
 351 

Pipe size sensitivity in pressure relief networks using genetic algorithms 

Sabla Y. Alnouri1, Mirjana Kijevčanin2 and Mirko Z. Stijepović2 

1Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut,  
PO Box 11-0236, Riyad El-Solh, Beirut, Lebanon 
2Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia 

 

Abstract 

This paper utilizes a stochastic optimization approach using genetic algorithms, for conducting 
rigorous pipe size sensitivity assessments onto the design of pressure relief networks. By 
sampling high performance candidates, only the finest options can survive. The pressure relief 
network system that was investigated in this work was previously reported in literature. The 
problem is constrained and involves minimizing a cost objective function that evaluates the 
overall network performance, in which the best pipe size combination should be selected for 
each segment within the network. The overall goal of this paper was to seek cost-effective 
designs for the pressure relief piping system by exploring different ranges of pipe diameters 
that are available for each segment in the network and comparing how the overall design of 
the system is affected, when the number of pipe size options to select from is varied. 
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1. INTRODUCTION 

Genetic algorithms are stochastic optimization techniques that can seek well-performing solutions in an evolutionary 

manner, by sampling regions that possess high performance probabilities where only the fittest options survive [1]. The 

idea of applying the principles of natural evolution as an optimization tool for engineering problems has been first 

introduced in the 1950s, in which for a given problem certain operators that were inspired by natural genetic variation 

and natural selection were found to generate populations of candidate solutions [2,3]. A decade later, Fogel and 

coworkers introduced an evolutionary programming technique in which candidate solutions represented as finite−state 

machines, were evolved by randomly mutating their state−transition diagrams, then selecting the fittest [4]. Following 

this, the development of evolutionary optimization strategies became a highly active research area. For instance, 

Rechenberg developed a methodology that utilizes an evolutionary principle to optimize real-valued systems that 

involve devices such as airfoils [5]. Later, Genetic Algorithms (GAs) were first introduced by Holland [6], in which he 

adopted an approach that was slightly different to Rechenberg’s evolution strategies and Fogel’s evolutionary 

programming techniques [4,5]. Instead of designing specific algorithms for solving particular types of problems, he 

introduced effective techniques for importing the mechanisms of natural adaptation into computer systems, by closely 

relating this natural phenomenon in biological evolution to computational behaviour [6]. His approach involved bit-

string and real-valued representations to optimize systems using a genetically−inspired search methodology, in which 

the algorithm moves from one population of solutions to a new one, according to the laws of natural selection. Later 

on, evolution strategies, evolutionary programming, and genetic algorithms all began to interact to form the backbone 

of evolutionary computing [1]. GAs represent one of the most widely used algorithms in evolutionary computing, which 

in turn includes other search methods that employ population-based techniques that apply the principles of natural 

evolution [1]. In evolutionary computing, a representative strategy is often needed for choosing the best performing 
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sets of solutions from which evolving generations can be created, in addition to computational efficiency for evaluating 

generations of solutions. 

GAs are known to be efficient, adaptive, and capable of providing near-optimal solutions using robust search 

methodologies [2,3]. Moreover, they are very efficient in solving both constrained and unconstrained problems. Since the 

search technique of such approaches involves simultaneously operating on a set of generated solutions within a 

population, this reduces problems of getting trapped in local optima, and makes them suitable for parallelization [7]. 

Moreover, GAs can handle many types of objective and constraint functions; being continuous or discontinuous, 

differentiable, or non-differentiable, even black-box functions with some undefined parameters [8]. Since they can operate 

effectively on almost any type of functions, this makes them very suitable for solving complex problems [7]. Moreover, 

genetic algorithm has demonstrated great effectiveness in identifying the global optimum solutions [9]. However, if not 

handled properly, GAs can sometimes suffer from premature convergence, causing solution deterioration. Figure 1 

compares the principal characteristics of classical deterministic algorithms against genetic algorithms.  

 

 
Figure 1. Comparison between classical algorithms vs. genetic algorithms 

 

It is evident that the focal steps in both algorithms are generation, selection, and optimal solution extraction; 

however, each involves differences in the execution procedure. Classical algorithms manipulate a single solution in each 

step while genetic algorithms involve the manipulation of a generation of solutions [7]. Therefore, a successful 

implementation of GAs must always consider the aspects discussed above.  

GAs have been proven useful in a variety of engineering design and optimization problems. For example, they have 

been used in problems involving reservoir and water quality management [10], extractants design [11], watershed 

problems [12], water networks [13,14], reservoir operation [15], reservoir characterization [16], machinery layout 

optimization [17], iron ore pressure optimization [18], separator pressure optimization in multistage production [19], 

scheduling types of problems [20] and many more. In this work, we study a pressure relief network design problem 

through the application of GAs. The adoption of this stochastic approach for network design types of problems comes 
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out to be very appropriate to obtain robust, fast, and close to near-optimal solutions. The detailed model that was 

utilized for this problem is provided in Section 2. 

