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Abstract: FINEAU (2021–2024) is a trans-disciplinary research project involving French, Serbian,
Italian, Portuguese and Romanian colleagues, a French agricultural cooperative and two surface-
treatment industries, intending to propose chènevotte, a co-product of the hemp industry, as an
adsorbent for the removal of pollutants from polycontaminated wastewater. The first objective of
FINEAU was to prepare and characterize chènevotte-based materials. In this study, the impact
of water washing and treatments (KOH, Na2CO3 and H3PO4) on the composition and structure
of chènevotte (also called hemp shives) was evaluated using chemical analysis, X-ray diffraction
(XRD) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy,
X-ray computed nanotomography (nano-CT), attenuated total reflectance–Fourier transform infrared
(ATR-FTIR) spectroscopy, solid state NMR spectroscopy and thermogravimetric analysis. The results
showed that all these techniques are complementary and useful to characterize the structure and
morphology of the samples. Before any chemical treatment, the presence of impurities with a compact
unfibrillated structure on the surfaces of chènevotte samples was found. Data indicated an increase
in the crystallinity index and significant changes in the chemical composition of each sample after
treatment as well as in surface morphology and roughness. The most significant changes were
observed in alkaline-treated samples, especially those treated with KOH.
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1. Introduction

Hemp is a dicotyledonous plant that belongs to the order of Rosales and to the family
of Cannabaceae, genus Cannabis. Industrial hemp refers to the non-psychoactive varieties
of Cannabis sativa L. Hemp is an annual high yielding industrial crop grown for its seeds
and especially its fibers [1,2]. It is a plant with multiple applications, and all its components
can be valorized. There are more than 25,000 hemp-based products for food and feed
(oils, bird products), housing (building materials, insulation), consumer textiles (clothing,
fabrics, shoes, mats, etc.) and industrial textiles (ropes, tarpaulins, etc.), paper production,
hygiene products (soaps, shampoos, etc.), recreation, horticulture, leisure (fishing, sports),
jewelry and fashion, industrial products (impregnation products for wood treatment,
paints, solvents, inks, etc.) or energy and biofuel production [3–13]. Hemp cultivation has
been revived by “new” uses such as in construction and home renovation (hemp concrete,
insulation panels, etc.) and in the production of biocomposites for the automotive and
plastics industries [11,14].

In Europe, the production of industrial hemp has increased steadily over the last
20 years. This plant, which almost disappeared with the arrival of petrochemicals, is
now a leading product in the European market because it is part of a circular economy
that respects the other pillars of sustainable development, namely ecology and society.
Indeed, hemp is an ecological, economical and eco-responsible plant since its cultivation
represents a reservoir of biodiversity that absorbs CO2 and does not require phytosanitary
treatment. Hemp has also many agronomic advantages (e.g., rapid growth with high
yields, a good rotational crop, irrigation is not necessary) and meets environmental and
societal requirements (e.g., suitable for integration in an organic farming system, local
jobs) [7–9,15].

With a cultivated area of 55,000 to 60,000 hectares, Europe is in the top three producers
together with North America and China. France, with a cultivated surface of about
18,000 hectares, is the European leader, the other countries being Lithuania, Estonia, Italy,
the Netherlands, Romania, Germany and Poland [9]. The European industrial hemp
sector is structured and supervised and is constantly developing its outlets while taking
part in scientific and technical research. On average, one hectare of hemp produces 1 to
1.5 tons of seeds (or 11% of the volume harvested) and 6 to 7 tons of straw (or 89% of
the volume). This straw contains two parts: the bark (30 to 35% of the volume), which
contains the fiber used to make hemp wood and yarns, and the wood of the plant (65 to
70% of the volume). The interior of the woody stem is called chènevotte, shives or hurds.
This co-product of the hemp stem obtained after an industrial fiber extraction process
composed of the xylem tissue of the stem. In France, the annual production of chènevotte
is estimated at 40,000 tons. Long considered as a by-product of the industry, used for plant
mulch or animal bedding (cats, horses) and domestic heating, chènevotte is now used for
house insulation (wall plastering) and filling walls or roofs, production of slabs (sound
and heat insulation) and energy and fuel production [7–11,16,17]. However, the volume
of chènevotte produced has been growing, and the sector is therefore interested in new
applications, which represent a challenge for research. There are no concrete applications
in the field of wastewater treatment yet, which is another challenge. For this reason, in the
last two decades, hemp, mainly in the form of fibers, has been studied as a metal adsorbing
material [18–26]. Activated carbons prepared from hemp have also been proposed for
similar applications (e.g., metal complexation, pesticide removal) [27–29]. However, to our
knowledge, there are few studies on the utilization of hemp chènevotte/shives.

FINEAU (2021–2024) is a trans-disciplinary research project involving French, Serbian,
Italian, Portuguese and Romanian colleagues, a French agricultural cooperative and two
surface-treatment industries, aiming to strengthen European academic cohesion by bring-
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ing together the knowhow of each group regarding new applications for chènevotte/hemp
shives. This project aims to propose materials based on hemp shives (Figure 1) for ap-
plications in the field of industrial wastewater treatment. In this first study, we report
results on the characterization of raw shives, washed with water and chemically treated
with a reagent (KOH, Na2CO3 or H3PO4) for 4 h at a temperature of 40 ◦C. These condi-
tions were chosen to be easily transferable to an industrial site and are included in the
project specifications. Changes in the chemical composition and structure of the shives
before and after processing were investigated using chemical analysis, scanning electron
microscopy, energy-dispersive X-ray spectroscopy, computed nanotomography, attenu-
ated total reflectance–Fourier transform infrared spectroscopy, X-ray diffraction analysis,
solid-state nuclear magnetic resonance spectroscopy and thermogravimetric analysis.
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Figure 1. Chènevotte or hemp shives from a French agricultural cooperative (Eurochanvre,
Arc-les-Gray, France).

