ŽELJKO STOJANOVIĆ¹ KATARINA JEREMIĆ² SLOBODAN JOVANOVIĆ² WOLFGANG NIERLING³ MANFRED DIETER LECHNER³

¹"Duga" A.D., Industrija boja i lakova, Beograd, Srbija ²Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Beograd ³Department of Physical Chemistry, University of Osnabrück, Osnabrück, Germany

NAUČNI RAD

UDK 66.253.095.64:664.2:543.4

DOI: 10.2298/HEMIND0906593S

Skrob je sastavljen od razgranatog amilopektina i linearne amiloze. Udeo amiloze zavisi od porekla skroba ali je generalno daleko manji nego udeo amilopektina. Skrob se ne rastvara u hladnoj vodi a porast temperature dovodi do porasta rastvorljivosti. Pri temperaturi od 50 do 70 °C dolazi do klajsterizacije skroba, da bi u pravi rastvor prešao tek pri temperaturama iznad 90 °C. Rastvori skroba su nestabilni i dolazi do retrogradacije skroba. Brzina kojom se ova pojava odigrava zavisi od brojnih faktora. Rastvorljivost skroba se poboljšava njegovim modifikovanjem. Jedan od najčešće korišćenih derivata skroba je karboksimetil skrob (CMS). Karboksimetil skrob se može dobiti reakcijama u homogenoj (u vodi) i heterogenoj sredini (metanol, etanol, izopropanol) [1,2]. Uzorci sa većim stepenom supstitucije dobijaju se karboksimetilovanjem u heterogenoj sredini [1--3]. Dobijeni karboksimetil skrob se odlikuje odličnom rastvorljivošću u vodi kada je obliku soli, dok je u kiselom obliku nerastvoran u vodi.

Postoji veliki broj radova u kojima je ispitivano ponašanje kako razblaženih tako i koncentrovanih rastvora skroba [4–12]. O ponašanju karboksimetil skroba u razblaženim rastvorima jako se malo zna iako se već duže vreme vrše istraživanja kako na polju sinteze, [1–3,13– –15], tako i reoloških svojstava[13,14,16] karboksimetil skroba.

Cilj ovog rada je bio da se sintetizuje karboksimetil skrob polazeći od skroba dobijenog iz kukuruza, kao i skroba dobijenog iz krompira i da se ispita uticaj porekla skroba i stepena supstitucije karboksimetil skroba na oblik makromolekula u rastvoru upotrebom metoda statičkog i dinamičkog rasipanja svetlosti i viskozimet-

Rad prihvaćen: 12. novembar 2009.

OBLIK I VELIČINA MAKROMOLEKULA KAR-BOKSIMETIL SKROBA U RAZBLAŽENIM RASTVORIMA

Uzorci karboksimetil skroba pripremljeni su reakcijom eterifikacije u heterogenom medijumu. Tri uzorka su pripremljena iz kukuruznog skroba a tri iz skroba iz krompira. Stepen supstitucije sintetisanih uzoraka je iznosio od 0,40 do 1,10. Uzorci su ispitivani metodama statičkog i dinamičkog rasipanja svetlosti i viskozimetrijom razblaženih rastvora u 0,10 M rastvoru NaCl kao rastvaraču na 25 °C. Određene su vrednosti molarnih masa, M_W , poluprečnika rotacije, R_g , hidrodinamičkog poluprečnika, R_h , i graničnog viskozitetnog broja, $[\eta]$. Utvrđeno je da su uzorci bez obzira na tip skroba i stepen supstitucije međusobno slični. Fraktalne dimenzije, d_f iznose 2,380 ($R_g - M_W$) i 2,406 ($R_\eta - M_W$), dok parametar ρ iznosi 1,195. Vrednost fraktalne dimenzije i parametra ρ karakteristične su vrednosti za ponašanje razgranatih klastera u termodinamički dobrim rastvaračima.

> rije. Skrob iz kukuruza i krompira razlikuju se po sadržaju amiloze, tipu kristalne rešetke, kao i tipu amilopektina. Amilopektini iz ova dva tipa skroba se razlikuju po gustini grananja i dužini grana.

EKSPERIMENTALNI DEO

Hemikalije

Korišćeni su sledeći tipovi skroba: kukuruzni skrob (25% amiloze, "Jabuka" Starch Industry, Srbija) i skrob iz krompira (20% amiloze, CHP GmbH, Nemačka).

Sve ostale hemikalije koje su korišćene (NaOH, ClCH₂COONa, CH₃CH₂OH, CuSO₄, EDTA, NaCl, HCl, Murexid) su bili proizvodi firmi Fluka ili Merck.

Sinteza i priprema uzoraka

Sinteza karboksimetilskroba je izvođena u dva stupnja kao što je to već opisano ranije [17].

Sintetizovana su tri uzorka CMS polazeći od kukuruznog skroba i tri polazeći od skroba iz krompira. Nakon sinteze dobijeni uzorci CMS su rastvarani u destilovanoj vodi a potom taloženi etanolom, sušeni u sušnici na 50 °C i mleveni. Samleveni uzorci CMS su dispergovani u acetonu i konvertovani u kiselu formu (H--CMS) dodavanjem 3 cm³ 6 M hlorovodonične kiseline na 1 g CMS. Disperzija je mešana oko 30 min na magnetnoj mešalici, nakon toga je tečna faza dekantovana, a preostalom talogu je dodavan 80 mas% etanol u cilju uklanjanja zaostalih soli. Uzorak je na ovaj način prečišćavan dok provodljivost filtrata ne padne ispod 50 μ S cm^{-1} (obično ispod 25 μ S cm^{-1}). Nakon uklanjanja soli uzorak je ponovo dispergovan u acetonu i filtriran. Prečišćeni uzorci su sušeni u vakuum-sušnici na 50 °C do konstantne mase, a zatim su mleveni. Ovako prečišćenim i osušenim uzorcima je određen sadržaj vlage, a potom je određivan stepen supstitucije. Od ovih uzorka pripremani su rastvori za merenje intenziteta statički i

Autor za prepisku: K. Jeremić, Tehnološko-metalurški fakultet, Karnegijeva 4, 11000 Beograd, Srbija.