2. DESIGN OF PRESSURE RELIEF NETWORKS 

Pressure relief networks are important safety measures that prevent the dispersion of dangerous gases in many 

chemical processing plants, especially in oil refineries. The network consists of a number of pipe segments that connect 

process equipment to the necessary discharge zones (or flares), such that when a valve is accidently ruptured, all its 

contents are discharged safely, as demonstrated in Figure 2. 
 

 
Figure 2. Illustration for a segment taken from a pressure relief network  

 

Hence, relief networks typically consist of a piping system that connects relief valves to a sub-header as well as a 

main header, in addition to liquid/vapor knockout drums, and a flaring system, which in most cases serves as a disposal 

system for excess vapor release in a fire zone from pressure control valves during off-design operation [20]. The relief 

and flare system designs should accommodate the maximum relief loads, during emergency and operational scenarios. 

Pressure relief networks must therefore be designed to transport gaseous fluids very quickly, which requires 

maintaining a sonic velocity in all discharge valves for a certain transitory period. Backpressure values for all valve-flare 

paths along the network must therefore be kept below a certain limit. This can be achieved by establishing upper bounds 

on the pressure drops for all paths available for flow control, which are usually determined according to the process 

conditions and valve specifications. The network design problem therefore consists of selecting an optimal set of 

diameters that minimizes the total cost of the network, while satisfying the pressure drop constraints imposed on the 

system. The pressure relief network that was considered in this work is provided in Figure 3.  

The network structure consists of 34 source nodes, and 79 fixed length pipe segments. The respective node 

properties for this pressure relief network example have been obtained from Murtagh [22], and the respective branch 

lengths for each segment in the pressure relief network have been obtained from Dolan el al. [23].  

The design of this network has first been attempted by Murtagh [22], in which he utilized a nonlinear programming 

(NLP) formulation in order to determine continuous values of the respective diameters associated with each of the 79 

segments. Cheng and Mah [24] then employed a dynamic programming approach, referred to as the discrete merge 

method, which selects the diameter values according to a provided list of commercial diameters. Later on, Dolan el al. 

[23] proposed a stochastic method to solve the same problem, using a canonical form of simulated annealing. This 

involved conducting successive evaluations of design alternatives whereby new design configurations were obtained 

either by increasing or decreasing the diameters of the pipe segments of the current configuration. The diameters were 

selected according to the same list that was provided by Dolan el al. [23]. Soon after, Cardoso et al. [24] employed a 

non-equilibrium simulated annealing algorithm, in which they used a simple stopping criterion to control the algorithm’s 

convergence. Costa et al. [26] then proposed a linear programming (LP) formulation of the same problem in which the 

decision variables were also the individual pipe segment diameters.  
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Figure 3. Pressure relief header network 

3. OPTIMIZATION MODEL 

The difference between the upstream and downstream pressure, PA,i and PB,i for each segment in the network i has 

been found according to the equation [22]:  
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It has been reported that the term [1 + (4.61di / 4fili) log (PA,i / PB,i] is very close to unity [22,23] therefore, the 

pressure drop can be approximated by the equation: 
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The parameter Ki was computed by using the equation [23]: 
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The expression for calculating Ki utilizes a fanning friction factor fi determined according to the equation [26]  
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The respective temperatures (Ti) and molecular weights (Mi) that are attained as a result of mixing between some 

of the streams for each segment i were also required, and thus were obtained by applying a simple mixing rule as shown 

in Equations (5) and (6) [23]: 

=  



i ii
i

ii

T i I
W T

W
 (5) 

=  



i ii
i

ii

M i I
W M

W
 (6) 

The total cost of the pressure relief network (CPRN) was computed by using the capital costs of the individual pipe 

segments. A linear function that relates the cost of each segment to its respective diameter was used. Summing up all 

the segment costs gives the total cost of the network, according to the equation [23]  

( ) = +
nPRN

i s,ii=1
C d l  (7) 

where n represents the total number of pipe segments.  

