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Abstract: Titanium alloys have been present for decades as the main components for the production
of various orthopedic and dental elements. However, modern times require titanium alloys with a
low Young’s modulus, and without the presence of cytotoxic alloying elements. Machine learning
was used with aim to analyze biocompatible titanium alloys and predict the composition of Ti alloys
with a low Young’s modulus. A database was created using experimental data for alloy composition,
Young’s modulus, and mechanical and thermal properties of biocompatible titanium alloys. The Extra
Tree Regression model was built to predict the Young’s modulus of titanium alloys. By processing data
of 246 alloys, the specific heat was discovered to be the most influential parameter that contributes
to the lowering of the Young’s modulus of titanium alloys. Further, the Monte Carlo method was
used to predict the composition of future alloys with the desired properties. Simulation results of ten
million samples, with predefined conditions for obtaining titanium alloys with a Young’s modulus
lower than 70 GPa, show that it is possible to obtain several multicomponent alloys, consisting of five
main elements: titanium, zirconium, tin, manganese and niobium.

Keywords: titanium alloys; machine learning; Extra Tree Regression; Monte Carlo method; Young’s
modulus

1. Introduction

Titanium and its alloys have played a significant role in the medical industry since
the 1960s [1]. They have been used in the production of various medical devices, including
artificial heart valves, vascular stents, and orthopedic implants such as artificial shoulders,
hips, and knees [2,3]. In the field of dental implants, titanium and its alloys are considered
strong and efficient components [4]. High strength, excellent biocompatibility and corrosion
resistance, low density, a low Young’s modulus (E), and good osseointegration are the most
desirable properties of the titanium and its biocompatible alloys. There are many definitions
dealing with the concept of biocompatibility, but the most general one would be that it is
the ability of the implant to perform the desired function with an appropriate host response.
There are five criteria established by the international standards organization, and they say
that the implant must be non-toxic, non-thrombogenic, non-carcinogenic, non-antigenic
and non-mutagenic for the body [5,6]. In the case of titanium alloys, the toxicity is related
to the release of the element into the body fluids, due to corrosion-induced deterioration of
the material. Due to their superior biocompatibility, Ti alloys are ideal for use in body fluids
that tend to change pH values [7]. Furthermore, they are exposed to varying amounts
of stress on a daily basis, including the extreme levels of stress experienced by normal
hip joints during physical activity [8]. As a result, corrosion-resistant and high-strength
titanium alloys have proven to be an excellent option [9]. Although stainless steels and
cobalt alloys can also be used for similar applications, titanium alloys are favored because
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of their significantly lower Young’s modulus and higher specific strength [10]. Therefore,
they have become the primary choice in orthopedic and dental implants more often than
any other group of metals [1].

Titanium possesses two allotropic forms which depends on temperature, the alpha
phase (α, hexagonal close-packed crystal structure) at lower temperatures, and beta phase
(β, body-centered cubic crystal structure) at higher temperatures, where the transformation
temperature of the α into the β is at 1155 K [11]. Alloying elements added to pure titanium
with possibility to promote stability of the α-phase are called α-stabilizers, while those
that promote the stability of the β-phase, are classified as β-stabilizers (Table 1). Alloying
elements with negligible effect on the stability of the α- and β-phases are known as neutral
(Table 1). Both the type of alloying element added and the amount in which it is added
have a significant effect on the titanium microstructure. In general, titanium alloys are
categorized into six groups according to the content of the alloying elements and their
tendency to form β-phase [11]: α-alloys, near α-alloys (1–2 wt.% β-stabilizers), α + β alloys
(4–6 wt.% β-stabilizers), metastable β-alloys (10–15 wt.% β-stabilizers), β-alloys (30 wt.%
β-stabilizers), and titanium aluminide—intermetallic alloy (20–45 wt.% β-stabilizers).

Table 1. Classification of alloying elements in titanium alloys.

α-Stabilizers Neutral Stabilizers β-Stabilizers

Al, O, N, C, Ga Sn, Zr, Hf, Mo, V, Nb, Ta, Fe, Cr, Mn, Ni, Co, W

Pure titanium (α-alloys) and Ti-6Al-4V (α + β alloy) are the most widely used alloys
in biomedical engineering [12]. Recent studies reviled that β-alloys could be used as
biomaterials owing to their excellent biocompatibility, high strength, and low E as well [13].
The reason for questioning the safety of implants made of Ti-6Al-4V alloy is the possibility
of vanadium and aluminum ions being released as a result of corrosion and their negative
impact on the organism in which it is implanted. Some previous studies have attributed
these ions to a variety of health problems and diseases, including brain damage, breast
cancer, anemia, digestive disorders, neurotoxicity, contact dermatitis, male fertility, and
Alzheimer’s disease [13,14]. It is important to note that no material is completely bioinert,
and careful selection of alloy components is essential [11]. The classification of alloying
elements in terms of their effects on the organism (non-cytotoxic, neutral and cytotoxic
elements) are given in Table 2 [15]. In addition elements that are considered cytotoxic, it is
important to note that some non-cytotoxic elements have negative impact on the organism
due to their higher concentration or being placed in different environments. All mention
above indicates that careful design of a novel materials which undergo comprehensive and
long-term testing is necessary for manufacturing a human-safe implant. Another challenge
lies in the fact that Ti-6Al-4V has a higher E (110 GPa), compared to bone (<35 GPa), which
results in uneven stress transfer between the implant and the bone. This can lead to bone
atrophy and implant failure [16,17].