E-pošta: kjeremic@tmf.bg.ac.rs

Rad primljen: 28. septembar 2009

dinamički rasute svetlosti i za viskozimetrijska merenja. Uobičajeno je da se za ova ispitivanja prvo pripreme rastvori uzoraka veće koncentracije ("štok" rastvori) koji se potom razblažuju. Za pripremu rastvora CMS u 0,1 M rastvoru NaCl, "štok" rastvor se može pripremati rastvaranjem uzorka u vodenom rastvoru soli, ali je bolje pripremiti rastvor u vodi i dodavati čvrstu so u već pripremljene rastvore, kako je u ovom radu i činjeno. Kako nečistoće iz rastvora ne bi dospele u oprane posude neophodno je ukloniti nečistoće iz rastvora. Uklanjanje nečistoća iz rastvora se izvodi ili ultracentrifugiranjem (do 300000 g) ili upotrebom membrana sa jako finom veličinom pora (oko 0,2 μ m). U ovom radu rastvori su filtrirani korišćenjem membrane sa veličinom pora od 0,2 μ m.

Određivanje sadržaja vlage

Sadržaj vlage u uzorcima je određivan korišćenjem uređaja Moisture Analyzer, SARTORIUS MA 40. Merenje vlažnosti je izvođeno tri puta, a kao krajnja vrednost vlažnosti uzimana je srednja vrednost ova tri merenja.

Određivanje stepena supstitucije

Stepen supstitucije, *DS*, određivan je metodom povratne titracije. Kiseloj formi CMS se dodaje određena količina rastvora NaOH a potom rastvor titriše rastvorom HCl. Na osnovu utroška HCl za titraciju rastvora i "slepe probe" određuje se stepen supstitucije CMS. Detaljan postupak određivanja DS je ranije opisan [17].

Statičko rasipanje svetlosti

Merenje intenziteta statički rasute svetlosti je izvođeno na uređaju FICA 50 photometer ($\lambda = 436$ nm) u opsegu uglova merenja od 30 do 150°, pri temperaturi 25 °C.

Određivanje priraštaja indeksa refrakcije svetlosti

Za određivanje molarne mase, kao i poluprečnika rotacije, iz rezultata statičkog rasipanja svetlosti, potrebno je poznavati indeks prelamanja svetlosti rastvarača, n_A , i priraštaj indeksa prelamanja svetlosti ispitivanog rastvora, dn/dc. Vrednosti priraštaja indeksa prelamanja svetlosti rastvora CMS u 0,10 M rastvoru NaCl u vodi pri temperaturi 25 °C, određeni su upotrebom diferencijalnog refraktometra BP-2000-V (Brice-Phoenix) na 436 nm, a vrednosti su prikazane u tabeli 1 [18].

Dinamičko rasipanje svetlosti

Merenje intenziteta dinamički rasute svetlosti je izvođeno upotrebom spektrometra ALV-5000. Kao izvor svetlosti korišćen je He–Ne laser (Spectra Physics, Model 9863/100KB). Talasna dužina svetlosti, λ , iznosila je 632,8 nm. Intenzitet fluktuacije rasute svetlosti je analiziran upotrebom autokorelatora (ALV-5000).

Tabela 1. Vrednosti dn/dc uzoraka CMS u 0,10 M NaCl
$(\lambda = 436 \text{ nm}, t = 25 \text{ °C})$
Table 1. Values of dn/dc for CMS samples in 0.10 M NaCl
$(\lambda = 436 \text{ nm}, t = 25 \text{ °C})$

Uzorak	dn/dc, cm ³ g ⁻¹
CMS1	0.14588
CMS2	0.17387
CMS3	0.16622
CMS4	0.15782
CMS5	0.14584
CMS6	0.15490

Određivanje graničnog viskozitetnog broja

Određivanje graničnog viskozitetnog broja izvođeno je na 25 °C u 0,10 M rastvoru NaCl upotrebom Ubelodeovog viskozimetra. Granični viskozitetni broj je određivan na uobičajen način [19].

REZULTATI I DISKUSIJA

Od sinetizovanih uzoraka CMS pravljeni su rastvori različitih koncentracija u 0,1 M vodenom rastvoru NaCl i ti rastvori su nakon prečišćavanja ispitivani metodom statičkog rasipanja svetlosti. Iz dobijenih rezultata može se dobiti vrednost molarnih masa, M_W , poluprečnika rotacije, R_g , i drugog virijalnog koeficijenta, A_2 , a u pojedinim slučajevima i oblik makromolekula. Za određivanje ovih parametara korišćen je Cimov (Zimm) dijagram (slika 1) baziran na Debajevoj (Debye) jednačini:

$$\frac{Kc}{R_{\theta}} = \frac{1}{M_{W}P(\theta)} + 2A_{2}c + ... \cong$$

$$\equiv \frac{1 + \frac{1}{3}R_{g}q^{2} - \text{viši članovi} q^{2}}{M_{W}} + 2A_{2}c \qquad (1)$$

gde je:

$$K = \frac{4\pi^2 n_{\rm A}^2}{N_{\rm L} \lambda_0^4} \left(\frac{{\rm d}n}{{\rm d}c}\right)^2 - \text{optička konstanta},$$
$$q = \frac{4\pi n_{\rm A}}{\lambda_0} \sin\left(\frac{\theta}{2}\right),$$
$$P(\theta) = \frac{I(\theta)}{I(\theta=0)},$$

 $n_{\rm A}$ – indeks prelamanja svetlosti rastvarača, $N_{\rm L}$ – Avogadrov broj, λ_0 – talasna dužina upadnog zraka, dn/dc – – priraštaj indeksa prelamanja svetlosti, R_{θ} – Rejlijev odnos, $P(\theta)$ – funkcija rasipanja čestica, $M_{\rm W}$ – molarna masa, srednja po masenoj zastupljenosti, A_2 – drugi virijalni koeficijent, $R_{\rm g}$ – poluprečnik rotacije, q – vektor rasipanja svetlosti, $I(\theta)$ – intenzitet rasute svetlosti, $I(\theta=0)$.

