

characteristic features for model identification. Finally, the
methodology for estimation of the separate values of the pore
and surface diffusion coefficients has been established.

2. Nonlinear Frequency Response and
Concept of Higher-Order FRFs

Since the Volterra-Weiner concept of higher-order FRFs
[27] will be used for derivation of the FRFs, it will be
briefly presented. This concept represents the generalization
of the well-known approach of convolutional integral and
definition of the FRF, used in the linear frequency domain
analysis. Namely, the dynamic response of a stable linear
single-input single-output system to an arbitrary input signal
x(t) can be defined as a convolution integral:

𝑦𝑙𝑖𝑛 (𝑡) = ∫∞
−∞

𝑔 (𝜏) 𝑥 (𝑡 − 𝜏) 𝑑𝜏 (1)

where 𝑔(𝜏) represents the impulse-response function of the
system, or its kernel. By taking into account the definition of
FRF [27]:

𝐺 (𝜔) = ∫∞
−∞

𝑔 (𝜏) 𝑒−𝑗𝜔𝜏𝑑𝜏 (2)

it is possible to relate the time domain response of the system,
ylin(t), with its FRF G(𝜔) (which is the complex function of
a single variable-frequency). For the input in the form of
periodic function x(t)=Ae𝑗𝜔𝑡, the response defined by Eq. (1)
becomes

𝑦𝑙𝑖𝑛 (𝑡) = 𝐴𝑒𝑗𝜔𝑡 ∫∞
−∞

𝑔 (𝜏) 𝑒−𝑗𝜔𝜏𝑑𝜏 (3)

which, considering definition (2), becomes

𝑦𝑙𝑖𝑛 (𝑡) = 𝐴𝑒𝑗𝜔𝑡𝐺 (𝜔) (4)

When a nonlinear system with polynomial nonlinearities is
the subject of the same arbitrary input x(t), the response
may be represented as an indefinite sum of multidimensional
convolutional integrals (Volterra series):

𝑦𝑛𝑜𝑛𝑙𝑖𝑛 (𝑡) = ∞∑
𝑛=1

𝑦𝑛 (𝑡) (5)

𝑦𝑛 (𝑡)
= ∫∞
−∞

⋅ ⋅ ⋅ ∫∞
−∞

𝑔𝑛 (𝜏1, ⋅ ⋅ ⋅ , 𝜏𝑛)
𝑛∏
𝑖=1

𝑥 (𝑡 − 𝜏𝑖) 𝑑𝜏1 ⋅ ⋅ ⋅ 𝑑𝜏𝑛 (6)

where 𝑔𝑛(𝜏1,. . .,𝜏n) is the generalized impulse response func-
tion of ordern, orn-th orderVolterra kernel.Thefirst element
of the series, y1(t), has the same form as ylin(t) (Eq. (1)) and
represents the response of the linearized system, while each
of the higher terms (n>1) represents the contribution of the
nonlinearities of n-th order.

In analogy to the Fourier transform of the linear system’s
kernel, which defines the FRF of a linear system (Eq. (2)),
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the multidimensional Fourier transform of the n-th order
Volterra kernel defines the generalized n-th order FRF:

𝐺𝑛 (𝜔1, ⋅ ⋅ ⋅ , 𝜔𝑛)
= ∫∞
−∞

⋅ ⋅ ⋅ ∫∞
−∞

𝑔𝑛 (𝜏1, ⋅ ⋅ ⋅ , 𝜏𝑛) 𝑒−𝑗(𝜔1𝜏1+⋅⋅⋅𝜔𝑛𝜏𝑛)𝑑𝜏1 ⋅ ⋅ ⋅ 𝑑𝜏𝑛
(7)

which is a complex function of n frequencies. In order to
establish the relation between the response of the nonlinear
system defined by Eqs. (5) and (6) and the FRFs of the
different orders, defined by Eq. (7), we will consider the input
periodic function x(t) in the form

𝑥 (𝑡) = 𝐴1𝑒𝑗𝜔1𝑡 + 𝐴2𝑒𝑗𝜔2𝑡 (8)

By expanding the Volterra series (Eqs. (5) and (6)) the
response will be

𝑦 (𝑡) = 𝑦1 (𝑡) + 𝑦2 (𝑡) + . . . (9)

where

𝑦1 (𝑡) = 𝐺1 (𝜔1)𝐴1𝑒𝑗𝜔1𝑡 + 𝐺1 (𝜔2) 𝐴2𝑒𝑗𝜔2𝑡 (10)