2. Results and Discussion
2.1. Chemical Composition and Analysis

The first objective of this study was to determine the chemical composition of raw and
modified shives (SHI samples). In general, the alkaline treatment leads to hemicellulose
removal and cellulose swelling [30,31]. For lignocellulosic materials such as hemp, it is
well-established that the shives contain less cellulose and more lignin and hemicelluloses,
while the bast fibers contain more cellulose and less lignin and fewer hemicelluloses [10].
Moreover, lignin binds to hemicelluloses since hemicellulose hydroxyl groups are much
more accessible to lignin than cellulose [32]. The comparison of changes in hemp shive
composition, crystallinity index and moisture sorption before and after treatment is given
in Table 1.

Table 1. Comparison of changes in hemp shive composition, crystallinity index and moisture sorption before (SHI-R) and
after treatment (SHI-W, SHI-OH, SHI-C and SHI-H).

Sample SHI-R SHI-W SHI-OH SHI-C SHI-H

Component (%)
α-cellulose 55.53 56.93 62.30 62.93 61.67

Hemicelluloses 12.48 15.42 5.08 9.58 9.26
Klason lignin 26.54 26.70 31.62 26.59 25.78

Pectins 0.43 0.79 0.33 0.42 0.92
Fats and waxes 0.72 0.38 0 0.04 0.09
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Table 1. Cont.

Sample SHI-R SHI-W SHI-OH SHI-C SHI-H

Water solubles 4.30 1.11 0.68 0.45 2.29

Crystallinity index (%) 28.1 37.0 43.5 41.5 42.6

Moisture sorption (%) 8.53 4.29 4.53 4.12 4.99

% C 45.86 48.59 45.14 45.38 46.90
% N 0.45 0.27 0.13 0.16 0.24
% S 0.10 0.09 0.03 0.04 0.06

SSABET
a (m2/g) 9.3 2.7 4.7 5.5 4.9

Pore surface area b (m2/g) 6.82 2.50 4.03 4.67 1.44

Pore volume b (cm3/g) 0.04 0.05 0.03 0.04 0.02

Pore radius b Dv(r) (Å) 15.65 17.04 17.03 17.04 19.04
a Brunauer–Emmett–Teller (BET) surface specific area. b using the Barrett–Joyner–Halenda (BJH) method.

All treatments eliminated water-soluble components, fats and waxes, while an increase
in the percentage of cellulose was observed. As expected, both alkaline and acid treatments
resulted in the reduction of the ratio of hemicelluloses, with this decline more pronounced
in the KOH-treated sample. When compared to the hemicellulose content, the amount of
lignin did not vary (except for KOH-treated sample), due to the presence of strong carbon–
carbon bonds and aromatic groups, which are highly resistant to chemical attack [33]. From
the obtained results, the relative content of lignin increased after treatment by KOH, but
this apparent effect may be explained by the simultaneous removal of hemicelluloses and
other non-cellulosic constituents that leads to a variation in the ratio of components in the
treated sample, masking real changes. Similar findings are reported in the literature for
alkali-treated jute [34] and flax [35] fibers. In addition, changes in chemical composition
and structure affect the degree of accessibility of cell wall components to water vapor. Due
to the presence of free hydroxyl groups and other polar groups, raw hemp shives can reach
8.53% moisture sorption. After all tested treatments, the sample moisture sorption capacity
decreased considerably in spite of the removal of the hydrophobic surface layer (comprised
of fats, waxes and pectins), which may be attributed to the removal of the easily accessible
amorphous hemicelluloses [36]. Taking into account that the moisture sorption is related to
the portion of amorphous regions [37], its percentage decrease could be associated with
the increase of crystallinity index.

Figure 2 shows XRD patterns of untreated and treated samples with detail from
2θ = 10◦ to 40◦. Park et al. [38] attributed the diffraction peaks at 2θ around 14.5◦, 16.5◦ and
22.0◦ to the cellulose reflections 101, 101 and 002, respectively. Actually, different cellulose
polytypes exist, resulting in different Miller indices attributed to the peak centered at 2θ
and about 22◦ [39]. However, considering the low reflection data quality (broadened peaks)
of the studied samples and taking into account that for each polytype/allomorph the
position of the highest peak changes from about 21◦ and 22◦, it cannot be ruled out that our
samples really consist of a mixture of cellulose polytypes. Indeed, chemical and physical
treatments of the natural cellulose can also lead to different crystalline allomorphs [38,40].
The analysis of the data showed that the treatments of the hemp shives did not cause
significant structural variations, considering that only slight peak shifts towards higher
2θ angles related to the decrease of the interplanar distance of the cellulose’s planes, were
observed. However, the intensity of the diffraction peak at 2θ ≈ 30◦ was increased after
all treatments, which is in agreement with the data reported by Zhang et al. [41]. This
observation was interpreted by the lower preferential orientation of the cellulose fibers [37].
The intensities of the peaks at 2θ of 22.0 and 18.0 were used to calculate the crystallinity
index of the SHI-R, SHI-W, SHI-OH, SHI-C and SHI-H samples according to Equation (1).
As a result, the performed treatments increased the crystallinity index of hemp shives,
likely due to the removal of amorphous components such as hemicelluloses (Table 1)
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and the re-organization of the internal structure as suggested by several studies [42–44].
Ivanovska et al. [37] also reported that after alkaline or oxidative treatments of cellulose-
based materials, an increase in crystallinity index can be explained by the possible formation
of new hydrogen bonds between additional exposed hydroxyl groups of the cellulosic
macromolecules, occurring due to the removal of lignin and hemicelluloses. According
to Agarwal et al. [45], these hydrogen bonds may cause some cellulosic macromolecules
to transfer from amorphous regions to a space closer to crystalline regions, resulting in
increased alignment and crystallinity index. Table 1 also details the determined values of
BET specific surface area (SSA), pore surface area, pore volume and pore radius. SHI-R
appears as a mesoporous material with a pore radius of 15.65 ± 0.04 Å with relatively high
SSA. High pore surface area and volume were obtained denoting the features necessary to
adsorb pollutants from water. Overall, these characteristics were affected by the treatments.
In particular, the SSA and pore surface area decreased, suggesting the rearrangement of the
mesoporous structure. Accordingly, the pore radius slightly increased after the treatments,
and the effect was more pronounced for SHI-H, for which the smallest pore volume and
the highest pore radius were observed.
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Figure 2. XRD patterns of untreated (SHI-R) and treated (SHI-W, SHI-OH, SHI-C and SHI-H) hemp shive samples. The
Miller indices of the main lattice planes of the cellulose are reported in round brackets. Diffraction peaks are indicated as
101, 101, 021, 002, and 040 reflections.