Slika 1. Tipičan prikaz Cimovog grafika dobijen merenjem statičkog rasipanja svetlosti uzorka CMS6 u 0,10 M NaCl pri temperaturi 25 °C. Figure 1. Typical Zimm graph obtained by measuring static light scattering of CMS6 sample in 0.10 M NaCl at 25 °C.

Za konstrukciju Cimovog dijagrama neophodno je odrediti za svaku koncentraciju i svaki ugao Rejlijev (Rayleigh) odnos R_{θ} i priraštaj indeksa prelamanja svetlosti. Za određivanje R_{θ} neophodno je izmeriti intenzitet svetlosti rasute benzenom kao standardom, rastvaračem (toluen) i rastvorom.

Na slici 1 prikazan je tipičan primer Cimovog dijagrama dobijen za uzorak CMS6. Ekstrapolacijom eksperimentalnih vrednosti na c = 0 dobija se kriva opisana sledećom jednačinom:

$$\left(\frac{Kc}{R_{\theta}}\right)_{c=0} = \frac{1}{M_{\rm W}P(\theta)} = \frac{1}{M_{\rm W}}(1+R_{\rm g}^2\frac{q^2}{3})$$
(2)

Iz nagiba ove krive izračunava se vrednost poluprečnika rotacije, R_g . Ekstrapolacijom eksperimentalnih vrednosti na $q^2 = 0$, Debajeva jednačina se svodi na sledeću zavisnost:

$$\left(\frac{Kc}{R_{\theta}}\right)_{q^{2}=0} = \frac{1}{M_{W}} (1 + 2A_{2}M_{W}c + ...)$$
(3)

iz čijeg nagiba se izračunava vrednost drugog virijalnog koeficijenta. Vrednosti ovih parametara za sve uzorke u 0,10 M NaCl su prikazane u tabeli 2.

Dinamičko rasipanje svetlosti se uglavnom koristi za određivanje koeficijenta translacione difuzije. Prilikom ispitivanja ponašanja razblaženih rastvora metodom dinamičkog rasipanja svetlosti snimana je korelaciona funkcija:

$$g_2(t) = \langle I(0)I(t) \rangle \tag{4}$$

 $g_2(t)$ je povezano sa korelacionom funkcijom električnog polja:

Tabela 2. Molekulski parametri uzoraka CMS dobijeni iz rezultata merenja statičkog i dinamičkog rasipanja svetlosti i vrednosti [η] uzoraka CMS u 0,1 M NaCl pri temperaturi 25 °C

Table 2. The molecular paran	meters of CMS determined from	m static and dynamic light	scattering measurements and	l values of $[\eta]$ for
CMS in 0.10M NaCl at 25 °C				

0	Denslele slenche	DC	$M_{\rm W}\!\! imes\! 10^{-6}$	$A_2 \! \times \! 10^6$	$R_{\rm g}$	$[\eta]$	$R_{ m h}$ /	nm	
Оглака	Porekio skroba	DS	g/mol	mol cm^3/g^2	nm	cm ³ /g	Srednje	Greška	ρ
CMS1	Krompir	0,90	20,8	8,4	197	142	120	0,4	1,64
CMS2		0,81	0,857	159	49,0	57,7	40,7	2,8	1,20
CMS3		0,40	1,92	86,2	64,8	67,7	55,3	2,2	1,17
CMS4	Kukuruz	0,50	4,99	-5,2	97.0	81,3	80,2	1,9	1,21
CMS5		0,70	19,3	16,3	182	106	131	1,1	1,39
CMS6		1,10	6,38	28,9	105	98,4	87,8	4,9	1,20

$$g_{1}(t) = \frac{\left\langle E(0)E^{*}(t)\right\rangle}{\left\langle \left|E(0)\right|^{2}\right\rangle}$$

preko jednačine:

$$g_2(t) = B(1 + \beta g_1(t)^2)$$
(5)

gde su I(0) i I(t) intenziteti rasipanja svetlosti u momentu t = 0 i t; E(0) i E(t) odgovarajući intenziteti rasipanja električnog polja; B je bazna linija, a β koherentni faktor i oni zavise od uređaja. Korelaciona funkcija $g_2(t)$ je prikazana na slici 2. Kada je $qR_g \ll 1$, $g_1(t)$ je jednostavna eksponencijalna funkcija:

$$g_1(t) = \exp(-\Gamma t) = \exp(-Dq^2 t)$$
(6)

gde je Γ mera relaksacione brzine. Vrednost parametra Γ može se odrediti brojnim matematičkim modelima, a u ovom radu korišćene su dve metode: metoda Cummulant i Contin. Upotrebom Contin programa dobija se spektar relaksacionih brzina (slika 3) iz čije vrednosti za pik se određuje karakteristična relaksaciona brzina, Γ . Druga korišćena metoda za određivanje parametra Γ je metoda kumulanata [20]:

$$\ln g_1(t) = -\Gamma_1 t + \frac{\Gamma_2}{2!} t^2 - \frac{\Gamma_3}{3!} t^3 + \dots$$
 (7)

Slika 2. Korelaciona funkcija, $g_2(t)$ *, pri različitim uglovima merenja (30, 60, 90 i 110 °). Figure 2. Correlation function,* $g_2(t)$ *, at different angles of measurements (30, 60, 90 and 110 °).*

Slika 3. Relaksacioni spektar dobijen iz korelacione funkcije. Figure 3. Relaxation spectrum obtained from the correlation function.