𝑦2 (𝑡) = 𝐺2 (𝜔1, 𝜔1)𝐴21𝑒2𝑗𝜔1𝑡
+ 2𝐺2 (𝜔1, 𝜔2) 𝐴1𝐴2𝑒𝑗(𝜔1+𝜔2)𝑡
+ 𝐺2 (𝜔2, 𝜔2) 𝐴22𝑒2𝑗𝜔2𝑡

(11)

The first element y1(t) contains two terms, which are
responses of the linearized system to the individual harmon-
ics contained in the input (Eq. (8)). However, the second
element of the response, y2(t), contains the nonlinearities of
the second order, which are second order interactions of the
individual harmonics ((𝑒𝑗𝜔1𝑡)2 and (𝑒𝑗𝜔2𝑡)2, the first and the
third terms in Eq. (11)) and second order intermodulations
(combined effect) of two input harmonics (𝑒𝑗𝜔1𝑡 × 𝑒𝑗𝜔2𝑡,
the second term in Eq. (11)). Multiple interactions and
intermodulations of input frequencies are characteristic only
for the nonlinear systems.

3. Derivation of the FRFs for Pore-Surface
Diffusion Model

3.1. Model Equations. For the derivation of the first- and
second-order FRFs, the general procedure for derivation of
theoretical higher-order FRFs [28] based on Volterra-Weiner
approach is followed. According to that procedure, the first
step is setting up the nonlinear mathematical model of the
adsorption process. For isothermal pore-surface diffusion
control, the mass balance over the adsorbing porous particle
(of the radius R) is given by the following equation:

(1 − 𝜀) 𝜕𝑞𝑖𝜕𝑡 + 𝜀𝑝
𝜕𝑐𝑖𝜕𝑡 = (1 − 𝜀)

1
𝑟𝜎

𝜕
𝜕𝑟 (𝐷𝑠𝑟𝜎

𝜕𝑞𝑖𝜕𝑟 )

+ 𝜀𝑝 1𝑟𝜎
𝜕
𝜕𝑟 (𝐷𝑝𝑟𝜎

𝜕𝑐𝑖𝜕𝑟 )
(12)

where qi and ci are the sorbate concentrations in the solid
phase and in the pore, respectively, both defined as relative
deviations from the corresponding steady-state values:

𝑞𝑖 (𝑟) = 𝑄𝑖 (𝑟) − 𝑄𝑖𝑠𝑄𝑖𝑠 (13)

𝑐𝑖 (𝑟) = 𝐶𝑖 (𝑟) − 𝐶𝑖𝑠𝐶𝑖𝑠 (14)

𝜀 is porosity of the particle and 𝜀p is the modified porosity:

𝜀𝑝 = 𝜀𝐶𝑖𝑠𝑄𝑖𝑠 (15)

Dp is pore diffusion coefficient, Ds is surface diffusion
coefficient, and 𝜎 is the shape factor (𝜎=2 for spherical
geometry). The subscript s denotes the values in the steady-
state. The boundary conditions are based on the assumptions
of concentration profiles symmetry

𝑟 = 0: 𝜕𝑐𝑖𝜕𝑟 =
𝜕𝑞𝑖𝜕𝑟 = 0 (16)

and negligible film resistance

𝑟 = 𝑅: 𝑐𝑖 = 𝑝 (17)

where p is the dimensionless pressure, or sorbate concentra-
tion in the gas phase, defined as

𝑝 = 𝑃 − 𝑃𝑠𝑃𝑠 (18)

Further, local equilibrium within the pore is assumed, so qi
and ci are related by the adsorption isotherm relation:

𝑞𝑖 = 𝑓 (𝑐𝑖) (19)

which is generally nonlinear. The adsorption isotherm rela-
tion (19), as a source of nonlinearity, is expressed in the form
of Taylor series around the steady state:

𝑞𝑖 (𝑐𝑖) = 𝑎𝑐𝑖 + 𝑏𝑐𝑖2 + . . . (20)

where a and b are proportional to the first and second
derivatives of the adsorption isotherm, respectively (their
definitions are given in Table 1). Eq. (20) is substituted into
Eq. (12), and the resulting PDE has only one dependent
variable, ci.