Moreover, the objective of the problem consists of a linear function. However, the pressure drop constrains that 

need to be imposed on the system introduce non-linearity into the problem [24], according to the equation: 

bi  (PA,i
2 – PB,i

2) i < I (8) 

Hence, main parts of the overall model may be summarized using Eqs (2), (7) and (8) as follows: 
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It should be noted that since different sets of diameter sizes will be investigated, the diameters were taken as 

multiples of a custom step size (). In order to account for this aspect, Eqs (12) – (17) have been added into the original 

model, so as to ensure that all diameter sizes to be obtained are all multiples within a set size range. The diameter size 

selected for each segment must be able to accommodate the required gas flowrate, at an appropriate pressure drop 

and gas velocity, for each of the respective pipe segments within the network. Hence, all diameter values will be rounded 

up to the next nearest size, whenever appropriate. Therefore, a calculated diameter value that is based on a rounded 

value zi is first obtained for each segment, according to Eq. (12). Likewise, a calculated diameter value that is based on 

a non-rounded value  wi is also obtained for each segment, according to Eq. (13). The difference between those 2 extra 

calculated diameter values must be checked, as the difference between them has to be very small (in the order of 10-14), 

according to Eqs (12)-(17). This aspect ensures that all attained di values are appropriate values that lie within the size 

range that is respectively specified. 

zi = round(di/Y) i < I  (12) 

wi = (di/Y) i < I (13) 

Ci
1 = zi - wi i < I (14) 

Ci = Ci
1 – 10-14 i < I (15) 

Ci
2 = zi - wi i < I (16) 

Ci = Ci
2 – 10-14 i < I (17) 
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4. MODEL IMPLEMENTATION AND ALGORITHM EXECUTION 

Based on the survival-of-the-fittest principle, GAs keep hold of hereditary information from generation to generate-

on [1]. The basic implementation procedure involves starting from an initial, randomly created set of solutions, and then 

generating new sets of solutions from already existing ones. The algorithm is programmed to examine the set of 

solutions attained at each generation (often referred to as the number of algorithm iterations), in a simultaneous 

manner. The set of generated solutions is referred to as the population of the nth generation. The fittest solutions within 

each population are retained for carrying out a new cycle of genetic operations, in which subsequent sets of solutions 

are generated. Each solution is associated with a string of symbols called “chromosomes”. The GA execution process 

allows the finest characteristics of the solutions to be identified, by employing a suitable function to assess the 

respective fitness of any solution.  

Therefore, the algorithm execution has been set up in the following order (and is illustrated using the flowchart 

provided in Figure 4): 
 

 
Figure 4. Flowchart illustration for the Genetic Algorithm execution 

 

1) Create a randomly generated population of n chromosomes that represent candidate solutions.  

2) Evaluate the fitness of each chromosome in the population using a fitness function f(x).  
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3) A pair of parent chromosomes are then selected from the solutions generated. The probability of a chromosome 

being selected (Ps) is a function of fitness. The more fit the chromosome is, the more likely it will be selected.  

4) Generate offspring for the new population. The goal is to optimize the fitness function by exploring the binary 

search space that minimizes the function, using steps (a) and (b):  

a) Crossover the pair of parent chromosomes using a crossover probability (Pc). If Pc = 0, no crossover takes 

place.  

b) To introduce randomness and variation into the solutions, a mutation probability (Pm) is used. This increases 

the likelihood of generating individuals with better fitness values. If Pm = 0, no mutation takes place. 

5) Replaces the current population of solutions with the new generation of solutions. 

6) Repeat steps (2)-(4). Each iteration results in a new generation of solutions. Therefore, the algorithm 

repeatedly modifies the population of individual solutions over successive generations, in order to identify an 

optimal. The desired solution will eventually have the best fitness value and is found after several iterations. 

This work employs MATLAB for the GA execution, on a desktop PC with a 64-bit Operating System (2.7 GHz, 8.00 GB 

RAM), and an Intel® Core™ i7-2620M. Table 1 below summarizes the values of key items that were used throughout 

algorithm execution.  
 

Table 1. GA configuration specified for algorithm execution  

Parameter Value in Problem 2 

Population Size 50 

Maximum Generation 100 

Fitness Limit Inf 

Elite Count 2 

Crossover Fraction 0.8 

 

The population size sets the amount of solutions produced in each generation, and the number of generations 

specifies the maximum number of algorithm iterations to be performed before it terminates. The fitness limit also 

causes the algorithm to stop, if the fitness function attains the limit value specified. The elite count represents the 

number of solutions with the best fitness values in the current generation, which are guaranteed to survive to the next 

generation. When the elite count is at least 1, the best fitness value can only decrease from one generation to the next. 