Prividni koeficijent difuzije je:

$$D_{\rm app}(q,c) = \frac{\Gamma}{q^2} \tag{8}$$

Vrednost prividnog koeficijenta difuzije zavisi od koncentracije rastvora i ugla ispitivanja:

$$D_{\rm app}(q,c) = D_Z(1 + C_{\rm h}(q^2 R_{\rm g}^2 - ...)(1 + k_D c + ...)$$
(9)

gde je D_z z-srednja vrednost translacionog koeficijenta difuzije, a C_h koeficijent koji zavisi od strukture makromolekula [21,22].

Procedura je jednostavna za sferne čestice (za koje je $C_h = 0$) ili za čestice bitno manje od talasne dužine svetlosti korišćene za ispitivanje ($qR_g \ll 1$, jer je $C_h(qR_g)^2 \ll 1$)). Merenja pri samo jednom uglu u ovim slučajevima su dovoljna.

Za velike linearne i razgranate strukture, izvođenje merenja pri jednom uglu rasipanja daje pogrešne rezultate. Ovo je posledica činjenice da metoda dinamičkog rasipanja svetlosti registruje pored translacionih i ostale vidove pokreta u molekulu. Ako se merenja izvode pri $qR_{g} \ll 1$, cela čestica ili makromolekul se vide. Pod ovim uslovima dobija se translaciono kretanje centra mase. Međutim, u slučajevima kada je $qR_{g} > 2$, dobijaju se informacije o rastojanjima u čestici koja su mnogo manja od prečnika čestice. Pri ovim vrednostima qR_g registruju se unutrašnji pokreti. Ovi unutrašnji pokreti se superponiraju sa translacionim pokretima centra mase. U pojedinim slučajevima moguće je odvojiti translacione od unutrašnjih pokreta i dobiti pravu vrednost translacionog koeficijenta difuzije. Kako su pri malim vrednostima $qR_{\rm g}$ dominantni pokreti cele čestice, koeficijent difuzije se dobija ekstrapolacijom podataka Γ/q^2 , na ugao 0° uz uslov da su vrednosti $qR_{\rm g} < 1$.

Vrednosti parametra D_Z određivane su i metodom Contin i metodom Cummulant. Srednja vrednost translacionog koeficijenta difuzije, dobijena iz ove dve metode, korišćena je za određivanje hidrodinamičkog poluprečnika upotrebom Stoks-–Ajnštajnove (Stokes–Einstein) jednačine:

$$R_{\rm h} = \frac{k_{\rm B}T}{6\pi\eta_0 D_0} \tag{10}$$

gde je $k_{\rm B}$ Bolcmanova konstanta, T – temperatura, η_0 – viskoznost rastvarača na temperaturi T i D_0 koeficijent difuzije. U tabeli 2 prikazana je srednja vrednost hidrodinamičkog poluprečnika uzoraka CMS u 0,10 M NaCl.

Vrednosti graničnog viskozitetnog broja ispitivanih uzoraka CMS dobijene iz viskozimetrijskih merenja takođe su prikazane u tabeli 2.

Uticaj stepena supstitucije i porekla skroba na oblik makromolekula

Makromolekuli u rastvoru mogu biti u različitom obliku, od krutih štapića, preko klupka i globula do mi-

krogela. O obliku makromolekula ponešto se može saznati već iz oblika krive u Cimovom grafiku. Naime, ukoliko se makromolekul nalazi u obliku globule, kriva $(Kc/R_{\theta})_{c=0}$ se krivi prema ordinatnoj osi, dok u slučaju krutih štapića krivljenje je prema apcisnoj osi. Kada su makromolekuli u obliku klupka, dobija se prava linija. Kako je CMS derivat skroba, očekivalo se da će doći do krivljenja ka ordinatnoj osi kao što je to slučaj sa samim skrobom. Sa slike 1 vidi se da je dobijena pravolinijska zavisnost. Ovo se može objasniti polidisperznošću makromolekula i mogućom povećanom krutošću makromolekulskog lanca u odnosu na skrob.

Oblik makromolekula u razblaženim rastvorima može se odrediti upotrebom Kratki (Kratky) grafika. Na slici 4 prikazan je Kratki grafik za uzorke CMS-a u 0,10 M NaCl. Radi poređenja prikazane su i teorijske krive za polidisperzne linearne lance i beskonačno razgranat makromolekul pri θ – uslovima. Eksperimentalne krive uzoraka CMS u 0,10 M NaCl izgledaju slično kao polidisperzni linearni lanci pri θ – uslovima. Takođe, svi uzorci formiraju zajedničku krivu. Znači, bez obzira na poreklo skroba i stepen supstitucije (u ispitivanom opsegu) uzorci se ponašaju kao međusobno slični.

Slika 4. Kratki grafik uzoraka CMS u 0,10 M NaCl. Figure 4. Kratky plot of CMS samples in 0.10 M NaCl.

Uticaj molarne mase na oblik makromolekula CMS

Kun–Mark–Houvinkova (Kuhn–Mark–Houwink) jednačina povezuje granični viskozitetni broj, $[\eta]$ sa srednjom masenom molarnom masom, M_W :

$$[\eta] = K_{\eta} M_{\mathrm{W}}^{a_{\eta}} \tag{11}$$

gde su parametri K_{η} i a_{η} zavisni od vrste makromoekula, rastvarača i temperature. Slična zavisnost postoji i za R_{g} i A_{2} . Na osnovu vrednosti parametara koji opisuju zavisnosti $[\eta]$ ili R_{g} od M_{W} može se steći uvid u oblik čestica u razblaženim rastvorima.