The overall adsorbate concentration within the particle at
position r, q(r), is defined as

𝑞 (𝑟) = 𝜀𝑝
𝜀𝑝 + (1 − 𝜀) 𝑐𝑖 (𝑟) +

(1 − 𝜀)
𝜀𝑝 + (1 − 𝜀)𝑞𝑖 (𝑟) (21)

and the mean concentration in the adsorbent particle <q> is
given as

⟨𝑞⟩ = 𝜎 + 1
𝑅𝜎+1 ∫

𝑅

0
𝑟𝜎𝑞 (𝑟) 𝑑𝑟 (22)
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Table 1: Definitions of isotherm coefficients.

𝑎 = 𝜕𝑞𝑖𝜕𝑐𝑖 𝑏 = 1
2
𝜕2𝑞𝑖𝜕𝑐𝑖2 𝑎𝑒𝑓𝑓 = 𝜀𝑝 + (1 − 𝜀) 𝑎

𝜀𝑝 + (1 − 𝜀) 𝑏𝑒𝑓𝑓 = (1 − 𝜀) 𝑏
𝜀𝑝 + (1 − 𝜀)

3.2. Definitions of FRFs. In order to define the FRFs cor-
responding to the pore-surface diffusion model defined in
the previous section, we need to define the input and output
variables. Since we consider the model on the particle scale,
the input is the dimensionless pressure p and the output is the
dimensionless mean concentration in the adsorbent particle<q>, defined in Eq (22). Consequently, we define the main set
of FRFs F1(𝜔), F2(𝜔,𝜔), . . ., which relate <q> to p. However,
since <q> depends on q(r) (Eq. (22)) and consequently on
ci(r) (Eq. (21)), we need to define two auxiliary sets of FRFs:𝐹1∗(𝜔), 𝐹2∗(𝜔,𝜔), . . ., which relate q(r) to p and 𝐻1∗(𝜔),𝐻2∗(𝜔,𝜔), . . ., which relate ci(r) to p.

3.3. First-Order FRF. In order to derive the first-order FRF,
F1(𝜔), the input variable (p) is expressed as a single harmonic
periodic function:

𝑝 = 𝐴𝑒𝑗𝜔𝑡 (23)

and the output variable ci(r,t) is expressed as a response
according to Eq. (4):

𝑐𝑖 (𝑟, 𝑡) = 𝐴𝑒𝑗𝜔𝑡𝐻∗1 (𝜔) (24)

The input and output relations (Eqs. (23) and (24)) are sub-
stituted into the model equations (12) to (22). By equalizing
the coefficients of 𝐴𝑒𝑗𝜔𝑡 on each side of the model equations
the following ODE in which𝐻∗1 (𝜔) is the dependent variable
is obtained:

𝑑2𝐻∗1 (𝜔, 𝑟)𝑑𝑟2 + 2𝑟
𝑑𝐻∗1 (𝜔, 𝑟)𝑑𝑟 − 𝑗𝜔

𝐷𝑒𝑓𝑓𝐻
∗
1 (𝜔, 𝑟) = 0 (25)

where

𝐷𝑒𝑓𝑓 = (1 − 𝜀) 𝑎𝐷𝑠 + 𝜀𝑝𝐷𝑝
(1 − 𝜀) 𝑎 + 𝜀𝑝 (26)

with boundary conditions

𝑟 = 0 𝑑𝐻∗1 (𝜔, 𝑟)𝑑𝑟 = 0 (27)

𝑟 = 𝑅 𝐻∗1 (𝜔, 𝑟) = 1 (28)

Equation (25) is a second-order homogeneous ODE and has
the following analytical solution:

𝐻∗1 (𝜔, 𝑟) = 𝑅
𝑟
sinh (𝑟√𝑗𝜔/𝐷𝑒𝑓𝑓)
sinh (𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓) (29)

Using Eq. (21) the function 𝐹1∗(𝜔,r) is obtained:
𝐹∗1 (𝜔, 𝑟) = 𝑎𝑒𝑓𝑓𝐻∗1 (𝜔, 𝑟) (30)

where aeff is the effective first-order concentration coefficient
of the adsorption isotherm, defined in Table 1. Finally, the
first-order FRF with respect to the mean concentration in the
particle <q> is obtained using Eq. (22):

𝐹1 (𝜔) = 𝑎𝑒𝑓𝑓 3𝑅2
𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓 ⋅ 𝑐𝑡𝑔ℎ (𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓) − 1

𝑗𝜔/𝐷𝑒𝑓𝑓 (31)

3.4. Second-Order FRF. In order to derive the second-order
FRF, the input variable (p) is expressed as a sum of two
harmonics of different frequencies (𝜔1,𝜔2):

