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Abstract
The unexpected glide of dislocations on a plane parallel to the film/substrate interface in
ultrathin copper films, which has been calledparallel glide(Balk et al2003Acta Metall.51
447), is described using an analytical model. The phenomenon is observed as a problem
involving inlet/outlet flow from different positions of a grain boundary into the grain channel.
In this sense, parallel glide is presented as the flow of dislocations with an internal stress
source/sink distribution.
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1. Introduction

It is well known that thin metal films exhibit mechanical
properties very different from those of their bulk counterparts.
Microstructural features that cause stresses in thin metal films
exceed those of the corresponding bulk metal, in some cases
by an order of magnitude [1,2]. Unfortunately, this behavior
is not yet completely understood. The remarkable model
developed by Freund [3] and Nix [4] tried to describe the
general trend of an increase in film strength with decreasing
film thickness caused by threading dislocations. On the
other hand, the constrained diffusional creep (CDC) model
developed by Gaoet al [5, 6], which describes the diffusive
exchange of matter between the grain boundaries and the free
surface of an unpassivated metal film rigidly attached to a
substrate, has been employed to explain the thermal stress
evolution in thin Cu films. Here, the concept of the flow of
dislocations through the elemental grain cell with an internal
stress source/sink distribution is presented in the context of
the general laminar boundary layer strategy [7].

The plastic deformation and strengthening in metals can
be related to a number of heterogeneous patterns, such as
dislocation cells, slip bands, microshear bands, persistent slip
bands and dislocation tangles, which are critical for obtaining
good material properties. The main difficulty in modeling
these patterns lies in the fact that the length scale of these
phenomena is not large enough to treat them within the realm
of a classical continuum mechanics framework. At the same

time, the length scale is not small enough to observe these
phenomena within the mechanics of a few dislocations, but
rather through a thorough analysis of dislocation dynamics
[8–10].

For this analysis, very importantin situ transmission
electron microscopy (TEM) studies focused on dislocations
in thin metal films indicated the relevance of their motion
during deformation [11] and their interaction with defects
such as triple junctions, grain boundaries, and63 boundaries,
as well as with film/substrate interfaces [12, 13]. Also, the
prominent conclusion was that in the unpassivated Cu films,
parallel glide dominated plasticity below a film thickness of
approximately 400 nm. In this sense, both grain boundaries
and triple junctions acted as sources for parallel glide
dislocations [2].

2. Model formulation

2.1. Elemental cell—ideal grain channel

The thickness of advanced structural and thin-film materials
are usually in the micron and submicron range. The geometri-
cal constraints in these structures lead to fundamentally inter-
esting effects of small-scale phenomena.

The experiment [2] analyzed in this model, which
presentedin situ TEM observations of thin copper films
during thermal cycling, enables us to correlate these results
with thermomechanical behavior, and explain the occurrence
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Figure 1. Schematic of elemental cell (ideal grain channel) with
inlet/outlet region flow. I, II and III, possible positions of dislocation
emission. IV, region of (compressed dislocations) reverse emission.
w, width of the parallel plates.

of a unique form of dislocation-mediated plasticity. Given
the fact that this new and unexpected dislocation mechanism
involved the glide of dislocations parallel to the film/substrate
interface, it is calledparallel glide.

In a few words, the sequence of weak-beam TEM video
images recorded during the cooling of a 200 nm Cu film was
less than 26 min. A total of 10 dislocations were emitted
sequentially from the source at the lower left triple junction.
Dislocations were pushed forward by later dislocations, which
in turn were not able to glide as far into the grain as the
earlier ones. Accordingly, on the basis of the grain dimensions
(≈700 nm wide,≈1µm long) and the projected width of an
inclined{111} plane of 70 nm, one can estimate the Reynolds
number of dislocations gliding inside this ‘rectangular duct’
(see appendix).

Firstly, we can calculate the average velocity of
dislocationsv̄ = 0.64 nm s−1. For this average velocity, the
Reynolds number isRedis ≈ 10−4

� 1 (laminar regime—very
slow motion).

However, the dislocations often travel 100 nm in a
fraction of a second (steady-state flow sequence) and then
remain immobile for several minutes before they move again
(‘jerky’/non-steady-state flow sequence). Now, the single
dislocation velocity per total volume of the elemental cell is
aroundv1 = 2500 nm s−1 or the Reynolds number isRe=

0.4 (laminar regime,Re< 2300). When the calculation is
performed per unit volume of the sequence of the elemental
cell, we haveRe1 = 1620. That is, during a single-dislocation
motion, the assumption of laminar flow is also fulfilled.