Table 2. Classification of alloying elements in titanium alloys depending on cytotoxicity.

Non-Cytotoxic Elements Neutral Elements Cytotoxic Elements

Ti, Nb, Zr, Ta, Ru, Sn W, Fe, Mn, Si, O, N, C, Hf Pt, V, Al, Ni, Co, Cu, Cr

Moreover, a factor to be taken into account is the constant and accelerated growth of
the population, as well as the increase in life expectancy. Accordingly, it is estimated that in
the next few years the number of performed procedures for the implementation of Ti-6Al-
4V alloy implants will be several million, and the main users will continue to be the elderly
population [13]. It is also important to pay attention to the price of raw materials [18]. This
aspect is usually approached from two directions, using more expensive raw materials in
small quantities or using cheaper raw materials if the alloying element occurs in larger
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mass fractions [19]. Recently, emphasis has been placed on obtaining information about the
properties of multicomponent alloys whose compositions correspond to the central parts
of the ternary and quaternary systems [20]. According to everything mentioned so far, it
is clear that there are new, more complex requirements for the design of biocompatible
titanium alloys, which are characterized by a low Young’s modulus and a low price.

In recent years, machine learning is widely used in material science for development
and design of novel materials with specific properties. Among numerous computational
approaches, the most commonly used empirical calculation methods for designing low
Young’s modulus titanium alloys, are: the molybdenum equivalence (Moeq) method, the
method of the ratio of electrons to atoms (e/a ratio) versus the difference in diameters, the
d-electron theory where design method is based on d electrons, and the high-throughput
method [15]. Even though these models provided broad knowledge and understanding
of various phenomena in material science and other fields, they are often inefficient due
to complex computational requirements and costly equipment. Machine learning proved
to be a new approach that could be applied in material science for efficient prediction of
material properties, and their chemical compositions. Hence, in recent years the correlation
between chemical composition and low-modulus of elasticity of biocompatible titanium
alloys successfully established by machine learning methods was objective of several
studies [15,21].

In this study, machine learning techniques were employed to determine underlying
relationships that govern the mechanical properties of biocompatible Ti alloys, specifically
their elastic behavior. The used computational approach consists of an established database
of biocompatible Ti alloys, conducted an exploratory data analysis, created new feature
classifications based on solid scientific principles, and the regression model. The Extra
Tree Regression method was identified as the most effective machine learning model for
predicting the E with the deviation between experimental and predicted data remaining
within the acceptable range as specified in the literature. The novelty of this study is that the
specific heat was recognized as the parameter exerting the most substantial impact on the
E. Furthermore, distinct compositional ranges have been established for a four-component
alloy that maintains a low E, where all the constituents act as β stabilizers. Importantly,
these elements rank among the most cost-effective alloying options, making them suitable
for wider applications. Obtained results were facilitated by the use of the experimental
design methodology to construct multidimensional, four-component diagrams.

2. Materials and Methods

Computational approach employed in this study is illustrated in Figure 1. It contains
several steps as follows: establishing a database of biocompatible Ti alloys, conducting an
exploratory data analysis, building new feature classifications according to solid scientific
principles, and identifying appropriate regression model for predicting the composition of
biocompatible Ti alloys with a low Young’s modulus.

2.1. The Database

A database consisting of 246 biocompatible titanium alloys was used, with experimen-
tal data for E, alloy composition, mechanical and thermal treatment (literature based). The
script for calculated parameters is given in the Zenoodo platform [22]. Detailed explanation
of parameters and procedures is given in the publication related to this database [23].

2.2. Data Preprocessing

The prediction model is a powerful tool used to estimate Young’s modulus from
available data on alloy compositions [24]. The development process involves precise data
preparation, which includes careful selection of relevant columns and identification of
outliers. Through this data preparation process, the prediction model is equipped with
higher quality data, allowing more accurate estimates of E for different alloy compositions.
In this context, irrelevant columns which do not contribute to the prediction task are
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removed, thus simplifying the dataset and reducing complexity. Outliers, which can
potentially skew model performance, are detected using techniques such as scatter plots
and histograms. Various outlier detection methods, including linear regression, Z-score
method, interquartile range (IQR) method, local deviation factor method combined outliers,
are used to identify and process deviations from standard values in a dataset [25,26].
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modulus of biocompatible Ti alloys and to predict their composition.

Incorporating scientific principles, new features were introduced to enhance the pre-
dictive efficacy of our model. Two illustrative diagrams were constructed to elucidate the
relationships between various factors. The first, termed the “Bo-Md” diagram, displays the
relationship between the d-orbital energy level (Md) and the Bond order (Bo) between tita-
nium and the alloying elements. Utilizing the coordinates from this diagram, the data were
classified into distinct categories according to the identified phases present, corresponding
deformation mechanisms, and respective Young’s modulus values within each alloy set
(class 1: slip β, class 2: twin (β + ω), class 3: marteniste (α′ + α′′), class 4: α + β, class 5: α).