𝑝 = 𝐴1𝑒𝑗𝜔1𝑡 + 𝐴2𝑒𝑗𝜔2𝑡 (32)

and the output variable ci(r,t) is expressed according to Eqs.
(9), (10), and (11):

𝑐𝑖 (𝑟, 𝑡) = 𝐻∗1 (𝜔1) 𝐴1𝑒𝑗𝜔1𝑡 + 𝐻∗1 (𝜔2) 𝐴2𝑒𝑗𝜔2𝑡
+ 𝐻∗2 (𝜔1, 𝜔1) 𝐴21𝑒2𝑗𝜔1𝑡
+ 2𝐻∗2 (𝜔1, 𝜔2)𝐴1𝐴2𝑒𝑗(𝜔1+𝜔2)𝑡
+ 𝐻∗2 (𝜔2, 𝜔2) 𝐴22𝑒2𝑗𝜔2𝑡

(33)

The input and output relations (Eqs. (32) and (33)) are sub-
stituted into the model equations (12) to (22). By equalizing
the coefficients of 𝐴1𝐴2𝑒𝑗(𝜔1+𝜔2)𝑡 on each side of the model
equations, the following expression for 𝐻∗2 (𝜔1, 𝜔2), for the
case 𝜔1=𝜔2, is obtained:
𝑑2𝐻∗2 (𝜔, 𝜔, 𝑟)𝑑𝑟2 + 2𝑟

𝑑𝐻∗2 (𝜔, 𝜔, 𝑟)𝑑𝑟 − 2𝑗𝜔
𝐷𝑒𝑓𝑓𝐻

∗
2 (𝜔, 𝜔, 𝑟)

= 2𝑓𝑏𝑗𝜔𝐻∗21 (𝜔, 𝑟) − 4𝑟𝑓𝑏𝐷𝑠𝐻∗1 (𝜔, 𝑟)
𝑑𝐻∗1 (𝜔, 𝑟)𝑑𝑟

− 2𝑓𝑏𝐷𝑠 (1 + 𝐻∗1 (𝜔, 𝑟)) 𝑑
2𝐻∗1 (𝜔, 𝑟)𝑑𝑟2

(34)

where parameter f is defined:

𝑓 = (1 − 𝜀)
(1 − 𝜀) 𝑎𝐷𝑠 + 𝜀𝑝𝐷𝑝 (35)

with boundary conditions

𝑟 = 0 𝑑𝐻∗2 (𝜔, 𝜔, 𝑟)𝑑𝑟 = 0 (36)

𝑟 = 𝑅 𝐻∗2 (𝜔, 𝜔, 𝑟) = 0 (37)

By incorporating Eq. (29) for 𝐻∗1 (𝜔, 𝑟) into Eq. (34), as
well as the expressions for first and second derivatives
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Table 2: Adsorption isotherm coefficients at 298K [29].

𝑃s (mbar) 20 40 75
a 0.4369 0.3684 0.3105
b -0.1736 -0.1642 -0.1511
aeff 0.4373 0.3691 0.3147
beff -0.1735 -0.1640 -0.1508

of 𝐻∗1 (𝜔, 𝑟) (given in the Appendix), the final equation
defining the 𝐻∗2 (𝜔, 𝜔, 𝑟) function is obtained. This non-
homogeneous ODE cannot be solved analytically, so it
was solved numerically, by using the bvp4c solver in
MATLAB. By using Eq. (21), the function 𝐹∗2 (𝜔, 𝜔, 𝑟) is
obtained:

𝐹∗2 (𝜔, 𝜔, 𝑟) = 𝑎𝑒𝑓𝑓𝐻∗2 (𝜔, 𝜔, 𝑟) + 𝑏𝑒𝑓𝑓𝐻∗21 (𝜔, 𝑟) (38)

where beff is the effective second-order coefficient of the
adsorption isotherm (Table 1). Finally, the second-order FRF
with respect to the mean concentration in the particle <q> is
obtained by using Eq. (22):

𝐹2 (𝜔, 𝜔) = 3
𝑅3 ∫
𝑅

0
𝑟2𝐹∗2 (𝜔, 𝜔, 𝑟) 𝑑𝑟 (39)