Finally, the simple ‘rectangular duct’ (i.e. 70× 700×

1000 nm3) closed on the opposite side of the inlet will be
the elemental cell or grain channel for dislocation gliding.
A schematic of the elemental cell—ideal grain channel with
inlet/outlet regions of dislocation flow with possible positions
of dislocation emission (I, II and III) and a region of
compressed dislocations or reverse emission (IV) is shown in
figure1. Note that this is a very simplified presentation of the
model with only essential visual details.

2.2. Mathematical background

The deformation pattern generation, deformation-induced
hardening and structurally induced hardening are complex
phenomena involving nonlinear interaction among disloca-
tions and the interaction of dislocations with interfaces. This
further illuminates the fact that different deformation and
strengthening mechanisms can explain similar phenomena.
The length scale at which the deformation takes place, the
mode of deformation and structure size are important factors
that determine the corresponding dislocation mechanism
[9, 10].

Consequently, in this paper, the nanoscale plasticity
phenomena are based on newly developed discrete dislocation
flow dynamics. The key concept is to use modeling
approaches from laminar boundary layer theory to treat
dislocation flow within the ‘channel’ provided by the thin film.

In many situations, the steady and/or unsteady laminar
transport phenomena are described using partial differential
equations. Usually, in such cases, we use the well-known
techniques (method of combination of variables, method
of separation of variables, method of sinusoidal response,
integral methods, etc) that convert the problem of solving a
partial differential equation into a problem of solving one or
more ordinary differential equations (e.g. [14]). Here, we use
a similar strategy but applied in a more general way.

Integral methods, based on setting balances for the
control volume, are often used in practice for the cases of
laminar boundary layers (e.g. [15]). The well-known problem
in the application of these methods is the definition of
satisfactory equations for the velocity distribution. According
to the literature data, the use of a certain distribution
equation is most commonly limited to the corresponding
specific system. When the conditions are changed, it is
necessary to choose a new, more appropriate distribution
equation. To overcome this situation, an ordinary differential
equation is proposed. Practically, the general equation of
Navier–Stokes applied on laminar transport phenomena is
simplified in two directions, namely, those along steady-state
flow (Blasius equation) and non-steady-state flow/nonflow
(Newton, Fourier and/or Fick’s equations), and then
substituted with an ordinary differential equation. Briefly, the
similarity of solutions of these partial differential equations
in analogous cases enables the substitution procedure through
the following equation [7]:

f1(N)ξ f2(N) ± θ ′′
± f (m) = 0. (1)

Introducing the relevant boundary conditions

• for steady-state-flow ξ = y/δχ , when δχ =

[2(N/Mχ )(µχ/ρvdis
ξ=1)]

1/2

ξ = 0; dθ/dξ = N; d2θ/dξ2
= 0,

ξ = 1; θ = 1; dθ/dξ = 0,
• for non-steady-state flow ξ = y/δτ when δτ =

[2(N/Mτ )(µτ/ρ)]1/2

ξ = 0; d2/dξ = N; d22/dξ2
= 0,

ξ = 1; 2 = 1; d2/dξ = 0.
the solution of equation (1) becomes the polynomial (see
figure2)
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Figure 2. Description of steady and non-steady-state dislocation
flow coupled in positionχ .

• for steady-state-flow:

θ = Nξ ± 0.5 f (m)ξ2
± (N − 1)ξ [N/±(N−1)](±1)∗

(2a)

• for non-steady-state flow:

2 = 1− θ (2b)

where m is the characteristic whole number;M is the
characteristic integral for positionχ or time τ ; N =

dθ/dξ |ξ=0 = −d2/dξ |ξ=0 is the dimensionless criterion;vdis
ξ

is the local velocity of a dislocation at the cross section;
vdis

ξ=1 is the local core velocity of a dislocation at the position
χ ∼ x/(DeReDe); δχ is the boundary layer thickness at
position χ ; ξ = y/δχ is the dimensionless distance from
the interface at positionχ ; θ = vdis

ξ /vdis
ξ=1 is the normalized

dislocation distribution at positionχ; θ ′′(≡ −2′′) = d2θ/dξ2

is the second-order derivative;2 = (1− θ) is the normalized
distribution at timeτ when ξ = y/δτ ; δτ is the boundary
layer thickness in they-direction at timeτ coupled with
positionχ .