2.2. Hemp Shive Microstructure Analysis

Figure 3a shows the typical cross-section of a hemp chènevotte revealed by nano-CT
with some remaining pith on the bottom and its woody part (xylem) made of woody
fibers, vessels and rays. The hemp shive microstructure and ultrastructure have been
recently investigated by Jiang et al. [46] using SEM and computed tomography. The results
showed distinctive microstructures. The provided knowledge is used in the present work
to characterize the influence of the treatments on the microstructure of the hemp shives.
X-ray computed nanotomography images of a sample in the three main planes, namely L-R
(Longitudinal-Radial), R-T (Radial-Tangential) and L-T (Longitudinal-Tangential) planes
are presented in Figure 3b–d, respectively. In the raw shives, the vessels are isolated or
grouped by two or three, rarely by more, and then they deform one another. The vessels
have a quite thin cell wall and a diameter of approximately 50 to 150 µm (Figure 3b). They
are surrounded by relatively thick-walled woody fibers with diameters of only a few µm
and an irregularly polygonal section with a rounded cavity. The rays (made of parenchyma
cells) are oriented in the radial direction. They are relatively thin, generally comprising one
cell in width. Longitudinal sections through the hemp shives (Figure 3b,d) reveal the inner
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surface of vessels containing perforations (pits), which allow movement of moisture from
cell to cell along the stem. These perforations connect smaller cells with the vessels. They
are essential components in the water-transport system of higher plants. The pit membrane,
which lies in the center of each pit, allows water to pass between xylem conduits but limits
the spread of embolism and vascular pathogens in the xylem.
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The influence of the tested treatments on the shive microstructure is clearly visible on
nano-CT scans presented in Figure 4, in particular when treated with KOH and Na2CO3.
The removal of the hemicelluloses deconstructs partially the woody fiber walls that leads
to the fiber collapse and a general disorganization of the cells within the tissue, directly
observed through the dealignment of the rays. The meso and microstructures of the shives
are severely affected when treated with Na2CO3 in particular. The porosity level decreases
from 75% to 57% due to the pronounced fiber collapse.

The surfaces of hemp shives were also examined with a scanning electron microscope
(Figure 5). SEM images of the raw sample (SHI-R) showed the presence of impurities on the
surface, with a compact and unfibrillated structure. The data analysis also indicated that
each treatment significantly changed the morphology and roughness of the material surface.
The strongest impact occurred after KOH treatment and degradation of the structure was
observed after acid treatment.
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Figure 4. X-ray computed nanotomography images of untreated SHI-R (a) and treated SHI-W, SHI-H,
SHI-OH and SHI-C (b–e) hemp shive samples.

Elemental analysis of the surfaces was also performed using a probe for energy-
dispersive X-ray (EDX) spectroscopy and the electron beam excitation (Figure 5). The
elements that composed the surface of SHI-R were mainly carbon, oxygen, potassium and
calcium, whereas carbon and oxygen were the main components of all treated samples.
Potassium and calcium are known to be essential for plant metabolism and various physio-
logical processes related to growth [47–52]. Other residual elements that were observed
include magnesium, aluminum, silicon, phosphorus, sulfur, chlorine and copper that might
have come from soil [53]. Moreover, sodium was also found on the surface of hemp shives
after Na2CO3 treatment.
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Figure 5. Elemental analysis using EDX spectra and SEM images of untreated SHI-R (a) and treated SHI-W, SHI-H, SHI-OH
and SHI-C (b–e) hemp shives.

2.3. Spectroscopic and Thermogravimetric Analysis

Besides the bulk sample characterization, the samples’ surface chemistry (determined
up to 10 nm in depth by using ATR-FTIR) was studied given that it is one of the most
essential factors affecting the biosorption of heavy metal ions. ATR-FTIR spectra of raw
and treated hemp samples in powder form are shown in Figure 6. The main absorption
bands observed in each spectrum and their assignment to chemical group vibrations and
components are summarized in Table 2. The main changes determined in infrared spectra
of hemp shives that were ascribed to the chemical treatments were found in two regions,
i.e., 1800–800 and 3300–2700 cm−1. One important difference in the spectra is the band at
1734 cm−1 (SHI-R), characteristic of the stretching of unconjugated C=O groups present
in hemicelluloses. This band fully disappeared after KOH treatment (SHI-OH sample)
(Table 2) and was very weak after Na2CO3 treatment, while the H3PO4 treatment generated
a more pronounced band in comparison to raw shives. Several authors have demonstrated
a relationship between the removal of hemicelluloses by alkaline treatments such as KOH
and NaOH using infrared spectroscopic measurements and the decrease/disappearance of
band at 1734 cm−1 [17,34,54–61]. In SHI-W and SHI-C samples, the C=O stretching at 1734
and 1733 cm−1, respectively, appears less evident if the flakes are analyzed. Mirmohamad-
sadeghi et al. [60] indicated that the decrease of the band intensity at 1734 cm−1 is due to
the hydrolysis of the ester bonds between acetyl groups and hemicellulose by KOH and
Na2CO3 treatments. The intensity of the peaks at 1600–1650 cm−1, which corresponds to
water adsorbed in polysaccharides, increases slightly after KOH and Na2CO3 treatments,
which can be ascribed to the reaction with hydroxyl groups present on polysaccharides to
form water molecules, as reported before [17,60].



