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�e introduction of resin-based cements and an adhesive-bonding system in daily dental practice has given the opportunity to 
increase the retention of previously conventional cemented restorations and the optimal results in esthetic. �is experimental study 
employed the 3D Digital Image Correlation Method (3D-DIC) for detecting shrinkage strain in four dual cured composite cements. 
�e aim was to visualize measure, analyze, and compare strain fields in four resin-based cements using the 3D-DIC method. A total 
of 72 samples were divided into 4 groups considering variations in sample types, diameter, and thickness. Four types of composite 
cements: RelyX U200 (3 M ESPE, St. Paul, MN, USA), MaxCem Elite (Kerr, Orange, CA, USA), Multilink Automix (Ivoclar Vivadent, 
Schaan, Liechtenstein), and SeT PP (SDI, Australia) were used. Each type had diameters of 3 mm, 4 mm, and 5 mm, respectively, 
combined with two different values of thickness: 1 mm and 2 mm. �ickness had an important role on strain detected in all tested 
materials showing higher strain in samples with 2 mm thickness compared to 1 mm samples. Shrinkage strain values were the highest 
in Set PP samples indicated the possibility of undesirable de-bonding.

1. Introduction

In current dental practice resin-based cements (RBCs) have 
usually been used for all ceramic restorations fixations, since 
they overcome poor mechanical, biological, and adhesion fea-
tures of the previously used cement [1, 2]. �e right choice of 
RBCs is significant for the longevity of dental restorative mate-
rials. Composition of each ceramic system type is unique and 
therefore requires appropriate type of resin-based cements and 
cementation protocol. Following the protocol, it is important 
to establish adequate bond between cement and ceramic 
agents through adhesive or self-adhesive bonding [3–5].

Mechanical properties of the RBCs used for the cementa-
tion of all ceramics could determine long-term clinical prog-
nosis due to adhesion problems. Improved therapy success 

using resin composite cements is primarily based on their 
significant properties [6], such as thermal and chemical sta-
bility, decreased hydrolytic degradation, better solubility, wear 
resistance, higher elasticity, plasticity, hardness, and strength.

�e standard protocol steps prior to cementation, such as 
conditioning or priming pretreatments of tooth, involve using 
composite cements due to acidic and hydrophilic monomers 
and their ability to create stable chemical composition respon-
sible for the strong bonding [7]. �ese monomers are also 
responsible for polymerization shrinkage stress and shrinkage 
strain, manifested during the RBCs’ hardening process [8, 9]. 
Additionally, curing mode and filler content have also been 
found to be important for strain magnitude [9].

Dual cure mode, consisting of self-cure and light cure 
mode, has demonstrated the mechanical properties’ 
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enhancement. �e polymerization shrinkage strain in RBCs 
during the hardening process can cause therapeutic failure 
due to de-bonding [10]. Namely, strain detected when con-
verting monomer to polymer leads to micro-leakage and has 
adverse effect on longevity of restorations due to cement 
degradation [11–13]. In addition, the thickness of the 
cement layer has been found to be an important factor for 
the cementation [14].

We have conducted an experimental study using the 3D 
Digital Image Correlation Method (3D-DIC) as an optical 
technique for detecting shrinkage strain in composite cements 
immediately a�er photo-polymerization. �e main goal of the 
study was to determine, analyze, and compare strain fields in 
four RBCs using the 3D-DIC method, since the shrinkage of 
RBCs may compromise its bonding effectiveness.

�e following hypotheses of study were formulated:

(a)  Strain values differ in all four tested cements.
(b)  Sample thickness influences strain values.
(c)  Sample diameter influences strain values.

2. Materials and Methods

Strain field was measured using the 3D optical system Aramis 
2 M (GOM, Braunschweig, Germany) based on 3D-DIC 
method [15]. Prior to the experiment, system calibration was 
performed using the calibration panel for corresponding 
measurement volume. �e volume was chosen based on the 
dimensions of the measured area on the sample surface. A�er 
successful calibration, the measuring could begin.