MATLAB sets the default value of the elite count to 2, to enable the minimization of the fitness function. Setting the 

elite count to a high value causes the fittest individuals to dominate the population, which can make the search less 

effective. The crossover fraction also affects the performance of the genetic algorithm, since it represents the fraction 

of individuals produced in each generation, other than the elite solutions. It should also be noted that linear constraints 

and bounds are handled differently from nonlinear constraints. For instance, it is usually desirable for all linear 

constraints and bounds to be satisfied throughout the optimization, even if the nonlinear constraints are not satisfied 

at every generation. For this, the mutation and crossover functions must only generate points that are feasible with 

respect to the linear and bound constraints. However, when the algorithm eventually reports an optimal solution, all 

the nonlinear constraints must be satisfied. Therefore, two different conditions have been carried out for the mutation 

and crossover functions: (1) generating new individuals at every generation that do not necessarily satisfy all linear 

constraints, and (2) generating new individuals at every generation that satisfy all the linear constraints/bounds of the 

problem. In both cases, all linear/nonlinear constraints must eventually be satisfied for any optimal solution reported.  

5. RESULTS AND DISCUSSION 

As it has been discussed in Section 2 above, the same pressure relief header network problem was first introduced 

by Murtagh et al [22]. Soon after, Cheng and Mah [24] attempted to solve the problem by applying a discrete merging 

technique that generates pipe sections using serial and parallel merging. In doing so, the cost of the resulting pipe relief 

pressure network was reported to be $200,851. Dolan et al. [23] also solved the same problem, by applying a canonical 

form of simulated annealing, and reports a total of $165,075 in terms of total cost of the network. It should be noted 
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that Cheng and Mah [24] as well as Dolan et al. [23] employ British units for the problem. Cardoso et al. [25] have 

reported a re-derived form for all equations using the International System (SI) of units when solving the same problem 

using the conditions utilized by Dolan et al. [23] and have reported solutions around $165,000 and higher. Cardoso et 

al. [24] also points out that the physical length of branch 40 in the network that was utilized by Cheng and Mah [23], is 

slightly different than the value reported by Dolan et al. [23], which may be one of the factors that could have 

contributed to the differences in solutions reported. Costa et al. [26] has formulated the same problem using a Linear 

Programming approach and have applied an alternative set of decision variables. The corresponding total cost of the 

network that has been reported by Costa et al. [26] was found to be $162,798.  

In this paper, the effect of imposing different ranges of pipe diameter values for pressure relief piping networks has 

been carried out, using varying sets of diameter size options. The main goal was to determine whether having more sizing 

options would provide any enhancement to the design. Attaining optimal pipe diameter values for each segment in the 

network is considered crucial in the design of any piping system, especially if all segments are interconnected into one 

merged piping scheme [13,14,26]. The overall goal was to identify how the extraction of cost-effective designs for a 

pressure relief piping network would vary according to different ranges of pipe diameter selections being available for each 

segment in the network. A total of 8 different sets of pipe diameter ranges have been investigated. The respective pipe 

sizes that have been made available for selection in each case have been summarized in Table 2. The most inclusive pipe 

size range that was considered involves a total of 18 different diameters values, while the least inclusive pipe size range 

involves a single pipe size only. The rest of the diameter sets that have been considered all lie somewhere in between the 

most inclusive range (Set 1), and the least inclusive (Set 8). Table 2 lists the smallest to the largest pipe size available for 

each of the Sets 1 through 8. It should be noted that Murtagh et al. [22] had obtained continuous diameter values for the 

pressure relief network, while Cheng and Mah [24], Dolan et al. [23], Costa et al. [26], and Cardoso et al. [25] have all 

utilized Set 3 (with  = 0.0508 m), for conducting their diameter selection.  
 

Table 2. Commercial pipe diameter sizes used used for optimization 

Pipe diameter sizes, m 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 

 / m 

0.0254 0.0381 0.0508 0.0762 0.1016 0.1524 0.2032 0.4064 

Pipe diameter sizes, m 

0.0254 0.0381 0.0508 0.0762 0.1016 0.1524 0.2032 0.4064 

0.0254 0.0381 0.0508 0.0762 0.1016 0.1524 0.2032 0.4064 

0.0508 0.0762 0.1016 0.1524 0.2032 0.3048 0.4064  

0.0762 0.1143 0.1524 0.2286 0.3048 0.4572   

0.1016 0.1524 0.2032 0.3048 0.4064    

0.1270 0.1905 0.254 0.381     

0.1524 0.2286 0.3048 0.4572     

0.1778 0.2667 0.3556      

0.2032 0.3048 0.4064      

0.2286 0.3429 0.4572      

0.254 0.381       

0.2794 0.4191       

0.3048 0.4572       

0.3302        

0.3556        

0.381        

0.4064        

0.4318        

0.4572        
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This work mainly aims at identifying the best combination of pipe size diameters to be used for each of the 79 

segments in the network that would ultimately minimize the cost of the system, whilst satisfying all other operational 

constraints that are required for this pressure relief setup. Exploring the effect of having increased or decreased 

diameter sizes was found imperative, in order to provide more insight into how the overall design of the system would 

change if the sizing choices increase or decrease. Table 3 summarizes the costs of the networks attained for each of the 

cases that have been investigated. It should be noted that two different conditions have been carried out for the 

mutation and crossover functions throughout the genetic algorithm execution. The average computational time for 

each run was between 60 to 120 s, for all 16 cases reported. Cases (1a)-(8a) involve generating new individuals at every 

generation that do not necessarily satisfy all linear constraints, while Cases (1b)-(8b) involve generating new individuals 

at every generation that satisfy all the linear constraints/bounds of the problem. In both situations, all linear/nonlinear 

constraints are eventually satisfied for all optimal solution which have reported. 
 