Molecules 2021, 26, 4574 9 of 19Molecules 2021, 26, 4574 9 of 19 
 

 

 
Figure 6. ATR-FTIR spectra of untreated SHI-R (a) and treated SHI-W, SHI-H, SHI-OH and SHI-C 
(b–e) hemp shives in powder and flake forms. 

Table 2. The main absorption bands in each ATR-FTIR spectrum of hemp shive samples in powder form and their 
assignment to chemical group vibrations and components. 

Wavenumber (cm−1) Vibration Modes Assigned Components 
SHI-R SHI-W SHI-OH SHI-C SHI-H   

3348 3354 3312, 3338 3351 3354 OH stretching 
water, cellulose, 
hemicelluloses 

2903 2902 2901 2908 2903 C–H symmetrical stretching cellulose, hemicelluloses 

1734 1734  1733 1733 
C=O stretching vibration 

C=O unconjugated stretching 
pectin, fatty acids 

hemicelluloses 

1594, 1652 1628, 1651 1593, 1628 1594, 1653 1593, 1641 
OH (water) 

OH bending of absorbed water 
aromatic skeletal vibrations 

water 
cellulose 

lignin 
1506 1507 1507 1504 1505 C=C aromatic symmetrical stretching lignin 

1422 1423, 1456 1422, 1459 1420, 1456 1422, 1456 

HCH and OCH in-plane bending 
vibration 

CH2 symmetric bending 
C=C stretching in aromatic groups 

cellulose, hemicelluloses 
pectin, lignin 

1373 1372 1370 1370 1371 in-plane symmetric vibration of –CH3 lignin 

1327 1322 1323 1327 1328 
in-plane bending vibrations of O-H 

C-O stretching 
cellulose 

1236 1234 1228, 1264 1232 1234 
symmetric stretching of C-O of aryl 

groups 
lignin 

1157 1157 1156 1156 1156 C-O-C asymmetrical stretching cellulose, hemicelluloses 

1035, 1047 1034 1028 1033 1033 
C-C, C-OH, C-H ring and side group 

vibrations 
cellulose, hemicelluloses 

899 897 896 896 898 
glycosidic bond symmetric ring-

stretching mode 
polysaccharides 

In all ATR-FTIR spectra, the broad band around 3348 cm−1 indicates the existence of 
hydroxyl groups primarily present in cellulose and hemicelluloses. The other two typical 
bands assigned to cellulose are observed at 899 cm−1 (glycosidic bond symmetric ring-
stretching mode) and 1327 cm−1 (C-O stretching). The last band distinguishes between 
amorphous and crystalline cellulose [62]. After Na2CO3 and KOH treatments, these two 
bands are more pronounced, which can be explained by the fact that cellulose structure 
becomes more exposed due to the removal of hemicelluloses and lignin [61,62]. 
Additional confirmation of this statement is provided by the increased cellulose content 
in the Na2CO3 and KOH-treated samples (Table 1). The region between 1200 and 1700 
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In all ATR-FTIR spectra, the broad band around 3348 cm−1 indicates the existence of
hydroxyl groups primarily present in cellulose and hemicelluloses. The other two typical
bands assigned to cellulose are observed at 899 cm−1 (glycosidic bond symmetric ring-
stretching mode) and 1327 cm−1 (C-O stretching). The last band distinguishes between
amorphous and crystalline cellulose [62]. After Na2CO3 and KOH treatments, these two
bands are more pronounced, which can be explained by the fact that cellulose structure
becomes more exposed due to the removal of hemicelluloses and lignin [61,62]. Additional
confirmation of this statement is provided by the increased cellulose content in the Na2CO3
and KOH-treated samples (Table 1). The region between 1200 and 1700 cm−1, which
corresponds to the lignin component, is also affected by the treatments. Moreover, for
treated samples, the signal at 1236 cm−1 (assigned to the C-O aryl group of lignin) appeared
pronounced, though this is less evident if the flakes are analyzed. The intensity of the
band at 1506 cm−1 suggests that none of the chemical treatments was successful in the
complete removal of lignin from hemp fiber bundles [17,42,63], which is in accordance
with the data listed in Table 1. The peak at 1422 cm−1 could be attributed to pectins [57,64].
However, this band is also characteristic of C-H bonds present in all organic molecules
(CH2 symmetric bending).

The intensity of some particular bands in infrared spectra was proposed to calculate a
crystallinity index [57,65,66]. The ratios of the peaks at 1421 and 893, 1375 and 2898 and
1375 and 660 cm−1 were used to measure relative cellulose crystallinity (Table 3). The ratio
of the peaks at 1375 and 660 cm−1 is the most relevant descriptor according to Richter
et al. [67] because there is no ambiguity in the assignment of the bands, unlike other bands,
such as the one at 1424 cm−1, which can be assigned to almost any component present in
hemp. However, it is difficult to correlate this ratio with the crystallinity index obtained
with XRD analysis [57] (as a technique for sample bulk characterization), since the results
obtained by ATR-FTIR spectroscopy referred to the samples’ surface chemistry (around
10 nm in depth).
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Table 2. The main absorption bands in each ATR-FTIR spectrum of hemp shive samples in powder form and their
assignment to chemical group vibrations and components.