4. Simulations of the FRFs and
Characteristic Properties

The first- and second-order FRFs derived in the previous
section were simulated using MATLAB software for the
system CO2/zeolite 5A, by using an adsorption isotherm
from literature [29]. In order to identify the characteristic
properties of the FRFs, simulations for different steady-state
pressures (20 mbar, 40 mbar, and 75 mbar) and different
ratios ofDs/Dp were performed.Thepore diffusion coefficient
was kept constant Dp=10

−7 m2/s, and the surface diffusion
coefficient was varied Ds=(10

−9 - 10−7) m2/s. The case Ds=0
(Ds/Dp=0), which corresponds to pure pore diffusion mech-
anism, was also considered for comparison. The values of
the adsorption isotherm coefficients a, b, aeff and beff for all
three considered pressures at 298 K are given in Table 2.
Simulations were done for a particle radius R=8.5e-04 m and
particle porosity 𝜀=0.35.The simulated FRFs are presented in
the form of Bode plots (amplitude vs. frequency and phase vs.
frequency).

In Figure 1 the first-order FRF (Figures 1(a) and 1(b))
and the second-order FRF (Figures 1(c) and 1(d)) for three
different steady-state pressures and constant ratio Ds/Dp=0.1
are presented. From Figures 1(a) and 1(b) it can be seen
that the amplitude of F1(𝜔) has horizontal low frequency
asymptote and a high frequency asymptote with a slope -0.5
and the phase of F1(𝜔) has the low frequency asymptote zero,
single inflection point, and the high frequency asymptote of
-𝜋/4. As expected, the steady-state pressure influences only
the amplitude curves. Although the pore-surface diffusion
model has two rate constants (one corresponds to pore
diffusion and the other to surface diffusion), they cannot

be distinguished in the frequency window of the phase of
F1(𝜔) and a single inflection point of the phase might lead to
misinterpretation of the pore-surface diffusion as a single rate
process.

In contrast to the frequency spectrum of the first-
order FRF, where only one characteristic frequency (which
corresponds to the inflection point of phase) is recognized,
in the frequency spectrum of the second-order FRF (Fig-
ures 1(c) and 1(d)), two characteristic frequencies, which
correspond to the extreme values (one minimum and one
maximum) of the phase, can be observed. The amplitude
of F2(𝜔,𝜔) has a horizontal low frequency asymptote, two
inflection points, and a high frequency asymptote with a
slope -0.5 (Figure 1(c)). The phase of F2(𝜔,𝜔) has a low
frequency asymptote of 𝜋, a distinct minimum followed by
a distinct maximum, and a high frequency asymptote of 3𝜋/4
(Figure 1(d)). As in the case of F1 (𝜔), the steady-state pressure
influences only the amplitude but has no influence on the
shape of the amplitude curve nor on the phase characteristics.
The observed pattern of F2(𝜔,𝜔) with two extreme values
of the phase indicates that two time constants (pore and
surface diffusion) can be separated in the frequency window
of F2(𝜔,𝜔).

In Figure 2 the first-order FRF (Figures 2(a) and 2(b))
and the second-order FRF (Figures 2(c) and 2(d)) for a
constant steady-state pressure of 20 mbar and different ratios
of 𝐷s/𝐷p are given. The case 𝐷s=0 (𝐷s/𝐷p=0, dashed line)
corresponds to the pure pore diffusion. It can be seen from
Figures 2(a) and 2(b) that F1(𝜔) has the same shape for pure
pore diffusion (𝐷s/𝐷p=0) and pore-surface diffusion, which
shows that no distinction between those two mechanisms
can be made based on F1(𝜔). However, Figures 2(c) and
2(d) show that F2(𝜔,𝜔) has qualitatively different shapes
for pure pore and pore-surface diffusion. The amplitude of
F2(𝜔,𝜔) for pure pore diffusion has one inflection while
for pore-surface diffusion it has two inflections. The phase
of F2(𝜔,𝜔) for 𝐷s=0 has a single minimum, while for all
other ratios 𝐷s/𝐷p a minimum followed by a maximum is
observed. Both are shifted towards higher frequencies with
increase of the contribution of surface diffusion. This result
clearly shows that the shapes of the amplitude and phase of
F2(𝜔,𝜔) can be used for reliable discrimination betweenpore-
surface and pure pore mechanisms. Moreover, comparison
of the characteristic features of the amplitude and phase
of F2(𝜔,𝜔) for pore-surface diffusion, pure pore diffusion
(this work), and micropore diffusion model [18] in Table 3
proves that these characteristic features are distinct for each of
these three mechanisms and can, therefore, be used for their
discrimination.
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Figure 1: (a) Amplitude F1(𝜔) vs. frequency; (b) phase F1(𝜔) vs. frequency; (c) amplitude F2(𝜔,𝜔) vs. frequency; (d) phase F2(𝜔,𝜔) vs.
frequency (Dp=10

−7 m2/s; Ds= 10−8 m2/s).