Table 3. Summary of network costs obtained for each case  

Set -   m Case Cost, $* Case Cost, $* 

Set 1 - 0.0254 1a 135,130 1b 101,900 

Set 2 - 0.0381 2a 108,400 2b 106,260 

Set 3 - 0.0508 3a 100,970 3b 130,380 

Set 4 - 0.0762 4a 82,022 4b 92,545 

Set 5 - 0.1016 5a 84,362 5b 84,648 

Set 6 - 0.1524 6a 129,160 C6b 123,140 

Set 7 - 0.2032 7a 149,670 7b 148,980 

Set 8 - 0.4064 8a 270,410 8b 270,410 

*Total network cost obtained for optimal solution reported 

 

Tables 4 and 5 provide the optimal diameters attained from each set of pipe size ranges that were investigated, for 

each segment in the network, corresponding to all optimal Cases (1a)-(8a). 
 

Table 4. Optimized diameter values of Cases (1a)-(4a) obtained for each segment in the network  

Branch 

Setz 1 Set 2 Set 3 Set 4 

Branch 

Set 1 Set 2 Set 3 Set 4 

  / m   / m 

0.0254 0.0381 0.0508 0.0762 0.0254 0.0381 0.0508 0.0762 

Pipe diameter size, m Pipe diameter size, m 

1 0.0254 0.0381 0.0508 0.4572 41 0.4572 0.0381 0.0508 0.0762 

2 0.0254 0.4572 0.4572 0.0762 42 0.0508 0.0381 0.0508 0.0762 

3 0.0254 0.1905 0.4572 0.0762 43 0.3048 0.4572 0.4572 0.0762 

4 0.127 0.4572 0.0508 0.0762 44 0.4572 0.0381 0.0508 0.0762 

5 0.4572 0.0381 0.0508 0.4572 45 0.1524 0.4572 0.0508 0.1524 

6 0.4572 0.0381 0.4064 0.0762 46 0.0254 0.4572 0.0508 0.0762 

7 0.0254 0.1905 0.0508 0.0762 47 0.4064 0.0381 0.4572 0.4572 

8 0.4318 0.4572 0.4572 0.0762 48 0.4572 0.0381 0.0508 0.0762 

9 0.0254 0.3429 0.0508 0.4572 49 0.4572 0.1905 0.0508 0.0762 

10 0.1524 0.0381 0.0508 0.0762 50 0.4572 0.0381 0.0508 0.0762 

11 0.1524 0.4572 0.4572 0.0762 51 0.0254 0.4572 0.0508 0.4572 

12 0.0254 0.0381 0.0508 0.4572 52 0.0254 0.4572 0.4572 0.3048 

13 0.0254 0.0381 0.4572 0.4572 53 0.0254 0.0381 0.4572 0.0762 

14 0.0254 0.0381 0.0508 0.1524 54 0.4572 0.4572 0.4572 0.4572 

15 0.0254 0.0381 0.4572 0.0762 55 0.4572 0.1524 0.0508 0.0762 

16 0.4572 0.4572 0.4572 0.0762 56 0.0254 0.4572 0.1016 0.1524 

17 0.4572 0.0381 0.0508 0.381 57 0.4572 0.4572 0.0508 0.0762 

18 0.0254 0.0381 0.4572 0.4572 58 0.0254 0.0381 0.0508 0.4572 
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Branch 