A total of 72 samples were divided into 4 groups. �e 
groups included 4 types of composite cements: RelyX U200 
(3 M ESPE, St. Paul, MN, USA), MaxCem Elite (Kerr, Orange, 
CA, USA), Multilink Automix (Ivoclar Vivadent, Schaan, 
Liechtenstein) and SeT PP (SDI, Australia). Each type had 
diameters of 3 mm, 4 mm and 5 mm, combined with two dif-
ferent values of thickness: 1 mm and 2 mm. Samples were 

prepared by filling ring-type molds. �e top surface of each 
sample was sprayed with fine black and white spray (Kenda 
Color Acrilico, Kenda Farben) to create a stochastic pattern 
with high contrast for image analysis. Digital images were 
made immediately prior and a�er light curing. A LED 
light-curing unit (450–500 mW/cm2, LEDition, Ivoclar-
Vivadent, Schaan, Liechtenstein) was used for 40 s to activate 
polymerization. �e images were then analyzed using special 
so�ware (Aramis 6.2.0) to determine the von Mises strain. 
Analysis of the von Misses strain fields was done using three 
sections (Sections 0, 1 and 2). Section 0 is a circular section 
positioned on the material-mold interface of the sample. 
Sections 1 and 2 are linear sections positioned orthogonally 
to each other. Diameter of the Section 0 and length of the 
Sections 1 and 2 correspond to sample diameter.

All tested materials are dual cure. MaxCem Elite and SeT 
PP are self-adhesive and self-etch cements. Light-curing mode 
was used. �e experiments were done at room temperature.

�e obtained data were statistically analyzed using the 
general linear model (GLM) for factors “material”, “diameter” 
and “thickness”, as well as their interactions. When the inter-
action was significant (�푝 < 0.05), one-way analysis of variance 
(ANOVA) was performed with Tukey’s post-hoc tests and 
Bonferroni correction. �e level of significance was set at 
�푝 = 0.05. Statistical analysis was performed using the so�ware 
package Minitab 16 (Minitab Inc., State College, PA, USA).

3. Results

Figures 1–4 are representative images of the von Mises strain 
across the surface of each material with diameter 5 mm a�er 
photo-polymerization. Maximum von Misses strain values were 
measured in Section 0 in all figures. As seen in Figures 1–4,  
all composite cements sized Ø5 × 2 mm expressed higher strain 
values in Section 0 compared to Ø5 × 1 mm samples. 
Furthermore, MaxCem Elite and Multilink Automix samples 
Ø5 × 1 mm showed a similar distribution of the highest strain 

Figure 1: Von Mises strain field of MaxCem Elite across the sample surface showing the outer segment with higher and inner segments with 
lower strain values (a) sample photograph with overlaying Von Mises strain field for1 mm thickness; (b) sample photograph with overlaying 
Von Mises strain field for 2 mm thickness.
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Figure 2: Von Mises strain field of SeT PP across the sample surface showing the outer segment with higher and inner segments with lower 
strain values (a) sample photograph with overlaying Von Mises strain field for1 mm thickness; (b) sample photograph with overlaying Von 
Mises strain field for 2 mm thickness.
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Figure 3: Von Mises strain field of Relyx U200 across the sample surface showing the outer segment with higher and inner segments with 
lower strain values (a) sample photograph with overlaying Von Mises strain field for1 mm thickness; (b) sample photograph with overlaying 
Von Mises strain field for 2 mm thickness.
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Figure 4: Von Mises strain field of Multilink Automix across the sample surface showing the outer segment with higher and inner segments 
with lower strain values (a) sample photograph with overlaying Von Mises strain field for1 mm thickness; (b) sample photograph with overlaying 
Von Mises strain field for 2 mm thickness.
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were molded into the required test shape and then polymer-
ized. It should be ensured that the material is adequately and 
uniformly cured for the appropriate amount of time and with 
sufficient light energy. �ese conditions provide the most valid 
test results and characterize the given material’s optimal attain-
able properties [3].