5. Estimation of 𝐷𝑠 and 𝐷𝑝
For the adsorption process governed by pore-surface diffu-
sion, two time constants can be defined:

(i) Pore diffusion time constant (𝜏p)
𝜏𝑝 = 𝑅2

𝐷𝑝 [
(1 − 𝜀) 𝑎 + 𝜀𝑝

𝜀𝑝 ] (40)
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Figure 2: (a) Amplitude of F1(𝜔) vs. frequency; (b) phase of F1(𝜔) vs. frequency; (c) amplitude of F2(𝜔,𝜔) vs. frequency; (d) phase of F2(𝜔,𝜔)
vs. frequency (steady-state pressure 20 mbar).
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Table 3: Characteristic features of F2(𝜔,𝜔) for different mechanisms (spherical geometry).

Amplitude F2(𝜔,𝜔) Phase F2(𝜔,𝜔)
Pore-surface diffusion Two inflections Minimum followed by maximum
Pure pore diffusion One inflection Single minimum
Micropore diffusion [18] No inflections Sigmoidal (single inflection)
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Figure 3: Negative imaginary part of F1(𝜔) vs. 𝜔𝜏eff [18].

(ii) Surface diffusion time constant (𝜏s)
𝜏𝑠 = 𝑅2

𝐷𝑠 [
(1 − 𝜀) 𝑎 + 𝜀𝑝
(1 − 𝜀) 𝑎 ] (41)

By taking into account the effective diffusion coefficient 𝐷eff ,
defined by Eq. (26), it is also common to define the effective
time constant (𝜏eff ):

𝜏𝑒𝑓𝑓 = 𝑅2
𝐷𝑒𝑓𝑓 (42)

It is already known [18] that 𝜏eff can be estimated from the
first-order FRF, actually from the locus of the maximum of
negative imaginary part of F1(𝜔) (Figure 3), by using the
equation𝜔𝜏𝑒𝑓𝑓 = 11.56 (which is valid for spherical particles).𝐷eff can then be calculated from Eq. (42).

In the previous section it was shown that the most
remarkable feature of F2(𝜔,𝜔) is maximum right after the
minimum of the phase of F2(𝜔,𝜔). In Figure 4 the phase of
F2(𝜔,𝜔) (for different ratios 𝐷s/𝐷p) is plotted vs. frequency
(𝜔) (Figure 4(a)) and vs. dimensionless frequency, defined as
frequency multiplied by surface diffusion time constant (𝜔𝜏s)
(Figure 4(b)). It turns out that, when plotted against 𝜔𝜏s, all
curves overlap and the maximum corresponds to 𝜔𝜏s=25. As
a consequence, 𝜏s can be estimated from the frequency at
which the phase of F2(𝜔,𝜔) has a maximum, and 𝐷s can be
further calculated from Eq. (41).

The procedure for estimation of 𝐷s and 𝐷p from the
experimental F1(𝜔) and F2(𝜔,𝜔) can be summarized in three
steps as follows:

(1) Identify the frequency at which the negative imaginary
part of F1(𝜔) has a maximum, 𝜔crit,1. Calculate 𝜏eff from the
equation 𝜏𝑒𝑓𝑓 = 11.56/𝜔𝑐𝑟𝑖𝑡,1. Calculate 𝐷eff using Eq. (42) as
𝐷𝑒𝑓𝑓 = 𝑅2/𝜏𝑒𝑓𝑓.

(2) Identify the frequency at which the phase of F2(𝜔,𝜔)
has a maximum, 𝜔crit,2. Calculate 𝜏s from equation 𝜏𝑠 =
25/𝜔𝑐𝑟𝑖𝑡,2. Calculate 𝐷s using Eq. (41) as 𝐷𝑠 = (𝑅2/𝜏𝑠)[((1 −𝜀)𝑎 + 𝜀𝑝)/(1 − 𝜀)𝑎].

(3) Calculate 𝐷p using Eq. (26) as 𝐷𝑝 = (𝐷𝑒𝑓𝑓[(1 − 𝜀)𝑎 +𝜀𝑝] − 𝐷𝑠(1 − 𝜀)𝑎)/𝜀𝑝.