For the solution of this equation, the normalized
concentration distributionθ (or 2) is considered in the most
general sense of the term with an analogous meaning for the
dislocation and/or force distributions as well as the internal
stress source/sink distributions inside a grain channel.

In the first step of numerical treatment, the chosen
instance will be the steady state flow of dislocations into the
elemental cell—ideal grain channel withθ as the normalized
dislocation distribution at some positionχ .

The criterionN = dθ/dξ |ξ=0 defines the state at the cross
section perpendicular to the surface and for steady-state flow,
enables the comparison and classification of laminar boundary
layers within previously defined reference (θN=1 = ξ : simple
Coutte flow) and boundary distributions (lower:θN=0 = 1:
free flow; and upper:θN=2 = 2ξ − ξ2 : quadratic Poiseuille
flow).

In other words, the solutions of equation (1) are families
of polynomial curves grouped in regions [0;1/2], [1/2;1],
[1;3/2] and [3/2;2] with appropriate signs ‘+’ or ‘−’ as well as
N and f (m) numbers. Consequently, these numbers are whole
numbers or fractions (see table1).

The functions f1(N) and f 2(N), for a certain region
and chosen criterionN, also become constants in the form
of a whole number or fraction. The core functionf (m) =

dθ/dξ |ξ=1 indicates the homogeneous appearance coupled
with variable core velocitiesvdis

ξ=1 at characteristic distanceχ .
On the other hand, the volume (continuous) homogeneity is
incorporated into the basic distribution, through the correctly
chosen region of criterionN change. The heterogeneous
appearance along the grain boundary interfaces can be
observed as a phenomenon in which obstacles change with the
corresponding distributionθ in region [0;1/2]. Within borders
resulting from laminar conditions, heterogeneous appearances
are relatively independent. According to this concept, there
exist two types of heterogeneous appearances: blade (b) and
quasi-laminar (qL) with appropriate distributions and FGH or
NH (see table1 and figure3). The effect of the obstacles on
the dislocation distribution will be discussed elsewhere.

The ‘simplified’ equation (1) defines the Flux Gradient
(FG) of the dislocations change phenomena

FG=

1∫
0

θ ′′ dξ = dθ/dξ |ξ=0 + dθ/dξ |ξ=1 = N + f (m);

N∈[0, 2], f (m) ∈ [0, ±◦]. (3)

Note: when [f (m) = 0] ⇒ FG≡ N.
In principle, there are laminar layers with

• constant FG (orN) along the reference axis, i.e. the
laminar boundary layer over a flat surface (example of
nanosurface), and

• variable FG (or N), i.e. laminar entrance region
flow, when every position ofχ has its corresponding
distribution (example of elemental cell or grain channel).
These positions are changeable nodal locations and
present the basic grids of the second steps of the
numerical treatment.

A similar/analogous formulation is possible for non-
steady-state situations.

The total coupling of the whole system is realized
by the quantitym, which has a physical meaning of its
own. Generally,m represents the ratio of formation to
decomposition process parameter. In the case of the mobility
of dislocations flowing through the grain channel,m is the
ratio of internal stress sources to sinks.

The exact solution of starting partial differential
equations (Blasius, Newton, Fourier or Fick’s), the ‘real’
distribution (φ), has no error. The solution of proposed
equation (1) has an approximate distribution (θ ) in the form
of polynomials with changeable coefficients and exponents.
The difference (φ − θ ) can be minimized, when necessary, by
applying the numerical procedure that takes into account the
continuous correction of the diffusivity in accordance with the
actual distribution in the laminar boundary layer, i.e. the fully
implicit or modified explicit finite difference method.

2.3. Plasticity of ultrathin films

The model is designed to simulate the dynamics of
dislocations in (χ, ξ ) dimensions under an applied stress,σ .
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Table 1.Elements of steady-state dislocation flow model.

Ordinary differential equation: f1(N)ξ f 2(N)
± θ ′′

± f (m) = 0

General solution: θ = Nξ ± 0.5 f (m)ξ2
± (N − 1)ξ [N/±(N−1)](±1)∗

when f (m) = 0
Reference distribution: θN=1 = ξ : simple Coutte flow
Boundary distributions:
Lower: θN=0 = 1: free flow
Upper: θN=2 = 2ξ − ξ2: quadratic Poiseuille flow

Regions [0; 1/2] [1/2; 1] [1; 3/2] [3/2; 2]