Setz 1 Set 2 Set 3 Set 4 

Branch 

Set 1 Set 2 Set 3 Set 4 

  / m   / m 

0.0254 0.0381 0.0508 0.0762 0.0254 0.0381 0.0508 0.0762 

Pipe diameter size, m Pipe diameter size, m 

19 0.0254 0.4572 0.0508 0.4572 59 0.4572 0.4191 0.0508 0.0762 

20 0.0254 0.4572 0.0508 0.0762 60 0.0254 0.4572 0.0508 0.381 

21 0.4572 0.0381 0.0508 0.4572 61 0.0254 0.1143 0.1016 0.0762 

22 0.4572 0.4572 0.0508 0.0762 62 0.4572 0.0381 0.4572 0.0762 

23 0.0254 0.3429 0.4572 0.4572 63 0.4572 0.0381 0.4572 0.0762 

24 0.4572 0.0381 0.4572 0.0762 64 0.4572 0.0381 0.4572 0.0762 

25 0.4318 0.0381 0.4572 0.0762 65 0.4572 0.0381 0.0508 0.4572 

26 0.0254 0.0381 0.0508 0.0762 66 0.127 0.2286 0.3048 0.0762 

27 0.4572 0.4572 0.0508 0.2286 67 0.4572 0.0381 0.0508 0.4572 

28 0.4572 0.0381 0.0508 0.4572 68 0.0254 0.0381 0.0508 0.0762 

29 0.4572 0.2286 0.4572 0.0762 69 0.4572 0.0381 0.2032 0.0762 

30 0.0254 0.0381 0.4572 0.0762 70 0.4572 0.0381 0.0508 0.0762 

31 0.0254 0.4572 0.4572 0.0762 71 0.0254 0.4572 0.4572 0.0762 

32 0.1016 0.0381 0.0508 0.0762 72 0.0254 0.0381 0.4572 0.0762 

33 0.4572 0.0381 0.0508 0.0762 73 0.0254 0.0381 0.0508 0.4572 

34 0.2286 0.0381 0.0508 0.4572 74 0.0254 0.4572 0.0508 0.0762 

35 0.0254 0.0381 0.4572 0.0762 75 0.0254 0.0381 0.0508 0.4572 

36 0.0254 0.0381 0.254 0.0762 76 0.2286 0.2286 0.0508 0.0762 

37 0.4572 0.4572 0.0508 0.0762 77 0.4572 0.4572 0.0508 0.0762 

38 0.0254 0.0381 0.0508 0.1524 78 0.0254 0.0381 0.4572 0.0762 

39 0.0254 0.4572 0.0508 0.0762 79 0.1778 0.1143 0.1016 0.0762 

40 0.0254 0.4572 0.4572 0.0762      

 
Table 5. Optimized diameter values of Cases (5a)-(8a) obtained for each segment in the network  

Branch 

Setz 5 Set 6 Set 7 Set 8 

Branch 

Set 5 Set 6 Set 7 Set 8 

  / m   / m 

0.1016 0.1524 0.2032 0.4064 0.1016 0.1524 0.2032 0.4064 

Pipe diameter size, m Pipe diameter size, m 

1 0.1016 0.1524 0.4063 0.4064 41 0.1016 0.1524 0.2032 0.4064 

2 0.1016 0.1524 0.2032 0.4064 42 0.1016 0.1524 0.2032 0.4064 

3 0.4064 0.1524 0.4063 0.4064 43 0.1016 0.1524 0.2032 0.4064 

4 0.3048 0.1524 0.2032 0.4064 44 0.1016 0.4572 0.2032 0.4064 

5 0.2032 0.1524 0.2032 0.4064 45 0.1016 0.1524 0.2032 0.4064 

6 0.1016 0.1524 0.4063 0.4064 46 0.1016 0.1524 0.2032 0.4064 

7 0.1016 0.1524 0.2032 0.4064 47 0.1016 0.1524 0.4064 0.4064 

8 0.1016 0.1524 0.2032 0.4064 48 0.1016 0.4571 0.2032 0.4064 

9 0.1016 0.1524 0.2032 0.4064 49 0.1016 0.1524 0.4063 0.4064 

10 0.1016 0.1524 0.4064 0.4064 50 0.1016 0.1524 0.4063 0.4064 

11 0.1016 0.1524 0.2032 0.4064 51 0.1016 0.1524 0.2032 0.4064 

12 0.1016 0.4571 0.2032 0.4064 52 0.1016 0.1524 0.2032 0.4064 

13 0.1016 0.1524 0.2032 0.4064 53 0.1016 0.1524 0.2032 0.4064 

14 0.1016 0.1524 0.2032 0.4064 54 0.1016 0.1524 0.2032 0.4064 

15 0.1016 0.1524 0.2032 0.4064 55 0.1016 0.4571 0.2032 0.4064 

16 0.1016 0.1524 0.4064 0.4064 56 0.1016 0.4571 0.2032 0.4064 

17 0.1016 0.1524 0.2032 0.4064 57 0.4064 0.1524 0.2032 0.4064 
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Branch 