6. Conclusions

In this work the Nonlinear Frequency Response analysis
is applied for theoretical treatment of adsorption governed
by parallel pore and surface diffusion, which is commonly
encountered in commercial adsorbents. The derivation of the
theoretical first- and second-order FRFs (F1(𝜔) and F2(𝜔,𝜔))
for the pore-surface diffusion model and spherical particle
geometry is given step by step. The derived FRFs relate the
adsorbate concentration in the particle to the pressure of
the surrounding gas (in the dimensionless form). For the
first-order FRF the analytical solution was obtained, while
the second-order FRF was obtained numerically. The derived
FRFs were simulated by using the literature equilibrium data
for CO2/zeolite 5A. The varied parameters were the steady-
state pressure and the ratio of surface to pore diffusion
coefficient (𝐷s/𝐷p). Unlike the first-order FRF, the second-
order FRF exhibits bimodal characteristics which reflect the
dynamics of the parallel pore and surface diffusion processes.
For all tested combinations of parameters, the amplitude
and phase characteristics of F2(𝜔,𝜔) show the same patterns:
two inflections of the amplitude and two extrema (a mini-
mum followed by a maximum) of the phase. These features
enable clear distinction of the pore-surface diffusion from
pure pore diffusion and micropore diffusion mechanisms.
Besides reliable mechanism identification, the second-order
FRF, considered together with the first-order FRF, gives the
possibility to estimate the separate values of the pore diffusion
coefficient (𝐷p) and surface diffusion coefficient (𝐷s).

This work has both theoretical and practical importance.
It gives a detailed procedure for the derivation of the first-
and second-order FRFs which can be used for derivation of
FRFs for other mechanisms. Further, the existing library of
theoretical FRFs is extended. The potential of the nonlinear
frequency response analysis in identification of the adsorp-
tion kinetic mechanism is proven. The practical importance
lies in the fact that we offer a procedure for estimation of the
separate values of the pore and surface diffusion coefficients
which is very often needed in engineering praxis.
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Figure 4: (a) Phase of F2(𝜔,𝜔) vs. frequency; (b) phase F2(𝜔,𝜔) vs. 𝜔𝜏s.

Appendix

The first and the second derivatives of the function 𝐻∗1 (𝜔, 𝑟)
defined by Eq. (29) are the following:

(i) The first derivative

𝑑𝐻∗1 (𝜔, 𝑟)𝑑𝑟 = 𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓 cosh (𝑟√𝑗𝜔/𝐷𝑒𝑓𝑓)
𝑟 sinh (𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓)

− 𝑅 sinh (𝑟√𝑗𝜔/𝐷𝑒𝑓𝑓)
𝑟2 sinh (𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓)

(A.1)

(ii) The second derivative

𝑑2𝐻∗1 (𝜔, 𝑟)𝑑𝑟2 = 𝑗𝜔𝑅 sinh (𝑟√𝑗𝜔/𝐷𝑒𝑓𝑓)
𝐷𝑒𝑓𝑓𝑟 sinh (𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓)

− 2𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓 cosh (𝑟√𝑗𝜔/𝐷𝑒𝑓𝑓)𝑟2 sinh (𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓)

+ 2𝑅 sinh (𝑟√𝑗𝜔/𝐷𝑒𝑓𝑓)
𝑟3 sinh (𝑅√𝑗𝜔/𝐷𝑒𝑓𝑓)

(A.2)

Nomenclature

𝐴: Amplitude of the input𝑎: First-order coefficient of the
adsorption isotherm (Table 1)

b: Second-order coefficient of the
adsorption isotherm (Table 1)𝑐𝑖: Dimensionless sorbate
concentration in the pore𝐶𝑖: Sorbate concentration in the pore
(mol/m3)𝐷𝑝: Pore diffusion coefficient (m2/s)

𝐷𝑠: Surface diffusion coefficient (m2/s)𝐷𝑒𝑓𝑓: Effective diffusion coefficient
(m2/s)𝑓: Parameter (Eq. (35))𝐹n(𝜔1, 𝜔2, . . . 𝜔n): n-th order FRF relating <q> to 𝑝𝐹∗n(𝜔1, 𝜔2, . . . 𝜔n): n-th order FRF relating 𝑞(𝑟) to 𝑝𝐺n(𝜔1, 𝜔2, . . . 𝜔n): n-th order FRF relating 𝑦 to 𝑥𝐻∗n(𝜔1, 𝜔2, . . . 𝜔n): n-th order FRF relating 𝑐𝑖(𝑟) to 𝑝𝑝: Dimensionless pressure𝑃: Pressure (bar)𝑞𝑖: Dimensionless sorbate
concentration in the solid phase𝑄𝑖: Sorbate concentration in the solid
phase (mol/m3)𝑅: Radius of the adsorbent particle
(m)𝑟: Spatial coordinate𝑡: Time (s)𝑥: Input𝑦: Output.
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Greek Letters