Logaritmovanjem Kun–Mark–Houvinkove jednačine dobija se linearna zavisnost log $[\eta]$ od log M_W (slika 5) iz čijeg odsečka se može odrediti K_{η} , a iz nagiba parametar a_{η} . Dobijene su sledeće vrednosti parametra K_{η} i a_{η} za ispitivane uzorke CMS u 0,1 M vodenom rastvoru NaCl:

$$K_{\eta} = (1.089 \pm 0.266) \text{ cm}^3/\text{g}$$

$$a_{\eta} = 0.288 \pm 0.016$$

Slika 5. Zavisnost graničnog viskozitetnog broja, $[\eta]$, od molarne mase, M_W , uzoraka CMS u 0,10 M NaCl ((- -) – a_η iz v_{Rg} , (....) – a_η iz $v_{R\eta}$).

Figure 5. Dependence of the limited viscosity number, $[\eta]$, on the molar mass, M_W , of CMS samples in 0.10 M NaCl $((--) - a_\eta from v_{Rg}, (....) - a_\eta from v_{R\eta})$.

Poznato je da a_{η} ima vrednost 0,5 za linearne lance pri θ -uslovima, a oko 0,8 za linearne lance u termodinamički dobrim rastvaračima. Više vrednosti a_{η} dobijene su za kruće strukture. Za razgranate klastere parametar a_{η} ima vrednosti između 0,2 i 0,5. Primenom Ajnštanove jednačine [35] moguće je iz graničnog viskozitetnog broja izračunati viskozitetni poluprečnik prema jednačini:

$$R_{\eta} = \left(\frac{3[\eta]M_{\rm W}}{42,5\pi N_{\rm L}}\right)^{1/3}$$
(12)

Zavisnost poluprečnika rotacije, R_g , hidrodinamičkog radijusa, R_h i R_η , od molarne mase, M_W , može se opisati sledećom jednačinom:

$$R_i \propto M_{\rm W}^{\nu_{Ri}} \tag{13}$$

gde *i* predstavlja *g*, *h* ili η . U grafički prikazanoj zavisnosti $log R_i = f(\log M_W)$ nagib prave predstavlja parametar v_{Ri} . Za rastvore makromolekula može se odrediti termodinamički kvalitet rastvarača ali i oblik makromolekula na osnovu eksponenta v ili njegove recipročne vrednosti što predstavlja fraktalnu dimenziju $d_f = 1/v$. Fraktalna dimenzija se može odrediti i na osnovu nagiba u linearnom delu krive zavisnosti faktora rasipanja $P(\theta)$

od $qR_{\rm g}$. Kod razgranatih struktura, u većini slučajeva postoje razlike između vrednosti $d_{\rm f}$ određenih ovim dvema metodama. U ovom radu će biti razmatrane samo vrednosti $d_{\rm f}$ dobijene iz v.

Sa teorijske tačke gledišta eksponent ν (ili d_f) može varirati od $\nu = 0.33$ ($d_f = 3$) za krute sfere do $\nu = 1$ ($d_f = 1$) za krute štapiće. Za linearne lance vrednost $\nu = 0,5$ ($d_f =$ = 2) ukazuje na Gausovo klupko u θ rastvaraču, a $\nu =$ = 0,588 ($d_f = 1,7$) ukazuje na termodinamički dobar rastvarač. Kod razgranatih makromolekula parametar ν ima vrednost 0,4 ($d_f = 2,5$) za θ -uslove i 0,5 ($d_f = 2$) za termodinamički dobre rastvarače. Na slici 6 prikazana je zavisnost R_i od M_W uzoraka CMS u 0,10 M NaCl, kao i vrednosti parametara v_{Ri} .

Slika 6. Zavisnost R_g , R_h i R_η od molarne mase, M_W , uzoraka CMS u 0,10 M NaCl pri temperaturi 25 °C. Figure 6. Dependence of R_g , R_h and R_η on molar mass, M_W , for CMS samples in 0.10 M NaCl at 25 °C.

Zavisnost R_i od M_W je uglavnom linearna funkcija u log-log dijagramu. Nagib ove prave predstavlja parametar ν . Sa slike 6 se vidi da R_h ima nešto manju vrednost od $R_{\rm g}$ kod svih uzoraka. Vrednosti parametra R_{η} su značajno niže kako od R_{g} tako i od R_{h} . Očigledno je da sa porastom molarne mase rastu i poluprečnici R_g, R_h i R_{η} . Nagib i odsečak zavisnosti log $R_i = f(\log M_W)$ prikazanih na slici 6 određen je metodom najmanjih kvadrata. Vrednosti nagiba zavisnosti $R_{\rm g}$ od $M_{\rm W}$, i $R_{\rm h}$ od $M_{\rm W}$ iznose 0,420 i 0,376. Razlike u vrednostima nagiba mogu biti posledica polidisperznosti uzoraka. Vrednosti ovih parametara su saglasni ponašanju razgranatih makromolekula. Vrednosti ovih parametara za kukuruzni skrob rastvoren u vodi su [11]: $v_{Rg} = 0,37$, a $v_{Rh} = 0,23$, a v_{Rg} amilopektina je od 0,37 do 0,49, zavisno od tipa amilopektina [25]. Najniže vrednosti su dobijene za voskasti i amilopektin iz kukuruza. Nordmeier je za razgranatu strukturu dekstrana dobio vrednosti $v_{Rg} = 0,41$, a $v_{Rh} = 0,44$ [30]. Morris sa saradnicima je za glikogen u vodi dobio vrednosti $v_{Rg} = 0,33$, a $v_{Rh} = 0,32$ i $v_{[\eta]} =$

= -0,07 [33], dok je s druge strane Rolland-Sabate sa saradnicima [25] za glikogen dobio vrednosti za v_{Rg} za frakcije male molarne mase jednake 0,68 a za frakcije velike molarne mase 0,40. Tao i Xu su ispitujući ponašanje razgranatog polisaharida (izolovanog iz bakterije *Pleurotus tuber-regium*) u vodi dobili vrednosti v_{Rg} = = 0,38 i 0,63 u zavisnosti od toga da li je uzorak frakcionisan ili ne [26].