N 1− m/(m+ 1) m/(m+ 1) 2− m/(m+ 1) 1 +m/(m+ 1)
f (m) 2− 1/m 2− m m 1/m
[N/ ± (N − 1)](±1) [−(N − 1)/N] qL∗ [N/ − (N − 1)] [ N/(N − 1)] [ N/(N − 1)]
———————
(N − 1)ξ [N/±(N−1)](±1)∗ 0 [ f (m) = 0] b∗

B.C. ξ = 0 ⇒ θ = 0 ξ = 0 ⇒ θ = 0 ξ = 0 ⇒ θ = 0 ξ = 0 ⇒ θ = 0
when f (m) = 0: ξ = 1 ⇒ θ = 1 ξ = 1 ⇒ θ = 1 ξ = 1 ⇒ θ = 1 ξ = 1 ⇒ θ = 1

(ξ = 1 ⇒ θ 6= 1b∗)
when f (m) 6= 0: ξ = 1 ⇒ θ 6= 1 ξ = 1 ⇒ θ 6= 1 ξ = 1 ⇒ θ 6= 1 ξ = 1 ⇒ θ 6= 1

Example for 1/3ξ + 2/3ξ2 qL∗ 2/3ξ + 1/3ξ2 4/3ξ − 1/3ξ4 5/3ξ − 2/3ξ5/2

m = 2; f (m) = 0 1/3ξ b∗

dθ/dξ |ξ=0 N(e.g. 1/3) qL∗ N (e.g. 2/3) N (e.g. 4/3) N (e.g. 5/3)
(e.g. form = 2; N (e.g. 1/3)b∗

f (m) = 0)

dθ/dξ |ξ=1, f (m)=0 6= 0 6= 0 0 0
dθ/dξ |ξ=1, f (m) 6=0 6= 0 6= 0 6= 0 6= 0

FG – code Dθ/dξ |ξ=0 1

∫ 0
θ ′′dξ 1

∫ 0
θ ′′dξ 1

∫ 0
θ ′′dξ

N qL∗

N b∗

qL∗: quasi-Laminar;b∗: ‘blade’.

Figure 3. Heterogeneous appearances: blade (b) and quasi-laminar
(qL) with appropriate distributions (δD, boundary for dislocation
distributionθ ; δHet, boundary for heterogeneous appearanceθHet).

To define the stress fields of arbitrarily curved dislocations,
these are approximated by the polynomials given by
equation (2) (table1). To establish the dislocation dynamics,
the force on every polynomial position must be defined
(figure4). Only dislocation glide is considered.

For a general stress stateσ , the force per unit length on a
dislocation with Burger vector b and line element s is given by

F N
glide = (σ · b) × s. (4)

Figure 4. Dislocation at positionχ N presented by polynomialθ
coupled by forceF N

glide with corresponding distributions of the
internal stress sourceθI = θ − θN=1 and sinkθ P = θN=2 − θ .

Equation (4), known as the Peach–Koehler equation, provides
the fundamental relation between the macroscopic stress and
strain and the microscopic mechanisms of the formation.

The stressσ is composed of the internal stresses, caused
by the other dislocations and the dislocation line itself, the

4
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external stresses resulting from the load, and the stresses
needed to realize the boundary conditions. To compute the
internal stress at positionχ , the stress contributions from all
segments of the same dislocation and of all other dislocations
can be added by correctly choosing criterionN.

Once the forces are defined, the polynomials/dislocations
are moved according to a viscous drag law

vdis
ξ=1 = F N

glide/B. (5)

Note: F N
glide = f dis

ξ=1 for anyχ and F0
= f dis

ξ=1 whenχ = 0 or
simply F N

glide = f (χ).
Generally, one can express the local velocity of a

dislocation at the cross sectionξ as

vdis
ξ = f dis

ξ /B, (6)

where f dis
ξ is the related dislocation force.

Finally, one can obtain the normalized dislocation
distribution at positionχ as

θ = vdis
ξ /vdis

ξ=1 = f dis
ξ / f dis

ξ=1 = f dis
ξ /F N

glide

whereB is the drag coefficient, i.e.B = 1.7× 10−5 Pa s for
copper [16].

In this concept, a single dislocation is traveling from one
side of a grain to another, passing characteristic positionsχ

with well-determined internal stresses. In fact, the internal
stress at positionχ is defined by the internal stress source
θI /sink θP distribution.