Wavenumber (cm−1) Vibration Modes Assigned
Components

SHI-R SHI-W SHI-OH SHI-C SHI-H

3348 3354 3312, 3338 3351 3354 OH stretching water, cellulose,
hemicelluloses

2903 2902 2901 2908 2903 C–H symmetrical
stretching

cellulose,
hemicelluloses

1734 1734 1733 1733

C=O stretching
vibration

C=O unconjugated
stretching

pectin, fatty acids
hemicelluloses

1594, 1652 1628, 1651 1593, 1628 1594, 1653 1593, 1641

OH (water)
OH bending of
absorbed water

aromatic skeletal
vibrations

water
cellulose

lignin

1506 1507 1507 1504 1505
C=C aromatic
symmetrical

stretching
lignin

1422 1423, 1456 1422, 1459 1420, 1456 1422, 1456

HCH and OCH
in-plane bending

vibration
CH2 symmetric

bending
C=C stretching in
aromatic groups

cellulose,
hemicelluloses
pectin, lignin

1373 1372 1370 1370 1371 in-plane symmetric
vibration of –CH3

lignin

1327 1322 1323 1327 1328
in-plane bending
vibrations of O-H

C-O stretching
cellulose

1236 1234 1228, 1264 1232 1234 symmetric stretching
of C-O of aryl groups lignin

1157 1157 1156 1156 1156 C-O-C asymmetrical
stretching

cellulose,
hemicelluloses

1035, 1047 1034 1028 1033 1033
C-C, C-OH, C-H ring

and side group
vibrations

cellulose,
hemicelluloses

899 897 896 896 898
glycosidic bond

symmetric
ring-stretching mode

polysaccharides

Table 3. The crystallinity index of raw (SHI-R) and treated hemp shives (SHI-W, SHI-OH, SHI-C and
SHI-H) obtained using ATR-FTIR spectroscopy. The ratios of the peaks at 1421 and 893, 1375 and
2898 and 1375 and 660 cm−1 were used to measure relative cellulose crystallinity.

Sample Absorbance Ratio (FTIR Band, cm−1)

1421/893 1375/2898 1375/660

SHI-R 0.60 2.54 0.40
SHI-W 0.63 2.42 0.43

SHI-OH 0.58 1.84 0.33
SHI-C 0.65 2.28 0.40
SHI-H 0.56 2.25 0.40

The cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance
(NMR) spectra for untreated and treated shives are depicted in Figure 7. These spectra
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show the C1–C6 peaks of the glucopyranose unit present in the cellulose structure in the
range 50–110 ppm. These peaks are characteristics of disordered cellulose. The spectra
for SHI-R also show peaks that are ascribed to the presence of residual lignin and/or
impurities, which is in agreement with the shives chemical composition. After alkaline
treatment, these bands disappeared, in particular the bands at 22 and 170 ppm attributed
to impurities (soluble extracts) and/or lignin.
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Figure 7. CPMAS NMR spectra for untreated SHI-R (a) and treated shives SHI-W, SHI-OH, SHI-C
and SHI-H (b–e). The NMR spectra show the C1–C6 peaks of the glucopyranose unit in the range
50–110 ppm and other peaks (marked with an *) due to residual lignin and/or impurities.