Vrednosti parametara v_{Ri} , kao što smo već pomenuli, mogu se iskoristiti za izračunavanje fraktalne dimenzije $d_f = 1/v_{Ri}$, kao i $a_\eta = 3v_{Ri} - 1 = 3/d_f - 1$ i dobijeni su rezultati dati u tabeli 3.

Tabela 3. Vrednosti parametra v_{Ri} fraktalne dimenzije, d_{f} i parametra a_{η} u zavisnosti od posmatrane korelacije R_i i M_W Table 3. Values of parameter v_{Ri} fractal dimension, d_{f} and parameter a_{η} depending on the observed correlation between R_i and M_W

Zavisnost	V_{Ri}	$d_{ m f}$	a_{η}
$R_{\rm g} \propto M_{\rm W}^{\nu}$	0,420	2,38	0,260
$R_{\rm h} \propto M_{\rm W}^{\nu}$	0,376	2,66	0,127
$R_\eta \propto M_W^{\nu}$	0,416	2,41	0,247

Vrednosti d_f dobijene iz zavisnosti poluprečnika rotacije i viskozitetnog poluprečnika su u dobroj saglasnosti sa ponašanjem razgranatih klastera u dobrim rastvaračima, dok vrednost fraktalne dimenzije određena iz hidrodinamičkog poluprečnika ima vrednost višu nego što to predviđa teorija za razgranate klastere, o čemu će kasnije biti više reči.

Sa slika 5 i 6 se vidi da je rasipanje tačaka od linearnosti kod zavisnosti R_{η} od M_{W} mnogo manje nego kod zavisnosti $[\eta]$ od M_{W} . Na slici 5 prikazane su i krive nastale fitovanjem na osnovu parametara a_{η} dobijenih iz v_{Rg} i $v_{R\eta}$. Postoji jako dobro slaganje krivih za fitovanje pogotovo prilikom upotrebe parametara v_{Rg} i $v_{R\eta}$.

Parametar ρ

Jedan od parametara koji daje informaciju o obliku čestica u rastvoru je i parametar ρ . Parametar ρ predstavlja odnos poluprečnika rotacije i hidrodinamičkog poluprečnika ($\rho = R_g/R_h$). U tabeli 4 su date teorijske vrednosti parametra ρ . Hidrodinamički poluprečnik se određuje iz koeficijenta difuzije. Koeficijent difuzije se određuje na osnovu relaksacionih brzina koje su detektovane u rastvoru. Translacioni koeficijent difuzije, koji je mera difuzije same čestice, a samim tim i hidrodinamičkog poluprečnika, dobija se samo pri jako malim vrednostima qR_g ($qR_g \ll 1$), pri čemu detektovani po-

Tabela 4. Teorijska predviđanja za parametar ρ u zavisnosti od strukture čestice Table 4. Theoretical predictions for the parameter ρ depending on the structure of particles

Arhitektura	$ ho=R_{ m g}/R_{ m h}$
Homogene tvrde sfere	0,77
Nasumično klupko	, monodisperzno
θ-uslovi	1,50
Dobar rastvarač	1,78
Nasumično klupko, poli	disperzno $(M_w/M_n = 2)$
θ-uslovi	1,73
Dobar rastvarač	2,05
Regularni zvezdasti moleku	li uniformne dužine grana
θ -uslovi, $f = 4$	1,33
θ -uslovi, $f >> 1$	1,08
Regularni zvezdasti molekuli, po	lidisperzne grane $(M_w/M_n = 2)$
θ -uslovi, $f = 4$	1,53
θ -uslovi, $f \gg 1$	1,22
Dendrimer, $n > 10$ (Gausove ,,meke" sfere)	0,98
Nasumično razgran	ati lanci, θ -uslovi
(A3 monomer)	1,73
Hiperrazgranati po	plimeri, θ-uslovi
(AB2 monomers), $DP_{\rm w}$ 10	1,22
Mikrogelovi	0,3–0,5
Ciklični fleksibilni la	nci, monodisperzni
θ-uslovi	1,25
Kruti prstenovi $(N > 3)$	$\infty(1/\pi) \ln N$
Kruti prstenovi $(N > 3)$	$\propto (1/3)^{1/2} \ln N$

kreti potiču samo od translacionog pomeranja cele čestice. U slučaju krućih makromolekula ili makromolekula sa većim segmentalnim dužinama, vrednosti qR_{g} pri kojima se detektuju translacioni pokreti se pomeraju na više vrednosti. Najdrastičniji primer su krute sfere kod kojih se pri svim vrednostima $qR_{\rm g}$ dobijaju samo translacioni pokreti. Prilikom ispitivanja razblaženih rastvora CMS dinamičkim rasipanjem svetlosti vrednosti parametra qR_{g} bile su u rasponu koji je prikazan u tabeli 5. Iz tabele 5 vidi se da su vrednosti $qR_{\rm g}$ manje od 1 jedino kod uzoraka CMS2 i CMS3, dok se kod uzoraka CMS4 i CMS6 qR_g kreću od oko 1 do 3, a kod uzoraka CMS1 i CMS5 od oko 2 do 5. Pri višim vrednostima $qR_{\rm g}$ uočavaju se i unutrašnji pokreti u čestici. Pojava unutrašnjih pokreta u čestici, koja se ne može jasno razdvojiti od difuzionih pokreta dovodi do porasta vrednosti koeficijenta difuzije a samim tim i do smanjenja R_h. Manje vrednosti hidrodinamičkog radijusa pri velikim molarnim masama (CMS1 i CMS5) dovode do smanjenja vrednosti nagiba zavisnosti $R_{\rm h}$ od $M_{\rm W}$ (dobijeno je 0,376 što je dalo nerealnu fraktalnu dimenziju 2,66). Sa druge strane, niže vrednosti R_h dobijene pri velikim molarnim masama dovode do povećanja parametra ρ iznad realnih vrednosti. U tabeli 5 prikazane su vrednosti parametra p dobijene za uzorke CMS u 0,10 M NaCl.