The second diagram delineates the electron-to-atom (e/a) ratio, offering insights into
the differences in atomic radii and thereby indicating the deformation mechanisms at play.
A similar categorization process was applied using the coordinates obtained from this
diagram, leading to the formation of two distinct data groups (split and twin).
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The next step involves feature selection, where the aim was to identify the most
relevant and influential features that are significantly related to the E. By selecting these
relevant features, we can reduce the complexity of the model and focus on the characteris-
tics that have a strong association with the target variable. Through an iterative process of
elimination, we systematically assessed the impact of each feature on the model’s perfor-
mance. Any feature that did not enhance or adversely affected the model’s performance, as
indicated by the observed metrics, was removed from the training model. Consequently,
only those features that positively influenced the model’s performance were retained. The
‘feature importance’ technique was also used to select most important features, as described
in the literature [27].

Following data preprocessing and feature selection, the dataset was divided into two
subsets for model training and testing. A total of 65% of the data was assigned for training
purposes, while the remaining 35% was reserved for testing the model’s performance. In
machine learning practice, allocating 35% of the data for testing is considered a relatively
large portion, which, in our case, given the small size of the dataset, ensures a robust
evaluation of our model’s predictive performance. In order to scale the features to a
standard range and prevent any single feature from dominating the learning process of the
model, normalization was used, namely MinMaxScaler [28]. By applying data partitioning
and normalization, we can create a reliable and unbiased evaluation framework for a
prediction model, allowing us to accurately assess its performance and make meaningful
predictions on new, unseen data. A random state parameter with a value of 42 was also
used in order to enable reproducibility and consistency of the results. Interventionary
studies involving animals or humans, and other studies that require ethical approval, must
list the authority that provided approval and the corresponding ethical approval code.

2.3. The Prediction Model

The most appropriate prediction model was determined using the “lazy prediction”
approach. This methodology assesses multiple models and select the one that best suits spe-
cific task, thus ensuring the most reliable and accurate predictions for particular study [29].
The performance of models trained on the training data was determined for 42 prediction
models, with the Extra Tree Regressor performing best [30]. The performance of the Extra
Tree Regressor is validated for both the training set and the test set, as well as a visual
representation of the predicted relationship.

Metrics

Metrics are quantitative measures used to evaluate the quality of a model. The
following metrics were used in this paper: MAE (mean absolute error), MSE (mean square
error), MAX (maximum absolute error), MAPE (mean absolute percentage error) and RMSE
(root mean square error). Additionally, adjusted R2 and R2 were used. The difference being
that adjusted R2, based on the number of predictors and sample size, explains how well
the independent variables explain the variability of the dependent variable. R2 does not
take into account the number of predictors [31,32].

2.4. Visualization of Results

For the analysis of individual and combined effects of alloying elements on the E,
double diagrams were made. The range of values of the mass fractions of the elements
was determined by calculating the maximum and minimum values of the corresponding
column from the training set, and by combining the values a data grid was obtained. With
the help of predictions, each point on the grid is assigned a certain value for the E, based on
which different regions of values are formed, which are connected to the scales on the right.
Bo-Md diagrams were formed in the same way, as well as the ratio e/a–∆r [33]. It provided
a visual overview of which are the most optimal ratios of independent variables that can
give the desired values for the E.
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2.5. Experimental Design for Predicting the New Alloys

Experimental design is a method that involves planning and conducting experiments
in a non-traditional way that requires a quick and efficient approach. The factors that will
be analyzed are selected—in our case, they are the mass fractions of alloying elements
and the ranges are defined for each of them (minimum is 4, and maximum 40 wt.%, that
appeared in the database for each of the alloying element). Approximately 16,000 different
alloys were generated using this approach.

To forecast the composition and characteristics of multicomponent alloys, a Monte
Carlo simulation was employed. This technique, known for generating random alloy
compositions, facilitated the execution of ten million different alloys. This comprehensive
computational approach enabled a broad exploration of potential alloy compositions,
thereby supporting the robust prediction of a low Young’s modulus using developed
model [34].

3. Results and Discussion
3.1. Basic Statistics, Data Correlation

For 49 variables, as defined in the database, the values of the following parameters
were determined: minimum, mean, maximum, standard deviation, and median. The
second column represents the number of parameters that were available for each of the
variables (Table A1).

In the dataset, one notable observation is the markedly low minimum value for the E
for several alloys. This value falls significantly below the median, indicating an extreme
deviation that demands careful consideration during model development, as it has the
potential to influence the precision of our model performance.

It is important to note that deviations in the Young’s modulus primarily arise due to
variations in thermal and mechanical treatment across dataset [35,36]. However, owing to
the incomplete data for these factors in the current dataset, we were unable to incorporate
this information into our machine learning model at this stage. Future efforts to collect
and include data pertaining to thermal and mechanical treatments would be crucial in
enhancing the predictive performance of our model, thus providing a more accurate
representation of the modulus of elasticity for various alloys.

Additionally, high standard deviation values in the case may indicate that some points
are significantly further from the mean. Standard deviation data alone are not sufficient
for a general conclusion, but it can be a good predictor when it comes to points that may
influence further statistical analyses.

A correlation matrix was generated to examine the relationships between pairs of
variables in the dataset (Figure A1). Correlation coefficients, ranging from −1 to 1, are
visually represented using a spectrum of colors from intense pink to white to dark blue. A
coefficient of −1 indicates a strong negative correlation, while a coefficient of 1 indicates
a strong positive correlation. Values close to 0 indicate no correlation. This analysis
is particularly important in identifying multicollinearity, as high correlations between
variables can lead to unreliable predictions and make it difficult to determine the individual
effects of factors on outcomes.