Setz 5 Set 6 Set 7 Set 8 

Branch 

Set 5 Set 6 Set 7 Set 8 

  / m   / m 

0.1016 0.1524 0.2032 0.4064 0.1016 0.1524 0.2032 0.4064 

Pipe diameter size, m Pipe diameter size, m 

18 0.1016 0.1524 0.2032 0.4064 58 0.1016 0.1524 0.2032 0.4064 

19 0.1016 0.1524 0.2032 0.4064 59 0.1016 0.4572 0.2032 0.4064 

20 0.4064 0.1524 0.4063 0.4064 60 0.1016 0.1524 0.2032 0.4064 

21 0.1016 0.4572 0.4064 0.4064 61 0.1016 0.1524 0.2032 0.4064 

22 0.2032 0.1524 0.2032 0.4064 62 0.1016 0.1524 0.2032 0.4064 

23 0.1016 0.4572 0.2032 0.4064 63 0.2032 0.4571 0.4063 0.4064 

24 0.1016 0.1524 0.2032 0.4064 64 0.1016 0.1524 0.2032 0.4064 

25 0.1016 0.1524 0.2032 0.4064 65 0.1016 0.1524 0.4063 0.4064 

26 0.1016 0.3048 0.2032 0.4064 66 0.1016 0.4572 0.2032 0.4064 

27 0.1016 0.4571 0.4064 0.4064 67 0.2032 0.1524 0.4064 0.4064 

28 0.1016 0.1524 0.2032 0.4064 68 0.1016 0.1524 0.2032 0.4064 

29 0.1016 0.1524 0.2032 0.4064 69 0.1016 0.1524 0.2032 0.4064 

30 0.1016 0.4571 0.4064 0.4064 70 0.1016 0.1524 0.2032 0.4064 

31 0.1016 0.1524 0.2032 0.4064 71 0.1016 0.4572 0.4064 0.4064 

32 0.1016 0.4571 0.2032 0.4064 72 0.1016 0.4572 0.2032 0.4064 

33 0.1016 0.1524 0.2032 0.4064 73 0.4064 0.1524 0.4064 0.4064 

34 0.2032 0.1524 0.2032 0.4064 74 0.1016 0.1524 0.2032 0.4064 

35 0.4064 0.3048 0.2032 0.4064 75 0.1016 0.1524 0.4064 0.4064 

36 0.1016 0.1524 0.2032 0.4064 76 0.1016 0.3048 0.4064 0.4064 

37 0.1016 0.1524 0.2032 0.4064 77 0.1016 0.1524 0.2032 0.4064 

38 0.2032 0.1524 0.2032 0.4064 78 0.1016 0.1524 0.2032 0.4064 

39 0.1016 0.4572 0.2032 0.4064 79 0.1016 0.1524 0.2032 0.4064 

40 0.1016 0.1524 0.2032 0.4064      

 

From the results presented in Table 5, it has been observed that the Sets 4 and 5 yielded the best performing 

solutions in terms of the total network cost attained, while Set 8 resulted in the least performing solutions. Moreover, 

it has been found that only diameter Sets 1, 2 and 7 yielded improved results after the utilization of mutation/crossover 

function that generated new individuals at every generation which satisfy all the linear constraints/bounds of the 

problem, unlike the rest of the cases that have been investigated. It was also observed that the optimal solution which 

has been reported for Cases 8(a) and 8(b) were identical, since only one diameter size was explored within this set. In 

case a smaller diameter value is utilized in this set, no feasible designs are attainable. As it can be seen from the results 

provided in Table 5, Cases 8 (“a” and “b”) yielded the most expensive solutions. As it has been expected, having only a 

single size option was found to be the most expensive when compared to all other cases. Nevertheless, what is quite 

interesting to note from the trends observed was the fact that a more inclusive size range does not necessarily yield the 

most optimal solutions, even though it was expected that having more pipe sizes within the set would probably enhance 

the quality of the solutions attained in terms of the costs of the optimal network designs reported. Hence, the best 

selection of sizes to incorporate into these problems was found to be somewhere between the most inclusive size rage, 

and the least inclusive. 

In order to provide an idea of how the solutions compare in terms of the changes that have been explored for cases 

“a” compared to cases “b”, Figures 5 and 6 provide an illustration of the pressure relief design sensitivity of the optimal 

solution which have been reported for each Case “b” scenario compared to the respective Case “a” solution.  

All segments presented in red were unchanged (amongst the two optimal solutions reported for each), while all the 

segments presented in black underwent a diameter change in the new optimal solution. As it can be noted from the 

illustrations, there were 20 segments associated with Case 1 that remained unchanged between their respective “a” 

and “b”. As for the remaining cases, 32 segments associated with Case 3 remained unchanged, 31 segments associated 
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with Case 4 remained unchanged, 47 segments associated with Cases 4 and 5 remained unchanged, and 53 segments 

associated with Case 6 remained unchanged. Unlike all other cases, and since only 1 diameter value was involved in Set 

8, all diameters that have been reported for Case 8 “a” and 8 “b” remain unchanged. Hence, it can be noted that the 

solutions involving the highest number of segments associated with a diameter change between the respective cases 

“a” and “b” was attributed to the most inclusive set of diameters (Set 1), while the solutions that did not report any 

diameter change between the respective cases “a” and “b” was attributed to the least inclusive set of diameters (Set 8). 