Tabela 5. Vrednosti parametra qR_g prilikom merenja dinamičkog rasipanja svetlosti rastvora CMS u 0,10 M NaCl, kao i vrednosti parametra ρ ($t = 25 \$ °C) Table 5. Values of qR_g at dynamic light measurements of CMS solutions in 0.10M NaCl and values of parameter ρ ($t = 25 \$ °C)

Uzorak	aR_{α}	0
CMS1	1,5-6,5	1,64
CMS2	0,3–1,5	1,20
CMS3	0,5–1,6	1,17
CMS4	1–3,2	1,21
CMS5	1,9–5,3	1,39
CMS6	0,8–3	1,20

Na slici 7 prikazana je zavisnost parametra ρ od molarne mase uzoraka. Sa slike 7 vidi se da je parametar ρ nezavisan od molarne mase do oko 10 miliona g/mol. Nakon ove vrednosti dolazi do naglog porasta parametra ρ . Uobičajeno je da sa porastom molarne mase čestice postaju kruće, tj. da parametar ρ opada, što ovde nije slučaj. Nagli porast parametra ρ iznad 10 miliona g/mol je verovatno posledica niže vrednosti R_h nego što je to realno (velika vrednost qR_g pri kojima je određivano D). U rastvoru 0,10 M NaCl, parametar ρ ima vrednost oko 1,20, što je karakteristika razgranatih struktura. Ne postoji teorijski model za razgranate klastere u dobrim rastvaračima ali su dosadašnja ispitivanja pokazala da parametar ρ u termodinamički dobrim rastvaračima ima vrednost između 1,1 i 1,3. Slične vrednosti parametra ρ dobijene su za amilopektin (1,1--1,3) i kukuruzni skrob (1,0-1,3) u vodi [11,28], dok vrednost ovog parametra iznosi 0,62 za skrob iz krompira u 0,5 M rastvoru LiCl u DMSO (nešto niža nego za krute sfere) [29]. Nordmeier je ispitivanjem ponašanja dekstrana u vodi dobio vrednosti parametra ρ u intervalu od 1,10 do 1,30 zavisno od molarne mase uzorka [30]. Ioan sa saradnicima je za dekstran u 0,5 M rastvoru NaOH utvrdio da sa porastom molarne mase, vrednost parametra ρ asimptotski teži vrednosti 1,09 [31], dok je za glikogen dobijena vrednost 0,994 (meke sfere) [32]. Glikogen je daleko razgranatiji makromolekul od amilopektina i dekstrana pa očigledno poprima oblik hiperrazgranatih polimera. Morris sa saradnicima je ispitujući ponašanje glikogena u vodi dobio vrednost parametra $\rho = 0.70$ (blisko krutoj sferi) [33]. Wang i saradnici su ispitujući ponašanje razgranatog jonogenog polisaharida izolovanog iz soje dobili vrednosti parametra $\rho = 1,1$ i 1,3 za enzimom tretirane uzorke [34].

Slika 7. Zavisnost parametra ρ od molarne mase, M_W , u 0,10 M rastvoru NaCl. Figure 7. Dependence of ρ on molar mass, M_W , of CMS samples in 0.10 M NaCl.

ZAKLJUČAK

Sintetizovano je po tri uzorka karboksimetil skroba polazeći od skroba dobijenog iz krompira, odnosno kukuruza. Dobijeni uzorci su ispitivani viskozimetrijski, kao i statičkim i dinamičkim rasipanjem svetlosti u razblaženim rastvorima 0,10 M NaCl. Utvrđeno je da su bez obzira na poreklo skroba i stepen supstitucije dobijeni uzorci međusobno slični, što ukazuje da stepen supstitucije u ispitivanom opsegu (0,4–1,1) i poreklo skroba (krompir, kukuruz) ne utiču na ponašanje makromolekula CMS u razblaženim rastvorima. Iz zavisnosti poluprečnika rotacije, R_g , hidrodinamičkog radijusa, R_h , i R_η od molarne mase, M_W , određene su vrednosti eksponenta ν_{Rg} (0,420), ν_{Rh} (0,376) i $\nu_{R\eta}$ (0,416). Ove vrednosti su saglasne vrednostima koje se dobijaju za razgranate klastere. Vrednosti fraktalnih dimenzija, d_f , jesu 2,38 (iz v_{Rg}), 2,66 (iz v_{Rh}) i 2,41 (iz $v_{R\eta}$). Vrednosti fraktalnih dimenzija dobijenih iz v_{Rg} i $v_{R\eta}$ u dobroj su saglasnosti sa teorijskim modelom za razgranate klastere u dobrim rastvaračima. Vrednost d_f dobijena iz v_{Rh} viša je nego što to predviđa teorija i posledica je dobijenih nižih vrednosti R_h kod uzoraka CMS1 i CMS5. Niže vrednosti R_h kod ovih uzoraka su posledica velike vrednosti qR_g prilikom određivanja koeficijenta difuzije. Parametar ρ ima vrednost 1,20, što je u dobroj saglasnosti sa rezultatima dobijenim za druge razgranate klastere u termodinamički dobrim rastvaračima.

Takođe, određeni su i parametri u Kun–Mark– -Houvinkovoj jednačini. Dobijeno je dobro slaganje između vrednosti parametra a_{η} eksperimentalno određenog i vrednosti parametra a_{η} dobijenog iz v_{Rg} i $v_{R\eta}$.

Zahvalnica

Autori se zahvaljuju Ministarstvu za nauku i tehnološki razvoj Republike Srbije na finansijskoj pomoći tokom izrade ovog rada (Projekat broj 142 023).