High collinearity was observed for the mass fractions of the following pairs: C-Mn i
is 0.74 and O-N is 0.42. Carbon in titanium alloys is mainly found as an impurity, while
manganese is an alloying element. Their high correlation coefficient can be explained by a
similar influence on the grain refinement, whereby a fine-grained and therefore stronger
alloy is obtained [36]. Oxygen and nitrogen are mainly impurities in titanium alloys that
are introduced with the raw material itself or during processing; however, they can have a
very similar effect, which is known through the collinearity coefficient. Both elements in
small amounts can increase the strength of the alloy, precipitate oxides formed by oxygen
and nitrides formed by nitrogen. Additionally, when it comes to corrosion protection, the
oxygen that forms the oxide layer acts as a barrier, while nitrides are especially important
in aggressive environments [37].
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3.2. Making New Features Using Classifications
3.2.1. Classification Based on: D-Orbital Energy Level (Md) vs. Bond Order (Bo)

The Bond order is a measure of the strength of the covalent bond, while the energy
level of the d-orbitals of transition elements is influenced by their metallic radius and
electronegativity. The average Bo and Md values of alloys are determined by calculating
the product of the weighted average of the Bo and Md values of the individual elements
present in the alloy and their atomic fractions.

From such diagrams it is possible to determine the phases present in the alloy, the
corresponding deformation mechanisms and values of Young’s modulus based on the Bo-
Md ratio. The low values of the E correspond to the mechanism at the slip–twin boundary,
where it is important to emphasize that when the beta phase has a higher stability, the slip
mechanism prevails. Previous research has shown that higher values of Bo correspond
to lower values of the Young’s modulus, and that at the same time these alloys are more
resistant to corrosion [33].

Figure 2 shows a scatterplot containing data of the modeled alloys and shows the
stability phases, deformation mechanisms and Young’s modulus of different titanium
alloys, depending on the strength of the covalent bond and the energy level of the d-orbit.
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Using data from the literature [33], a colored dot plot was drawn where each point
was assigned a specific color depending on where it is located in the extended Bo-Md
diagram. The boundary for beginning of the martensitic transformation is marked as Ms
line (where Ms is at room temperature, Ms = RT), while the Mf1 line represents the end of
the martensitic transformation (where Mf1 = RT) [33]. The boundary for the martensite
is given as Mf2 curve [33]. The first group of points is marked in red (class 1), and these
are the points that have a value greater than/equal to the corresponding values on the
Ms curve, and correspond to alloys that have a β phase that deforms by sliding. Among
all phases, these are characterized by the lowest values of the Young’s modulus and have
high strength. For our research, these stages are of great interest. The second group is
characterized by the orange color (class 2) and these are the points that have values greater
than/equal to the corresponding values on the Mf1 curve, but less than the values on the
Ms curve and there is a β + ω phase. It is formed by cooling from high temperatures, and
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the ω phase is not particularly desirable because it can significantly affect the mechanical
properties. The martensite α′ + α′′ phase is marked with green color and represents values
that are greater than or equal to the corresponding value on the Mf2 curve, and less than
the value on the Mf1 curve. The next group, class 4, marked in blue, defines the range of the
α + β phase and corresponds to values greater than or equal to the values on the α curve,
which are at the same time smaller than the values on the Mf2 curve. The last, fifth group,
marked in gray, corresponds to the α phase and occupies a range of values smaller than
those given on the α curve.

However, it is important to note that the results derived from the Bo-Md diagram may
not be completely accurate and may present occasional deviations. This is primarily because
different literature sources provide different data for this diagram, leading to potential
variations in the predicted phase composition or transition temperatures. Moreover, factors
such as thermomechanical treatments can alter the actual phase composition, further
challenging the accuracy of the diagram. Therefore, the accuracy of phase composition
predictions should be interpreted in light of these circumstances. Despite these limitations,
the classification derived from Bo-Md plot proved to be useful in improving the performance
of our model.

3.2.2. Classification Based on the e/a Ratio

In the field of titanium alloys, it has been proven that the E of elasticity is influenced
by the phase composition. Titanium alloys are categorized into three groups based on
present phase as: α, α + β, and β alloys, where studies have shown that the β metastable
phase is associated with the lowest values of the Young’s modulus. The e/a ratio (the ratio
of free valence electrons to the number of atoms in the alloy) can be used as a parameter to
design alloy with desirable phase stability and transitions. The stability of the α or β phase
depends on the number of electrons per atom of the alloying element, and the appearance
of the beta phase in the e/a ratio is associated with a value greater than 4.2.