Untreated and treated samples were studied using thermogravimetric analysis to
obtain information relevant for application purposes such as thermal stability and the final
residue. In addition, a previous study has shown that the study of the decomposition
mechanism can be used to highlight structural changes better than other observable experi-
mental method [68]. The knowledge of the hemp shive degradation process may be useful
to evidence any structural changes provoked by the applicative use of these materials such
as the adsorption of contaminants. All TG curves (Figure 8) showed an initial 4–6% mass
loss that was mainly related to the evaporation of physically adsorbed and weakly bound
water on hemp shives. This mass loss occurred at a temperature lower than 120 ◦C for all
samples except for SHI-OH where, instead, the process ended at about 135 ◦C. According to
the literature, the thermal degradation of hemp shives, after water evaporation, is generally
a multi-stage process associated with the decomposition of their components, which are
mainly hemicelluloses, cellulose and lignin, along with other minor substances depending
on the physical and/or chemical treatment to which the samples were subjected [69]. Fre-
quently, as in this case, the various stages cannot be highlighted in the TG curves because
of their partial or complete overlapping in the same temperature range. Therefore, it is
necessary to refer to the DTG curves (Figure 8) obtained by taking the derivative of the
TG curves. The analysis of the DTG curve of SHI-R showed a two-stage thermal decom-
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position process. A first mass loss in the range of 260 to 380 ◦C with a maximum slope at
318.1 ◦C can be associated with the simultaneous degradation of hemicelluloses, cellulose
and lignin [70]. It follows a second mass loss, partially convoluted with the first one,
evidenced by a different slope in the range of 380 to 600 ◦C, which is likely associated
initially with the end of the cellulose decomposition and then with the main process of
thermal decomposition of the lignin polymer structure. Lignin thermal decomposition
occurred in a wide temperature range, the process being very slow at the beginning [69,71].
Moreover, the lack of evident decomposition in the range 200–260 ◦C suggested the absence
or negligible presence of pectin [72]. At 690 ◦C, a residue of 1.8% was obtained. SHI-W
decomposition began at about 270 ◦C and showed a two-step process convoluted as already
reported in the literature: the main step, which ends at 411 ◦C and had a maximum rate at
370.9 ◦C, ascribable mainly to cellulose decomposition, and the other step, evidenced in the
DTG plot by the shoulder at about 307 ◦C due to the hemicellulose decomposition [69,73].
After 411 ◦C, a linear decrease of mass from 19.9% down to 13.7% at 690 ◦C was observed,
likely due to the slow decomposition of lignin. As a result, in comparison with SHI-R,
the thermal decomposition of SHI-W began at a higher temperature and was distributed
in a shorter range of temperature than SHI-R but was less complete. The DTG curves
of washed alkaline-treated samples, SHI-OH and SHI-C, were almost symmetric. The
disappearance of the shoulder associated with hemicellulose decomposition could indicate
a decrease of the hemicellulose amount or changes in the hemicellulose structure, likely
due to the removal of side groups by means of the alkaline washing [73]. In both samples,
the decomposition had an onset and a maximum rate at temperatures higher than SHI-R:
Tonset = 266.7 and 263.6 ◦C and Tmax rate = 331.9 and 335.6 ◦C for SHI-OH and SHI-C,
respectively. Moreover, these chemically treated samples had the highest formation of
carbonaceous residue (20.3% for SHI-OH and 17.2% for SHI-C) promoted by potassium
and sodium ion presence, thus changing the decomposition mechanism of cellulose and
lignin [73]. The orthophosphoric acid treatment of the hemp shives, instead, gave rise to a
decrease in thermal stability. SHI-H thermal decomposition began at 239.3 ◦C, and it was
likely due to the degradation of hemicelluloses as evidenced by the shoulder in the DTG
curve at 265.6 ◦C. After the maximum rate of SHI-H decomposition at 293.2 ◦C, there was
a change in the TG curve slope between 332.4 and 493.8 ◦C, which can be associated, as in
the case of SHI-R, to the lignin decomposition with a final residue of 21.8% at 690 ◦C. All
the indications obtained from the TG analysis are in good agreement with the composition
of the hemp samples reported in Table 1 and evidence that all treatments give rise to an
increase in the thermal stability of hemp shives, with respect to the untreated sample, with
the exception of the sample treated with orthophosphoric acid.

Molecules 2021, 26, 4574 12 of 19 
 

 

beginning [69,71]. Moreover, the lack of evident decomposition in the range 200–260 °C 
suggested the absence or negligible presence of pectin [72]. At 690 °C, a residue of 1.8% was 
obtained. SHI-W decomposition began at about 270 °C and showed a two-step process 
convoluted as already reported in the literature: the main step, which ends at 411 °C and 
had a maximum rate at 370.9 °C, ascribable mainly to cellulose decomposition, and the other 
step, evidenced in the DTG plot by the shoulder at about 307 °C due to the hemicellulose 
decomposition [69,73]. After 411 °C, a linear decrease of mass from 19.9% down to 13.7% at 
690 °C was observed, likely due to the slow decomposition of lignin. As a result, in 
comparison with SHI-R, the thermal decomposition of SHI-W began at a higher temperature 
and was distributed in a shorter range of temperature than SHI-R but was less complete. 
The DTG curves of washed alkaline-treated samples, SHI-OH and SHI-C, were almost 
symmetric. The disappearance of the shoulder associated with hemicellulose decomposition 
could indicate a decrease of the hemicellulose amount or changes in the hemicellulose 
structure, likely due to the removal of side groups by means of the alkaline washing [73]. In 
both samples, the decomposition had an onset and a maximum rate at temperatures higher 
than SHI-R: Tonset = 266.7 and 263.6 °C and Tmax rate = 331.9 and 335.6 °C for SHI-OH and 
SHI-C, respectively. Moreover, these chemically treated samples had the highest formation 
of carbonaceous residue (20.3% for SHI-OH and 17.2% for SHI-C) promoted by potassium 
and sodium ion presence, thus changing the decomposition mechanism of cellulose and 
lignin [73]. The orthophosphoric acid treatment of the hemp shives, instead, gave rise to a 
decrease in thermal stability. SHI-H thermal decomposition began at 239.3 °C, and it was 
likely due to the degradation of hemicelluloses as evidenced by the shoulder in the DTG 
curve at 265.6 °C. After the maximum rate of SHI-H decomposition at 293.2 °C, there was a 
change in the TG curve slope between 332.4 and 493.8 °C, which can be associated, as in the 
case of SHI-R, to the lignin decomposition with a final residue of 21.8% at 690 °C. All the 
indications obtained from the TG analysis are in good agreement with the composition of 
the hemp samples reported in Table 1 and evidence that all treatments give rise to an 
increase in the thermal stability of hemp shives, with respect to the untreated sample, with 
the exception of the sample treated with orthophosphoric acid. 

 
Figure 8. Thermal analysis of untreated (SHI-R) and treated shives (SHI-W, SHI-OH, SHI-C and SHI-H): (a) TG curves; 
(b) DTG curves. 

2.4. Preliminary Biosorption Results 
Figure 9 compares the removal of copper present in aqueous solutions by the five 

materials at an initially spiked copper concentration of 200 mg/L. The experiments were 
repeated five times under identical conditions, showing the reproducibility of the data. 
For the concentration studied, the performance order is the following: SHI-C > SHI-OH >> 
SHI-R > SHI-W >> SHI-H. The SHI-C sample is a more efficient biosorbent than the others, 
with reduction values of 87.5%, i.e., 1 g of sample is able to adsorb 8.75 mg of copper. The 
values of percentage reduction clearly show that the treatment of materials has an impact 
on their removal performance [37,42]. The SHI-H sample did not remove copper due to 

Figure 8. Thermal analysis of untreated (SHI-R) and treated shives (SHI-W, SHI-OH, SHI-C and SHI-H): (a) TG curves; (b)
DTG curves.