3. Dislocation flow with internal stress source/sink
distribution

The elemental cell (ideal grain channel) has the inlet
region with dislocation emission (withN criterions in the
range∈ [3/2; 2]) and closed outlet region with dislocations
compression/reverse emission (withN criterions in the range
∈ [1; 3/2]). Other combinations ofN criterion ranges are also
possible. For the simplest case, the core function that indicates
the homogeneous appearance coupled with variable core
velocitiesvdis

ξ=1 at characteristic distances along the interface
is f (m) = dθ/dξ |ξ=1 ≈ 0; thus, FG≡ N.

3.1. Emission (region N∈[3/2;2])

The dynamics of dislocation flow in the entrance section
of the grain channel depends on disturbances created before
or at the entrance. Such disturbances in the dislocation flow
are dissipated as the dislocations flow through the grain
channel. When dislocations start to enter the grain channel
the boundary layer begins forming at the entrance. The
dislocation profile becomes fully developed after the edge
of the boundary layer coincides with the axis of the grain
channel. The dislocation-dynamics conditions at the entrance
of the grain channel greatly affect the length required for
the fully developed dislocation profile to form. The entrance
to the grain channel involves either a sudden expansion
or contraction in the cross-sectional area of dislocation

flow, and for this reason, the configuration of the entrance
is an important factor in studying the dislocations flow
downstream.

According to this concept, in the formation of a laminar
boundary layer, instead of only an external stress source, there
is also an internal one that ensures the necessary flux for the
basic flow of the dislocations and forms its own stress source
field. At the same time, an internal stress sink appears as a
measure of dislocation flow resistance. In the case of a freely
formed boundary layer, the internal source and sink are set to
be equal so that the internal stress difference is zero. For the
case of a transitional boundary layer appearing during flow
between two parallel plates, a stress difference appears, which
affects the ratio of the internal source to the internal sink. The
internal sink decreases until the boundary layer is formed. In
the case of the formed boundary layer, the total internal source
is established along the whole cross section (there is no sink).
In the literature, this case is known as Poiseulle flow with
characteristic criterionN = 2. Thus, the transitional boundary
layer tends to the boundary caseN = 2. The internal stress
source and sink are reflected in the dislocation distribution.
The corresponding distribution of the internal stress source is

θI = θ − θN=1,

and of the stress sink is

θP = θN=2 − θ,

where θI ,P = f I ,P
ξ / f I ,P

ξ=1 is the normalized distribution of
stress source (I ) or sink (P) at positionχ with the following
boundary conditions.

ξ = 0; dθI /dξ = N − 1,

ξ = 0; dθP/dξ = 2− N,

ξ = 1; θI ,P = 0.

Forces f I
ξ=1 and fP

ξ=1 are related toFN
glide as f I

ξ=1 =

− fP
ξ=1 = f (FN

glide).
If the appropriate criteriaI andP areI = dθ I /dξ |ξ=0 and

P = dθ P/dξ |ξ=0, then the first derivates forξ = 0 yield

N = 1 + I (= 2− P) or I + P = 1.

This furthermore enables an estimation of criterionN as

N = 1 + [m/(m+ 1)], m = I /P = 1, 2, 3, 4, . . . ,∞.

Thus, the values of criterionN for the inlet region of the
elemental cell lie between 3/2 and 2 (figure5).

On the basis of the expressionm = I /P and the
estimation ofm at the beginning (m = 1) and end (m = ∞)
of the zone of forming a boundary layer, it is concluded that
the following analogy holds:

I → y0, P → (y0 − δχ ); i.e. m ≈ y0/(y0 − δχ ),

where,y0 is half the distance between parallel plates.

5
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Figure 5. Dislocation distribution with values of theN criterion at
certain cross sections in the zone in which a boundary layer is
formed, i.e. region of expansion.

On the basis of these simple relations, one obtains for the
dimensionless distance ratio

δ∗
= δχ/y0 = (2N − 3)/(N − 1), (7)

and for the dimensionless ratio of the forces in the flow axis

F∗
=

F N
glide

F0
glide

=

[
1−

N(2N − 3)

2(2N − 1)(N − 1)

]−1

. (8)

The dependence of these quantities (δ∗, F∗) on a third
dimensionless parameterχ = x/(DeReDe) is determined by
balancing the control volume, for example,ReDe = 0.4 and
De = 127 nm (see figure5).

The theoretical variation of the forceF N
glide at the edge

of the boundary layer as a function of the distance from the
entrance of the elemental cell or grain channel is presented in
figure6.

The every positionχ has its corresponding distribution.
These positions are changeable nodal locations and present
the basic grids of the second steps of the numerical
treatment.