In Figure 3, a scatter diagram was plotted using database values. The widespread
dispersion of these values meant they did not offer highly reliable results for drawing
definitive conclusions. This paper subsequently examines the relationship between the
difference in atomic radius and e/a. Based on the theoretical model, it is possible to
determine the deformation mechanism of the observed alloys, thereby predicting the
present phases.
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Figure 4 illustrates a scatter diagram, leveraging binary classification derived from
the literature [33]. The diagram showcases the correlation between the electron-atom ratio
and differences in atomic radii. The diagram taken from the literature is the result of recent
research and is designed to unify alloys produced by different methods, without taking
sharp limits of the value of the e/a ratio to define the deformation mechanism presence.
The data were classified in relation to the curve and marked in two categories. The first
category of data is marked with blue dots and includes titanium alloys characterized by a
twin mechanism, and the second group is marked with red dots and refers to alloys that
are deformed by a slip mechanism. The stable β phase corresponds to the slip mechanism,
while the metastable β phase is characterized by a mechanism at the slip + twin boundary.
The line crosses some points in this diagram: if a data point’s center is outside the border
line, it is denoted in red, indicating a slip mechanism. If the point’s center falls within the
border line, it is colored blue, indicating a twin mechanism.
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3.2.3. Data Preprocessing

Using a variety of techniques to identify statistical outliers, it was found that linear
regression was the most effective. Due to the apparent linearity between these parameters,
this technique was employed specifically to analyze the relationship between the E and
specific heat. As depicted in Figure 5, this method enabled the successful identification
and elimination of outliers, thereby increasing the precision of the subsequent analysis.
The cause of the presence of these outliers can be different, and most often due to different
thermal and mechanical treatments on titanium alloys.

3.3. Model Performance
3.3.1. Feature Selection

In the proposed model development process, we iteratively utilized performance
metrics and a feature finding approach to identify key influential characteristics. These
encompassed the weight percentages of several alloying elements such as titanium (Ti),
niobium (Nb), zirconium (Zr), tantalum (Ta), Tin (Sn), iron (Fe), manganese (Mn), silicon
(Si), molybdenum (Mo), and oxygen (O). Other significant features included the deviation of
Young’s modulus from experimental data (∆E), material density, the e/a ratio, two variables
related to Mo equivalent ([Mo]_eqB, [Mo]_eqW1), Bond order (Bo), d-orbital energy level (Md),
specific heat, difference in atomic radii (∆r), as well as classifications based on the Bo-Md
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diagram (group) and the e/a ratio (slip/twin group). The features were chosen due to
their strong correlation with the target variable—the experimental E—while maintaining a
low correlation among themselves. This selection helps prevent collinearity and thereby
enhances the accuracy of the predictive model.

Materials 2023, 16, x FOR PEER REVIEW 10 of 21 
 

 

Figure 4. Dataset classification using the e/a–Δr plot: differentiating between slip and twin mecha-

nisms based on literature (borderline taken from the revised e/a versus Δr diagram) [33]. 

3.2.3. Data Preprocessing 

Using a variety of techniques to identify statistical outliers, it was found that linear 

regression was the most effective. Due to the apparent linearity between these parameters, 

this technique was employed specifically to analyze the relationship between the Е and 

specific heat. As depicted in Figure 5, this method enabled the successful identification 

and elimination of outliers, thereby increasing the precision of the subsequent analysis. 

The cause of the presence of these outliers can be different, and most often due to different 

thermal and mechanical treatments on titanium alloys. 

 

Figure 5. Detecting outliers in the dataset from the dependence of the experimental Young’s modu-

lus and specific heat. 

3.3. Model Performance 

3.3.1. Feature Selection 

In the proposed model development process, we iteratively utilized performance 

metrics and a feature finding approach to identify key influential characteristics. These 

encompassed the weight percentages of several alloying elements such as titanium (Ti), 

niobium (Nb), zirconium (Zr), tantalum (Ta), Tin (Sn), iron (Fe), manganese (Mn), silicon 

(Si), molybdenum (Mo), and oxygen (O). Other significant features included the deviation 

of Young’s modulus from experimental data (ΔE), material density, the e/a ratio, two var-

iables related to Mo equivalent ([Mo]_eqB, [Mo]_eqW1), Bond order (Bo), d-orbital energy level 

(Md), specific heat, difference in atomic radii (Δr), as well as classifications based on the 

Bo-Md diagram (group) and the e/a ratio (slip/twin group). The features were chosen due 

to their strong correlation with the target variable—the experimental Е—while maintain-

ing a low correlation among themselves. This selection helps prevent collinearity and 

thereby enhances the accuracy of the predictive model. 

3.3.2. Extra Trees Regressor 

The Extra Trees Regressor model showed significant reliability in predicting the 

Young’s modulus of titanium alloys. Table 3 shows the performance applied to the train 

and test set, respectively. Key performance indicators such as mean absolute error (MAE) 
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and specific heat.

3.3.2. Extra Trees Regressor

The Extra Trees Regressor model showed significant reliability in predicting the
Young’s modulus of titanium alloys. Table 3 shows the performance applied to the train
and test set, respectively. Key performance indicators such as mean absolute error (MAE)
highlight the effectiveness of the model. It should be noted that the MAE of the proposed
model fits well within the absolute error range reported in the existing literature. However,
it is important to consider the inherent variability in the Young’s modulus due to thermome-
chanical treatments during alloy production. This variability is a limitation of the current
model. In future work, inclusion of comprehensive thermomechanical treatment data for
all alloys will be done which would significantly improve accuracy and performance of the
used model.

Table 3. Performance applied to the training and test set.