Molecules 2021, 26, 4574 13 of 19

2.4. Preliminary Biosorption Results

Figure 9 compares the removal of copper present in aqueous solutions by the five
materials at an initially spiked copper concentration of 200 mg/L. The experiments were
repeated five times under identical conditions, showing the reproducibility of the data. For
the concentration studied, the performance order is the following: SHI-C > SHI-OH >>
SHI-R > SHI-W >> SHI-H. The SHI-C sample is a more efficient biosorbent than the others,
with reduction values of 87.5%, i.e., 1 g of sample is able to adsorb 8.75 mg of copper. The
values of percentage reduction clearly show that the treatment of materials has an impact
on their removal performance [37,42]. The SHI-H sample did not remove copper due to the
degradation of the structure (with a strong decrease in pore surface area values), whereas
in the case of the base-activated samples (SHI-OH and especially SHI-C), the increase in
cellulose contents (Table 1) seemed to favor the adsorption. Further studies are underway
to demonstrate these hypotheses.
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Figure 9. Comparison between removal (in %) of copper by hemp shive samples from an aqueous
solution using an initial metal concentration of 200 mg/L (other conditions: 2 g of sample in 100 mL
of solution; contact time = 2 h; agitation speed = 250 rpm; temperature 20 ± 1 ◦C; n = 5).

3. Materials and Methods
3.1. Material

The chènevotte/hemp shives, obtained after fiber extraction (defiberization) of the hemp
stalk, were supplied by an agricultural cooperative (Eurochanvre, Arc-les-Gray, France). This
defiberization process used to recover the hemp fibers is a mechanical operation that uses
neither solvent nor water, and residual dust and traces of fiber were removed from the
shives through a dusting step. The shives were formed by parallelepiped particles varying in
length from 5 to 25 mm and had a low density (100 kg/m3) and a low thermal conductivity
(0.05 W m−1 K−1). The shives used in this study are marketed in bulk (average price of
0.90 euros/kg, sold in bales of 20 kg compressed (Figure 1)) and are intended mainly for plant
and animal mulching and insulation such as the filling of partitions and floors.

3.2. Treatment Procedures

Raw hemp shives were either simply washed with water over 2 days at room temper-
ature or treated with a chemical reagent for 4 h at 40 ◦C. The reagents used were 30% (v/v)
H3PO4, 1 M KOH and 1 M Na2CO3. These conditions were selected according to those
already used on site by the industrial partner for other materials. After each treatment,
the samples were washed extensively with water until a neutral pH was obtained and
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then dried in an oven at 80 ◦C until a constant mass was obtained. The denotation of the
samples is the following: SHI-R for raw shives and SHI-W, SHI-H, SHI-OH and SHI-C for
raw shives treated with H2O, H3PO4, KOH and Na2CO3, respectively.

3.3. Sample Characterization
3.3.1. Chemical Composition

The chemical composition of hemp shives was determined according to the modified
procedure described by Soutar and Bryden [74]. The hemp shives’ non-cellulosic compo-
nents were removed in the following order: (i) water soluble components by extraction
with boiling water for 30 min and a posterior drying at room temperature for 72 h; (ii) fats
and waxes through a Soxhlet extraction with dichloromethane for 4 h, followed by a drying
step at room temperature for 72 h; (iii) pectins by extraction with 1% ammonium oxalate
at boiling temperature for 1 h, washing with distilled water and drying at room temper-
ature for 72 h; (iv) lignin through extraction with 0.7% NaClO2 (pH 4.0–4.5) at boiling
temperature for 2 h, rinsing with 2% NaHSO3, washing and drying at room temperature for
72 h; and (v) hemicelluloses by treating with 17.5% NaOH at room temperature for 45 min
followed by neutralization with 10% acetic acid, washing with distilled water, rinsing with
0.5% NaHCO3, washing with distilled water and drying at room temperature for 72 h.
After removal of the non-cellulosic components, α-cellulose remained as a solid residue.
For each sample, the chemical composition was determined in duplicate and expressed as
the percentage of absolutely dry sample.

The Klason lignin content was obtained according to the following procedure: 2 g of
each sample was added to 25 mL of a 72% (w/w) H2SO4 aqueous solution and steeped for
75 min at room temperature, followed by dilution with 600 mL of distilled water to reach
a concentration of 3% (w/w) H2SO4 and reaction in reflux for 2 h. Afterward, the lignin
was filtered through a weighed Gooch crucible, washed with distilled water until acid
free, dried at 105 ◦C, cooled and weighed. The Klason lignin content was calculated from
the ratio between the mass of lignin and the mass of the sample (determined before the
treatment with H2SO4). Before and after each step of chemical composition determination,
the moisture sorption of the samples was determined by using an infrared moisture
analyzer (Sartorius MA35), which continuously monitored the drying process and stopped
the measurement as soon as the sample had reached a constant weight.

3.3.2. Specific Surface Area and Porosity Determination

Brunauer, Emmett and Teller (BET) specific surface area (SSA) of the samples was
determined using an Autosorb IQ Chemi TCD instrument (Quantachrome Instruments,
Boynton Beach, FL, USA) through adsorption–desorption N2 isotherms at 77 K [75]. Powder
samples were preventively outgassed at 80 ◦C for 180 min. The Barrett, Joyner and Halenda
(BJH) procedure was used to calculate, using the Kelvin equation, the pore surface area,
volume and average radius Dv(r) [76]. All measurements were performed in triplicate.