3.2. Compression—reverse emission (region N∈[3/2;2])

After the critical distance at which point Poiseulle flow is
established, dislocations start to compress each other because
there is no place for further development. The corresponding
distribution of the internal stress source is

θI = θN=2 − θ,

Figure 6. Variation of forceF N
glide at edge of boundary layer as a

function of distanceχ from the entrance of the elemental
cell—grain channel.

and that of the stress sink is

θP = θN−1 + θ.

Accordingly, the first derivatives forξ = 0 yield N = 2− I (=

1 + P) or I + P = 1.
This enables the estimation of criterionN, but now as

N = 2− [m/(m+ 1)], where m = I /P = 1, 2, 3, 4, . . . ,∞.
Thus, the values of criterionN for the established inverse
laminar boundary layer lie between 3/2 and 1 (figure1).

Similarly, the following analogy holds:

I → (y0 − δχ ); P → y0; i.e. m ≈ (y0 − δχ )/y0.

On the basis of these simple relations, one can obtain

δ∗
= δχ/y0 = f1(N) andF∗

= F N
glide/F0

glide = f2(N).

Now, the dislocation velocity in the potential flow of the
cross section at positionχ , because of enormous compression,
becomes zero, i.e.FN

glide → 0 (see figure6).

4. Conclusion

In this study, we dealt with a theoretical analysis of parallel
dislocation glide in thin metal films using a laminar boundary
layer approach of the Navier–Stokes type. The physical
relationship between the discrete problem and the continuum
description was presented via the Peach–Koehler equation.

The parallel glide of dislocations, as a discrete nano-
scopic phenomenon, was observed as an inlet/outlet region
flow problem that occurred from different positions of the
grain boundary into the grain and described as the flow of
dislocations with an internal stress source/sink distribution.

The presented concept is imagined as a flexible iterative
system for the following experimental data. It is shown
in the simplified form for the sake of clarity. Only the
essential instructions of simulation procedure are given.
To solve the real situation, it is necessary to determine
the following: (i) the interval/range ofN criterion change,

6
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(ii) the deformation of the dislocation velocity distribution in
the direction perpendicular to the parallel surfaces caused by
the heterogeneous appearances and (iii) the action of thef (m)

or homogeneous appearances.
The concept may provide a useful viewpoint that

contrasts with/complements other theories such as phase-field
or level-set methods that are concurrently being developed for
dislocations.

Finally, a comprehensive understanding of the link
between dislocation motion and the thermomechanical
behavior of unpassivated thin films does not yet exist, and
the need for careful TEM studies remains. In this sense, the
aim of this study is to shed a different light in the explanation
on the interaction between gliding dislocations and the grain
surrounding.

Appendix

(a)

• Volume of the elemental cell—ideal grain channel,V =

70× 700× 1000= 49× 106 nm3

• Average velocity of dislocations,̄v = 1000 nm/26×

60 s= 0.64 nm s−1

• Density of dislocations,ρ = 10 dislocations/V = 0.2×

10−6 dis nm−3

• Dislocations viscosity, µ = (10 dislocationsA−1)/

(Y/v̄) = 0.156 dis s nm−2

• A = 1000× 70= 7× 104 nm2, Y = 700 nm
• Equivalent diameter of the elemental cell—ideal grain

channel,
• De = 4 (dislocation flow area)/(‘wetted perimeter’)=

4(70× 700)/(2× 70 + 2× 700) = 127 nm
• Reynolds number for average velocity of disloca-

tions, Redis = v̄Deρ/µ ≈ 10−4
� 1 (laminar regime—

very slow motion).

(b)

• Velocity of the single-dislocation sequence motion,v1 =

100 nm/0.04 s= 2500 nm s−1

• (Note that video frames were recorded at 25 frames s−1,
thus, 1/25= 0.04 s)

• Reynolds number for the velocity of the single-
dislocation sequence motion for total volume of
the elemental cell,Redis1 = v1Deρ/µ = 0, 4 (laminar
regime,Re< 2300).

(c)

• Volume of the sequence of the elemental cell,V1 = 70×

700× 100= 49× 105 nm3

• Density of a dislocation,ρ1 = 1 dislocation/V1 = 0.2×

10−6 dis nm−3

• Dislocation viscosity, µ1 = (1 dislocation A−1)/

(Y/v1) = 4× 10−5 dis s nm−2

• A = 100× 70= 7× 103 nm2, Y = 700 nm
• Reynolds number for the velocity of the single-

dislocation sequence motion in the sequence of the ele-
mental cell,Re1 = v1Deρ1/µ1 = 1620 (laminar regime,
Re< 2300).
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