MAE R2 MSE MAX MAPE

Training set 0.633 0.989 5.662 14.5 0.011
Test set 7.722 0.699 119.6 38.9 0.118

Figure 6a provides a graphical illustration of predicted versus actual results for Young’s
modulus for test samples, while Figure 6b shows the deviation from linear dependence
between predicted and actual values for E. A high degree of overlap indicates the accuracy
of the used model. It is noticeable that the largest deviations between the predicted and
actual values occur at the extremes of the E. This trend highlights the robustness of the
model within conventional elasticity ranges and identifies areas of potential improvement
for extreme elasticity values.
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3.4. Variables Influencing the Young’s Modulus

The feature importance tool denotes the contribution of each feature or variable to the
model’s predictive capability. As illustrated in Figure 7, these factors provide insight into
how individual variables influence the model’s overall performance and help identify the
key drivers of the modulus of elasticity predictions.

Specific heat is singled out as the most influential. This is particularly interesting
and it is necessary to put a greater focus on the further interpretation because the previ-
ous researches do not have particularly many direct links with the modulus of elasticity,
except for one, where V. Pekarek found relation between thermal properties and elastic
modulus [38]:

cp·s =
Ea

1− 4·σ2 ·α
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where cp is specific heat at constant pressure per kilogram (J/(kg·K)); s is density (kg/m3);
Ea is Young’s modulus (GPa); α is linear coefficient of thermal expansion (1/K), and σ
is Poisson’s ratio. The Einstein and Debye models, both quantum-mechanical in nature,
define the change in molar heat capacity at varying temperatures, thereby explaining the
indirect relationship between specific heat and the E. These models take into account the
behavior of atomic vibrations, although from different perspectives. According to Einstein’s
model, atoms vibrate independently of one another in a well-ordered state, similar to
harmonic oscillators. This model effectively assumes that each atom within a solid oscillates
independently. It is a good starting point, but it ignores atom-atom interactions. Debye’s
model, on the other hand, accounts for atoms’ cooperative, or dependent, behavior. It
proposes that atomic vibrations are not independent, but rather collective modes involving
many atoms moving together. This model applies the theory to lower frequencies, resulting
in a more accurate prediction of specific heat at low temperatures. These assumptions
serve as the foundation for expressing the molar heat capacity, which is dependent on
both the Einstein and Debye temperatures, as well as the temperature at which the molar
heat capacity is measured. Notably, both Einstein and Debye temperatures are directly
proportional to atom oscillation frequency. This oscillation frequency, which is fundamental
to atomic behavior, can be calculated using E, thereby indirectly linking specific heat and
E [39]. These models and their implications highlight the potential complexity of the
interaction between specific heat and E, implying that the behavior of biocompatible Ti
alloys can be influenced in a synergistic manner by a variety of factors. This complexity
opens up exciting opportunities for future research into these interactions and their broader
implications in material science and alloy design.
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The next important variable is the mass content of titanium. The Young’s modulus
of pure titanium is 110 GPa and as the main element in biocompatible titanium alloys, a
higher mass fraction of this element often means higher values of the E [40]. Of course, in
order to accurately define the impact, it is necessary to observe the exact composition of
the alloy, as well as the thermomechanical processing methods, but in general it has been
shown that a higher E corresponds to a higher mass fraction of the titanium alloy.

In our model, the mass fractions of various alloying elements, ordered by their feature
importance, are as follows: Si, Nb, Zr, Fe, Mo, Sn, Ta, Mn, and O, along with Titanium.
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All of these, except for oxygen, serve as β stabilizers [15,37,41–48]. These elements, when
incorporated in specific proportions, promote the formation of the β phase in titanium
alloys, a phase noted for its lower E. Recently, extensive studies have been conducted to
ascertain the contribution of each of these elements towards lowering the E modulus. For
example, by examining the influence of Nb, it was found that in the Ti-33Nb-7Zr alloy,
33 wt.% of Nb leads to an extremely low E of 29 GPa [42]. Figure 8a,b show the influence of
alloying elements on E.
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Figure 8. The influence of independent variables on the predicted Young’s modulus (a) niobium,
(b) zirconium and niobium, (c) Bond order (Bo) and d-orbital energy level (Md), and (d) the e/a ratio
and ∆r.

The d orbital energy level (Md) and Bond order (Bo), as well as the ‘group’ feature
(classification based on the diagram from Figure 2) were also identified as influential
features (Figure 7). The d orbital energy level defines the bond strength and depends on the
number of electrons in the d orbital, while the Bond order indicates the number of bonds
between atoms. Both parameters are quantitative indicators of bond strength, with stronger
bonds generally meaning higher E values. Diagrams constructed depending on these two
parameters help to identify the current phases. Figure 8c) shows the predicted values for
the E depending on these two factors, where it is noted that the minimum values are in the
upper right corner.
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Mo equivalents, particularly [Mo]eq_B and [Mo]eq_W1, were exhibited a positive effect
on model performance, while other equivalents had a detrimental effect. By observing the
formulas through which these two equivalents are expressed, it can be seen that in the first
the coefficient with which Fe is multiplied is very high, while in the second it applies to Si,
which can be connected to the strong influence of certain elements [46]:

[Mo]eq_B = Mo + 0.67 V + 0.44 W + 0.28 Nb + 0.22 Ta + 2.9 Fe + 1.6 Cr + 0.77 Cu + 1.11 Ni +
1.43 Co + 1.54 Mn + 0.0 Sn + 0.0 Zr − 1.0 Al (wt%).