𝜀: Porosity of the adsorbent particle𝜀𝑝: Modified porosity of the adsorbent particle𝜎: Shape factor𝜏p: Pore diffusion time constant (Eq. (40))𝜏s: Surface diffusion time constant (Eq. (41))𝜏eff : Effective diffusion time constant (Eq. (42))𝜔: Frequency (rad/s).
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López, and U. Simon, “Correlation of TPD and impedance
measurements on the desorption of NH3 from zeolite H-ZSM-
5,” Solid State Ionics, vol. 179, no. 35-36, pp. 1968–1973, 2008.

[10] Y. Yasuda, “Frequency response method for investigation of
gas/surface dynamic phenomena,” Heterogeneous Chemistry
Reviews, vol. 1, pp. 103–124, 1994.

[11] G. Onyestyák, D. Shen, and L. V. C. Rees, “Frequency-response
studies of CO2 diffusion in commercial 5A powders and pellets,”
Microporous Materials, vol. 5, no. 5, pp. 279–288, 1996.

[12] B. K. Sward and M. D. LeVan, “Frequency response method
for measuring mass transfer rates in adsorbents via pressure
perturbation,” Adsorption, vol. 9, no. 1, pp. 37–54, 2003.

[13] T. J. Giesy, Y. Wang, and M. D. LeVan, “Measurement of
mass transfer rates in adsorbents: New combined-technique
frequency response apparatus and application to CO2 in 13X
Zeolite,” Industrial & Engineering Chemistry Research, vol. 51,
no. 35, pp. 11509–11517, 2012.

[14] T.M. Tovar, J. Zhao,W. T. Nunn et al., “Diffusion of CO2in large
crystals of Cu-BTC MOF,” Journal of the American Chemical
Society, vol. 138, no. 36, pp. 11449–11452, 2016.

[15] Y. Wang, C. S. Paur, and P. I. Ravikovitch, “New development
in flow-through pressure-swing frequency responsemethod for
mass-transfer study: Ethane in ZIF-8,” AIChE Journal, vol. 63,
no. 3, pp. 1077–1090, 2017.

[16] V. Bourdin, P. Grenier, F. Meunier, and L. M. Sun, “Thermal
frequency response method for the study of mass-transfer
kinetics in adsorbents,” AIChE Journal, vol. 42, no. 3, pp. 700–
712, 1996.

[17] S. C. Reyes and E. Iglesia, “Frequency response techniques for
the characterization of porous catalytic solids,” in Catalysis, J. J.
Spivey and S. K. Agarwal, Eds., vol. 11, pp. 51–92, Royal Society
of Chemistry, London, UK, 2007.

[18] M. Petkovska, “Nonlinear frequency response method for
investigation of equilibria and kinetics in adsorption systems,”
in Adsorption Systems in Finely Dispersed Particles: Micro Nano
and Atto-Engineering, A. M. Spasic and J. P. Hsu, Eds., p. 283,
CRC Taylor & Francis, Boca Raton, FL, USA, 2006.

[19] M. Petkovska and D. D. Do, “Nonlinear frequency response
of adsorption systems: Isothermal batch and continuous flow
adsorbers,” Chemical Engineering Science, vol. 53, no. 17, pp.
3081–3097, 1998.

[20] M. Petkovska and D. Do, “Use of higher-order frequency
response functions for identification of nonlinear adsorption
kinetics: Single mechanisms under isothermal conditions,”
Nonlinear Dynamics, vol. 21, no. 4, pp. 353–376, 2000.

[21] M. Petkovska, “Application of nonlinear frequency response
to adsorption systems with complex kinetic mechanisms,”
Adsorption, vol. 11, no. 1, pp. 497–502, 2005.

[22] M. Petkovska, “Non-linear frequency response of non-
isothermal adsorption controlled by micropore diffusion with
variable diffusivity,” Journal of the Serbian Chemical Society,
vol. 65, no. 12, pp. 939–961, 2000.
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