�e results presented in this study indicated nonuniform 
strain distribution in all tested materials. �e nonuniform 
distribution of shrinkage strain was also reported using a sin-
gle digital image/camera 2D digital image correlation, showing 
the highest shrinkage in subsurface parts of the sample [16]. 
Similarity has been found in the work of Oliveira et al. [17] 
who noticed increased polymerization shrinkage at the adhe-
sive interface and possible adhesive failure. Given that inter-
molecular distance between the monomers is replaced by a 
covalent bond, polymerization shrinkage and resulting shrink-
age strain are inherent to polymerization. Differences in chem-
ical composition and filler type or size have directly influenced 
the shrinkage behavior. �e monomer-chain mobility can be 
limited by the amount of the fillers, leading to decreased mon-
omers and radical mobility, so resulting in lower shrinkage 
[13, 18]. However, manufacturers do not state the precise 
chemical composition of all tested materials, so it is difficult 
to compare strain in this respect.

Previous studies [6, 10, 19] have been conducted on the 
standardized sample size showing data on strain mean. Our 
study cannot be compared to others, as they focused on the 
overall volumetric shrinkage, rather than deformation fields. 
Using two cameras system, 3D-DIC technique provided suf-
ficient data about out-of-plane shrinkage strain [15]. An 
advantage of the 3D-DIC method over other methods is the 
ability of full-field strain measurement [9, 20–23]. �ese 

values in all Sections. However, Relyx U200 and SeT PP samples 
Ø5 × 2 mm showed similar distribution of the highest strain 
values in all Sections.

Strain mean revealed that the von Misses strain in  
Section 0, Section 1 and Section 2 did not depend on the diam-
eter of the samples (Table 1). Samples with 2 mm thickness 
indicated significantly higher values of the von Misses strain 
in all Sections compared to the samples with 1 mm thickness. 
�e von Mises strain was significantly higher in Section 0 than 
in Sections 1 and 2 for all composite cements. A significant 
difference regarding the thickness of the material and the type 
of composite cement (�푝 = 0.002) has been found (Table 2). A 
significant difference (�푝 = 0.001) in strain values has been 
found between the type of cement, thickness and diameter in 
Sections 1 and 2 (Table 2). Furthermore, ANOVA showed that 
with 1 mm thickness, Multilink Automix exhibited higher von 
Misses strain values compared to others. Considering samples 
with 1 mm thickness, Multilink Automix and MaxCem Elite 
showed significantly higher strain in Section 1 and Section 2 
compared to RelyX U200 and SeT PP. RelyX U200 showed 
higher von Misses strain values with 2 mm thickness. 
Significantly higher values of von Misses strain were measured 
for Multilink Automix and RelyX U200 compared to SeT PP 
and MaxCem Elite in all Sections with 2 mm thickness.

4. Discussion

�e study aimed to determine strain immediately a�er the 
polymerization of four composite cements in the ring type 
molds. It is important to emphasize that the quality of the 
specimen can influence the outcome of the test, as the RBCs 

Table 2: Analysis of Variance for Von Mises, using Adjusted SS for Tests.

*Statistically significant correlation between cement type and diameter for the section 0, **significant correlation between material thickness and diameter 
regarding sections 1 and 2.

Source

�e total degrees of 
freedom (DF)

�e sequential sums 
of squares (Seq SS)

Adjusted sums of 
squares (Adj SS) F‐value P‐value

Section 0 Section 
1+ 2

Section 0 Section 
1+ 2

Section 0 Section 
1+ 2

Section 0 Section 
1+ 2

Section 0 Section 
1+ 2

Material 3 3 16.7169 7.3716 16.7169 7.3716 5.5723 20.93 0.001 0.001
�ickness (mm) 1 1 9.5469 0.8899 9.5469 0.8899 9.5469 7.58 0.001 0.007
Diameter (mm) 2 2 0.7245 0.2412 0.7245 0.2412 0.3622 1.03 0.460 0.361
Correlation 
between material, 
thickness and 
diameter

6 6 2.5884 2.8495 2.5884 2.8495 0.4314 4.04 0.476 0.001**

Correlation 
between material 
and thickness

3 3 7.7163 5.5469 7.7163 5.5469 2.5721 15.75 0.002* 0.001

Correlation 
between material 
and diameter

6 6 6.0954 1.7609 6.0954 1.7609 1.0159 2.50 0.058 0.026

Correlation 
between thickness 
and diameter

2 2 0.6624 0.4927 0.6624 0.4927 0.3312 2.10 0.492 0.127

Error 48 120 22.0597 14.0900 22.0597 0.4596
Total 71 143 66.1105 33.2427
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