[Mo]eq_W = Mo + 1.25 V + 0.59 W + 0.28 Nb + 0.22 Ta + 1.93 Fe + 1.84 Cr + 1.51 Cu +
2.46 Ni + 2.67 Co + 2.26 Mn + 0.3 Sn + 0.47 Zr + 3.01 Si − 1.47 Al (wt%).

The characteristics, the ‘e/a ratio’, ‘∆r’ and ‘density’ were identified to possess a
synergistic effect on model performance. In particular, the ‘e/a ratio’ serves as an indicator
for the presence of β phase in alloys. When the ‘∆r’, which indicates differences in atomic
diameters, is related to the ‘e/a ratio’, it helps to determine the ‘slip or twin class’, thus
improving the predictive ability of the model. It has been observed that higher density
alloys typically correspond to higher values of E. The ∆r characteristic suggests that when
the diameter differences are smaller, stronger bonds are likely to form, leading to a higher
E. Figure 8d shows the fields of the lowest values of the E depending on these two factors,
and the predictions coincide with the results shown in Figure 4.

It has been shown that the experimental E of elasticity variation (Figure 7), parameter:
±d (GPa) also contributes significantly to the performance of the model. Such variations
can be attributed to a number of factors, the most influential of which are the sample
preparation method and the thermomechanical treatments provided to the sample.

3.5. Predicting a Low Young’s Modulus for New Ti Alloys
3.5.1. Four-Component Ti Alloys

Design of Experiments (DoE) represents a structured approach employed to plan and
conduct experiments, aimed at understanding the influence of various factors—in this case,
the alloy composition—on the target variable, which in this context is the experimental
E (applying the created prediction model). Leveraging this approach, a matrix design
was generated comprising 16,016 unique compositions, facilitating the investigation of the
complex impact of three alloying elements on the E.

The resulting product is a set of ternary diagrams that display the mass fractions of
various alloying elements, with a limitation that the maximum content of these elements in
sum, does not exceed 40 wt.% (refer to Figure 9a,b). These diagrams are developed using
a step size of 4 in the design matrix. Although this step size does not provide complete
coverage of the diagram (from 0–0.1), it does facilitate a better visual representation with a
field of predicted E.

Figure 9 presents two ternary diagrams, the first (a) depicting compositions with
Nb, Ta, and Mn as alloying elements, and the second (b) presenting those with Zr, Sn,
and Si as alloying elements. The dark purple regions on these diagrams are indicative of
areas where Young’s modulus falls below 60 GPa. This graphical representation offers a
clear demarcation of areas associated with lower E, providing useful guidelines for the
development of novel titanium alloys.
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3.5.2. Monte Carlo Simulations for the Design of Multicomponent Alloys

The Monte Carlo simulation method was used to generate ten million alloy samples
under controlled conditions to achieve multicomponent alloys with desired E values. This
method yielded several promising alloys, four of which are presented in Table 4. We
set the oxygen content to a maximum of 0.78 wt.% in line with the upper limit found in
the literature.

Table 4. Values of various parameters for modeled multicomponent alloys.

Parameter Unit
Sample ID

2165217 2351451 3295558 9044251

Ti wt.% 17.90 18.59 59.57 50.76
O wt.% 0.56 0.17 0.092 0.099

Nb wt.% 18.27 24.38 18.92 14.42
Zr wt.% 12.03 13.15 3.03 2.32
Ta wt.% 19.27 13.65 1.30 7.10
Sn wt.% 18.37 28.94 2.71 5.04
Mn wt.% 8.74 0.41 7.55 8.34
Si wt.% 0.53 0.22 1.05 0.045

Mo wt.% 2.68 0.27 5.21 11.24
Fe wt.% 1.65 0.22 0.57 0.62

[Mo]eq_B / 30.29 11.35 24.09 31.49
[Mo]eq_W1 / 47.74 26.97 34.36 39.63

Bo-bond order / 2.04 2.32 2.23 1.74
d orbital energy level (Md) / 1.64 1.82 1.94 1.50

Specific heat (J/kgK) 303.39 309.07 388.60 309.47
∆r / −4.82 −1.95 −1.57 −2.02

Predicted Young’s modulus GPa 67.29 67.14 64.63 64.57

The main elements of these alloys are titanium, zirconium, tin, manganese, tantalum,
and niobium, which could relate to the studies of the most influential variables of the
biocompatible Ti alloys in past research. Without concrete experimental data, it is currently
difficult to specify the phases or intermetallic compounds that may form in these proposed
compositions. While the specific roles and interactions of these elements within the alloy
matrix are subjects for future experimental studies, their proportions in the given samples
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are computed based on the objectives of achieving desired Young’s modulus values as
indicated in Table 4. The predicted Young’s modulus values serve as preliminary indicators
of the anticipated mechanical properties of these alloys, offering a direction for future
experimental validations and investigations.

4. Conclusions

The objective of the present study was to analyze trends in the elastic behavior of
biocompatible and low E Ti alloys using machine learning. The proposed computational
approach for predicting the composition and E of biocompatible Ti alloys was composed
of the following steps: (1) establishing a database, (2) conducting an exploratory data
analysis, (3) building new feature classifications according to solid scientific principles,
and (4) identifying an appropriate regression model. The Extra Tree Regression model is
implemented as the most efficient in predicting the E. The obtained results determined
the specific heat as the most influential parameter on the E of low-modulus biocompatible
Ti alloys. Even though this finding is supported with limited data in the literature, it
contributes to the expansion of current knowledge in the field of biocompatible Ti alloys.