LITERATURA

- T. Heinze, Chimiya rastitel'nogo syr'ya No. 3 (2005) 13– -29.
- [2] T. Heinze, T. Liebert, Progr. Polym. Sci. 26 (2001) 1689.
- [3] Ž. Stojanović, K. Jeremić, S. Jovanović, Starch 52 (2000) 413–419.
- [4] L.P. Witnauer, F.R. Senti, M.D. Stern, J. Polym. Sci. 16 (1955) 1–17.
- [5] G. Galinsky, W. Burchard, Macromolecules 29 (1996) 1498–1506.
- [6] T. Aberle, W. Burchard, Starch/Stärke 49 (1997) 215– -224.
- [7] G. Galinsky, W. Burchard, Macromolecules 28 (1995) 2363–2370.
- [8] T. Aberle, W. Burchard, G. Galinsky, R. Hanselmann, R.W. Klinger, E. Michel, Macromol. Symp. 120 (1997) 47–63.
- [9] L.A. Bello-Pérez, P. Colonna, Ph. Roger, O. Paredes--López, Starch/Stärke 50 (1998) 137–141.
- [10] R. Hanselmann, W. Burchard, M.Ehrat, H.M. Widmer, Macromolecules 29 (1996) 3277–3282.

- [11] P. Roger, L.A. Bello-Perez, P. Colonna, Polymer 40 (1999) 6897–6909.
- [12] W. Burchard, Macromolecules 37 (2004) 3841-3849.
- [13] Z. Xiaodong, L. Xin, L. Wenying, J. Appl. Polym. Sci. 89 (2003) 3016–3020.
- [14] K. Sangseethong, S. Ketsil, K. Sriroth, Starch/Stärke 57 (2005) 84–93.
- [15] B. Volkert, F. Loth, W. Lazik, J. Engelhardt, 53rd Starch Convention, Detmold, 2002.
- [16] Ž. Stojanović, K. Jeremić, S. Jovanović, Hem. ind. 57 (2003) 547–552.
- [17] Ž. Stojanović, K. Jeremić, S. Jovanović, M.D. Lechner, Starch/Stärke 57 (2005) 79–83
- [18] Ž. Stojanović, K. Jeremić, S. Jovanović, W.Nierling, M.D. Lechner, Starch/Stärke 61 (2009) 199–205.
- [19] K.F. Arndt G. Müller, Polymer Charakterisierung, Hanser Verlag, München, 1996.
- [20] W. Brown, Dynamic Light Scattering, The Method and Some Applications, Clarendon Press, Oxford, 1993
- [21] W. Burchard, M. Schmidt, W. H. Stockmayer, Macromolecules 13 (1980) 1265.
- [22] W. Burchard, Adv. Polym. Sci. 48 (1983) 1
- [23] R. Pecora, J. Chem. Phys. 40 (1964)1604; 43 (1965) 1562.
- [24] Z. A. Akcasu, H. Gurol, J. Polym. Sci., Phys. Ed. 14 (1976) 1
- [25] A. Rolland-Sabate, P. Colonna, M. Mendez-Montealvo, V. Planchot, Biomacromolecules 8 (2007) 2520–2532.
- [26] Y. Tao, W. Xu, Carbohyd. Res. 343 (2008) 3071-3078.
- [27] W. Burchard, Cellulose 10 (2003) 213–225.
- [28] L.A. Bello-Perez, Ph. Roger, P. Colonna, O. Paredes--Lopez, Carbohyd. Polym. 37 (1998) 383–394.
- [29] S. Radosta, M. Haberer, W. Vorwerg, Biomacromolecules 2 (2001) 970–978.
- [30] E. Nordmeier, J. Phys. Chem. 97 (1993) 5110-5185.
- [31] C. Ioan, T. Aberle, W. Burchard, Macromolecules 33 (2000) 5730–5739.
- [32] C. Ioan, T. Aberle, W. Burchard, Macromolecules 32 (1999) 7444–7453.
- [33] G. Morris, S. Ang, S. Hill, S. Lewis, B. Schafer, U. Nobbmann, S. Harding, Carbohydr. Polym. 71 (2008) 101– -108.
- [34] Q. Wang, X. Huang, A. Nakamura, W. Burchard, F. R. Hallett, Carbohydr. Res. 340 (2005) 2637–2644.
- [35] H. Elias, Macromoleküle, Hüthing & Wepf Verlag, Basel, 1990.

SUMMARY

THE SHAPE AND SIZE OF MACROMOLECULES OF CARBOXYMETHYL STARCH IN DILUTED SOLUTIONS

Željko Stojanović¹, Katarina Jeremić², Slobodan Jovanović², Wolfgang Nierling³, Manfred Dieter Lechner³

¹"Duga" A.D., Industry of Paints and Coatings, Belgrade, Serbia

²Faculty of Technology and Metallurgy, Belgrade, Serbia

³Department of Physical Chemistry, University of Osnabrück, Osnabrück, Germany

(Scientific paper)

Carboxymethyl starch samples were prepared by etherification in heterogeneous media. Three samples were prepared from corn starch and three samples from potato starch. Degree of substitution of prepared samples ranged from 0.40 to 1.10. The samples were investigated by static and dynamic light scattering and viscosity of diluted solution in 0.10 M NaCl as solvent at 25 °C. The values of molar mass, M_W , radius of gyration, R_g , hydrodynamic radius, R_h , and limited viscosity number, $[\eta]$ were determined. It was found that the samples are similar to each other regardless of the type of starch and the degree of substitution. Fractal dimension, d_f , was equal to 2.380 ($R_g - M_W$) and 2.406 ($R_\eta - M_W$), while parameter ρ was 1.195. The values of fractal dimension and parameter ρ are characteristic values for the behavior of branched clusters in thermodynamically good solvents.

Ključne reči: Karboksimetil skrob • Statičko i dinamičko rasipanje svetlosti • Viskozimetrija • Razgranati klasteri

Key words: Carboxymethyl starch • Static and dynamic light scattering • Viscosimetry • Branched clusters