Hence, it was found that incorporating more size options do not necessarily yield better solutions. To date, in literature 

does not exist any work that has provided any insight in such effects on the design of pressure relief systems, especially 

in terms of cost-effectiveness and applicability.  
 

 

Figure 5. Pipe diameter sensitivity demonstrated for Sets 1-4 for 
each Case “b” solution compared to Case “a”. Segments 
highlighted in red remain unchanged, while all black segments 
indicated a diameter change across the 2 solutions 

 

Figure 6. Pipe diameter sensitivity demonstrated for Sets 5-8 for 
each Case “b” solution compared to Case “a”. Segments 
highlighted in red remain unchanged, while all black segments 
indicated a diameter change across the 2 solutions 

6. CONCLUSIONS 

A pressure relief network design problem has been attempted in this work by applying a practical search-based 

optimization via genetic algorithms. The main objective was to provide an alternative search technique that is capable 

of providing higher accuracy levels in the solutions reported. The problem involves minimizing a cost objective that 

evaluates the network design performance according to the sizing of the pipes. The most inclusive pipe size range that 

was investigated involved a total of 18 different diameters, while the least inclusive pipe size range involved a single 

pipe size only. Even though it was predicted that having a more inclusive pipe size variety to select from would probably 

enhance the quality of the solutions attained, it was found that the pipe size range which provided the most cost-

effective solutions involved a total of 4 different pipe sizes only. It was evident that the evolutionary algorithm applied 

in this work was able to report high-quality solutions to this optimization problem, using different sets of pipe segments 

in each case. Obviously, the sensitivity of pipe sizes in the pipe relief network was highly dependent on the diameter 

sets. Furthermore, employing machine learning techniques from which new solutions can be sampled or generated, as 

a result of a more guided-crossover scheme, can be utilized in line with the above problem. Alternatively, a 
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multiobjective optimization approach may be considered, in which the effect of several conflicting design variables that 

generate multi-dimensional outputs may be explored with the help of Pareto optimal outcomes.  

NOMENCLATURE 

CPRN / $ Cost of pressure relief network  

d / m Diameters of segments in pressure relief network  

f Friction factor 

gc / kg m N-1 s-2 Gravitational constant  

Ki Backpressure constraint constant for individual pressure relief network segments 

bi / Pa2 Upper bound pressure drop constraint for individual nodes in pressure relief network 

PA / Pa Upstream pressure  

PB / Pa Downstream pressure  

leq / m  Equivalent length  

ls / m Straight length  

R / kJ mol-1 K-1) Ideal gas constant  

T / K Absolute temperature  

W / kg/s-1 Mass flowrate in pressure relief pipe segments  

M / kg kmol-1 Molecular weight 

CIWIN / $ year-1 Cost of interplant water integration network  

µ / N s m-2 Viscosity = 2.5 10-5  

α / $ m-1  Cost coefficient=7.1243  

β / $ m-2 Cost coefficient=341.05 $/m2 

  / m Custom step size for pipe diameter range  

Pc Crossover probability 

Pm  Mutation probability 
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SAŽETAK 

Analiza osetljivosti prečnika cevi pri projektovanju sistema baklje upotrebom genetskog algoritma 

Sabla Y. Alnouri 1, Mirjana Kijevčanin2 i Mirko Z. Stijepović2 

1Baha and Walid Bassatne Katedra za hemijsko inženjerstvo i  energije , Američki Univerzitet u Bejrutu, P.B. 11-0236, Riyad El-Solh, 
Bejrut, Liban 
2Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, 11000 Beograd, Srbija 

(Naučni rad) 

Ovaj rad koristi stohastički pristup optimizaciji koristeći genetske algoritme, za 

sprovođenje rigoroznih procena osetljivosti veličine cevi u dizajnu sistema baklje. 

Sistem koji je razmatran u ovom radu prethodno je objavljen u literaturi. Problem je 

ograničen i uključuje minimizovanje cene koštanja, tako da procenjuje sveukupne 

performanse sistema u kom bi trebalo izabrati najbolju kombinaciju veličine cevi za 

svaki segment. Opšti cilj ovog rada bio je iznalaženje ekonomičnih rešenja za cevovod 

za sistem baklje istraživanjem različitih opsega prečnika cevi koji su dostupni za svaki 

segment i poređenjem uticaja na celokupnu konfiguraciju sistema, kada postoji veliki 

broj mogućnosti izbora za veličinu cevi. 

Ključne reči: projektovanje; model; 

optimizacija. 