The construction of the Bo-Md diagram predicts the dependence between the phase
stability and Young’s modulus of Ti alloys, as well as the deformation mechanisms corre-
sponding to the given phases. Particularly, numerous alloys are placed on the α and α + β
border when the Bo value is greater than 2.77. These metastable β alloys are deformed by a
slip–twin mechanism, which induces better mechanical properties as well as increasing
plasticity and fatigue resistance.

Furthermore, an e/a–∆r plot was used to define the deformation mechanism, using
two semi-empirical parameters. The first method proved to be more valid, especially
for more complex compositions. Monte Carlo simulation was leveraged to predict the
composition of multicomponent Ti alloys. The proposed computational approach could
accelerate improvement of existing and development of novel low-modulus biocompatible
Ti alloys.
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Appendix A

Table A1. Metrics of analyzed variables.

Parameter Unit Count Mean Std Min 50% Max

Ti wt.% 243.0 69.43 13.90 20.00 68.00 96.94
Ti at.% 243.0 81.10 9.39 32.47 81.22 98.45

Nb wt.% 243.0 17.05 13.52 0.00 15.50 45.19
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Table A1. Cont.

Parameter Unit Count Mean Std Min 50% Max

Nb at.% 243.0 10.96 9.50 0.00 9.91 33.45
Zr wt.% 243.0 4.53 5.82 0.00 3.00 40.00
Zr at.% 243.0 2.94 4.10 0.00 2.03 34.07
Ta wt.% 243.0 2.83 7.67 0.00 0.00 70.00
Ta at.% 243.0 1.10 3.41 0.00 0.00 38.17
Sn wt.% 243.0 2.59 4.20 0.00 0.00 20.00
Sn at.% 243.0 1.26 2.03 0.00 0.00 9.16
Fe wt.% 243.0 0.72 1.93 0.00 0.00 10.00
Fe at.% 243.0 0.68 1.80 0.00 0.00 9.40
Mn wt.% 243.0 0.59 2.59 0.00 0.00 17.65
Mn at.% 243.0 0.52 2.29 0.00 0.00 15.71
Si wt.% 243.0 0.03 0.16 0.00 0.00 1.25
Si at.% 243.0 0.06 0.31 0.00 0.00 2.37

Mo wt.% 243.0 2.20 4.47 0.00 0.00 38.08
Mo at.% 243.0 1.27 2.65 0.00 0.00 25.31
O wt.% 243.0 0.06 0.15 0.00 0.00 0.78
O at.% 243.0 0.20 0.55 0000 0.00 2.81
N wt.% 243.0 0.00 0.01 0.00 0.00 0.05
N at.% 243.0 0.00 0.02 0.00 0.00 0.19
C wt.% 243.0 0.00 0.00 0.00 0.00 0.02
C at.% 243.0 0.00 0.01 0.00 0.00 0.06

Young’s modulus, exp GPa 243.0 69.63 23.31 14.00 66.50 146.0
±d GPa 243.0 0.70 2.56 0.00 0.00 26.70

Elongation % 94.0 14.49 10.92 0.09 13.75 42.00
Max tensile strength MPa 100.0 884.94 345.74 246.00 851.50 2093.0

Yield strength MPa 97.0 777.29 266.27 156.00 787.00 1785.0
Hardness HV 69.0 305.71 89.40 145.00 312.00 490.0

HT1: T C 102.0 1025.54 211.29 450.00 1000.00 1400.0
HT2: T C 46.0 761.67 239.25 30.00 879.85 1000.0

Weighted molar mass sum / 243.0 64.24 11.08 48.24 64.03 141.0
Density g/cm3 243.0 5.87 0.97 4.60 5.67 13.0
e/a ratio / 243.0 4.19 0.11 4.00 4.19 4.59

Bo-bond order / 243.0 2.83 0.04 2.74 2.82 3.00
[Mo]eq_B / 243.0 10.56 6.41 0.00 10.24 41.47
[Mo]eq_Z / 243.0 12.19 6.16 0.00 12.45 42.80

[Mo]eq_W1 / 243.0 13.27 5.68 1.50 12.78 41.47
[Mo]eq_W2 / 243.0 11.22 4.30 1.57 11.25 40.86

[Mo]eq_chen / 243.0 10.50 6.36 0.00 10.17 41.44
d-orbital energy level (Md) / 243.0 2.43 0.05 2.23 2.43 2.61

Specific heat J/(kgK) 243.0 472.09 27.29 352.23 470.91 516.7
Bulk modulus GPa 243.0 121.26 7.03 105.24 120.52 160.7
Shear modulus GPa 243.0 43.00 2.00 37.43 42.513305 52.8

∆L1 / 243.0 4.09 4.47 −0.16 3.22 31.7
∆r / 243.0 −0.18 0.83 −3.14 −0.15 4.10

Y_ls_coef GPa 243.0 60.55 26.33 5.56 58.28 177.2
Y_th / 243.0 116.75 7.60 95.62 114.82 169.0
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