3.3.3. X-ray Powder Diffraction (XRD) Analysis

XRD data were collected in the air using a Panalytical Empyrean X-ray diffractometer
operating at 40 kV/40 mA with CuKα radiation, Bragg–Brentano geometry, large beta filter-
Nickel, and a PIXcel3D detector (Malvern, Panalytical, Italy). The X-ray data were collected
in the 2θ range 5–70◦ with a step size of 0.026◦. Two repeated scans were measured, about
30 min each, and then summed (total collection time about 1 h). The diffraction patterns
were processed using the Panalytical B.V. software High Score Plus version 3.0e. The
intensities in the 2θ range from 10◦ to 40◦ were used to calculate the crystallinity index of
the samples according to the Segal equation Equation (1) [77] where I002 is the height of the
diffraction peak located at 2θ around 22.0◦ and corresponding to the cellulose crystalline
domain, while IAM is the minimum diffraction intensity located between peaks due to the
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(002) and (101) crystal planes, at 2θ ≈ 18◦, corresponding to the amorphous domain, after
the subtraction of the background signal measured without a sample [38]

CI =
I002 − IAM

I002
× 100% (1)

3.3.4. Scanning Electron Microscopy (SEM)

The surfaces of samples were examined with a scanning electron microscope (Apreo,
Thermo Fisher Scientific, France), with a tungsten filament voltage from 15 to 20 keV and
low-vacuum conditions.

3.3.5. Energy-Dispersive X-ray (EDX) Spectroscopy

Elemental analysis of the sample surfaces was performed using the Thermo NORAN
system for energy-dispersive X-ray spectroscopy (ThermoScientific, France) and electron
beam excitation (with a voltage from 15 to 20 keV).

3.3.6. Computed Nanotomography (Nano-CT) Analysis

The nano-CT investigation was performed with an RX Solutions EasyTom 160. The
system is equipped with an X-ray source Hamamatsu Open Type Microfocus L10711, with
a maximum voltage of 160 keV and a maximum current of 200 µA (EasyTom, France). The
X-ray transmission images were acquired using a detector 2530DX of 2176 × 1792 pixels2.
The tube voltage and the tube current used were 60 keV and 86 µA, respectively. The
exposure time was set at 6 images/s with an average frame of 6 images. A total of
1440 projections were collected for each sample resulting in a time of 30 min per tomograph.
The entire volume was reconstructed at a full resolution with a voxel size of 1.4 µm
corresponding to a field of view of 2.8 × 2.5 mm2, using filtered back-projection. The data
analysis was processed using VG StudioMax software.

3.3.7. Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy

Appropriate quantities of samples in powder or flake forms were subjected to ATR-
FTIR analysis. The spectra were analyzed for powder and flake forms in order to evaluate
possible differences. ATR-FTIR spectra were recorded with a Perkin Elmer spectrometer
(FTIR Spectrum Two, Waltham, MA, USA), the resolution of which was set to 4 cm−1. A
total of 16 scans were performed on each sample in the range 450–4000 cm−1.

3.3.8. Solid-State Nuclear Magnetic Resonance (NMR) Spectroscopy

Solid state 13C CPMAS (cross polarization magic angle spinning) NMR spectra were
recorded with a Bruker Avance HD spectrometer (Bruker, Italy) operating at 125 MHz.
Samples were placed in a zirconium rotor (3.2 mm diameter and 21 mm height). The
Hartmann–Hahn condition was satisfied during CPMAS with a 1.4 ms contact time, a
repetition time of 8 s, a 1H90◦ pulse length of 2.27 µs and a spin rate of 22 kHz.

3.3.9. Thermogravimetric Analysis

Thermogravimetry (TG) and differential thermal analysis (DTG) were performed
using a Pyris 1 TGA thermogravimetric analyzer (Perkin Elmer, Waltham, USA) in an
inert atmosphere using nitrogen as a purge gas, with a constant flow rate of 50 mL/min.
Each sample (5–7 mg) was heated from 50 to 700 ◦C at a heating rate of 20 ◦C/min. For
each sample, the onset temperature of decomposition was evaluated as the temperature
corresponding to a mass loss of 5% after the water evaporation.

4. Conclusions

In this work, we characterized materials prepared from chènevotte (hemp shives), a
valuable co-product of industrial hemp fiber, using chemical, microscopic, spectroscopic
and thermogravimetric tools in order to observe changes in the chemical composition and
structure of the samples after treatment. The materials were either simply washed with
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water or treated with a chemical reagent (KOH, Na2CO3 or H3PO4) for 4 h at a temperature
of 40 ◦C, these conditions being the same as those used by the industrial partner of the
project.

Interpretation of the results obtained from chemical analysis, XRD, SEM, EDX, X-ray
nano-CT, ATR-FTIR, solid state NMR and TG experiments showed that all these techniques
are complementary in characterizing the structure and surface state of modified hemp
shive materials. Before any treatment, the data showed the presence of impurities on the
surfaces of chènevotte samples with a compact unfibrillated structure. After all treatments,
the data indicated significant changes in the chemical composition of each sample and
in the morphology and roughness of surfaces. The chemical modification was related
to the partial removal of hemicelluloses, pectins, fats and waxes. Nano-CT data clearly
indicated that hemicellulose removal partially deconstructed the walls of woody fibers,
resulting in general disorganization of the cells in the tissue. After treatment, an increase in
the crystallinity index was also observed. The most significant changes were observed in
alkaline-treated samples, especially those treated with KOH, while after acid treatment, a
degradation of the structure was observed.

The second objective of the FINEAU project is to use materials as adsorbents of
environmental pollutants. The data from this study will be useful to understand the
mechanisms of interaction between materials and pollutants.
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