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Abstract
Polymer composites based on unsaturated polyester resin (UPR) and reinforced with particles based on unmodified/modified
plant provenance biosilica particles were synthesized and characterized. An unsaturated polyester resin was obtained from
waste poly (ethylene terephthalate (PET). Biosilaca particles are made from rice husk biomass. The surface of the produced
silica particles was modified using three different silanes: 3-trimethoxysilylpropyl methacrylate (MEMO), trimethox-
yvinylsilane (TMEVS), and 3-aminopropyltrimethoxysilane (APTMS). The microhardness test method was used to investigate
the mechanical properties of synthesized composite material with variations in dwell times and applied loads. Optimization of
composite microhardness value prediction in function of synthesized parameters (type of modification of silica particles) and
measurement parameters (applied loads and dwell times) was done using the method of response surface methodology (RSM)
regression analysis. The maximal microhardness values (0.459 GPa) were obtained of type modification of silica particles with
vinyl with 80% confidence for 120 experimental variables. This method can be used to choose the optimal dwell time and load
for comparison of measurements between different composite materials and to enable the choice of the material in terms of
optimization of the quality of reinforcement and quality of interphase determined by surface modification.

Keywords
Unsaturated polyester composites, biosilica, response surface methodology, optimization

Received 27 October 2023; accepted 4 January 2024

Introduction

Preservation of environment, concern about the use of nonrenewable resources and pollution are of growing concern in last
decade. This concern has led to a noticeable shift in the direction of replacing synthetic composites and plastics with
composites derived from natural sources. This shift is driven by the potential for these natural raw materials to possess a
reduced carbon footprint.1 One noteworthy area of development is polymer nanocomposites, which are emerging as novel
materials with rapid advancements. Novel nanocomposites consist of a matrix composed of either thermoplastic or ther-
mosetting polymers, which are reinforced with materials that can be of different shapes, composition, and surface quality.
These reinforcing materials include powders, linear fibers, nanotubes, and layered substances such as clay.2 Recycled PET
used to generate unsaturated polyester resin is an environmentally friendly technique. This process results in a resin that is
more eco-friendly. Monomers required for the synthesis of this unsaturated polyester resin include anhydrides (such as
phthalic or maleic), acids (including phthalic, maleic, or fumaric), and glycols (such as ethylene glycol - EG, 1,2 propylene
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Republic of Serbia, Belgrade, Serbia
2University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
3Military technical Institute, Belgrade, Serbia
4University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Corresponding author:
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glycol - PEG, and diethylene glycol - DEG).3 Chemical recycling represents a viable method for producing unsaturated
polyester resin from PET. This approach involves the depolymerization and modification of PET, yielding the raw materials
from which the polymer is originally made as well as secondary products with added value.4

The properties of composites made from Unsaturated Polyester Resin (UPR) are influenced by several factors, including
the type and shape of the filler, its size, surface characteristics, and how well it’s dispersed within the material. These
composites offer distinct advantages such as high tensile strength, low thermal expansion, and low density, making them
increasingly popular as replacements for traditional materials. Consequently, there is a rapid pace of development in creating
new composite materials. In the quest for more sustainable materials, natural substances are gaining prominence as rein-
forcement in composites. Natural fiber composites like sisal and jute are becoming more popular due to their exceptional
specific strength, lightweight nature, and biodegradability. Rice husk, usually regarded as industrial waste, comprises a
significant amount of cellulosic material and silica, making it an attractive option for various industrial applications. Utilizing
RH as a filler not only addresses environmental concerns but also helps reduce the production costs of composites.5

In the quest for more sustainable materials, natural substances are gaining prominence as reinforcement in composites.
Natural fiber composites like sisal and jute are becoming more popular due to their exceptional specific strength, lightweight
nature, and biodegradability. Rice husk (RH), an economical natural fiber, contains a substantial amount of cellulosic material
and silica, making it an attractive option for various industrial applications. Utilizing RH as a filler not only addresses
environmental concerns but also helps reduce the production costs of composites.6

Several studies have been conducted to investigate the effect of various chemical modifications of fillers on the mechanical and
morphological properties of polyester composite materials.7 Some investigations have employed response surface methodology
(RSM) to optimize conditions and parameters. Given the multitude of potential combinations, various analyzed properties are
utilized to characterize the interactions between variables. This approach aims to reduce the number of experiments while
maintaining statistical significance and minimizing costs.8 However, it’s important to note that modeling beyond the lower and
upper boundsmay have reduced statistical relevance due to errors.9 An example from the literature reveals that alkaline treatment for
kenaf/polyester composites was optimized using the RSM technique. The study found that tensile strength reached its peak at 6%
alkali content and temperatures ranging from 30 to 80°C.10 Additionally, Demrel et al.11 explored novel polyurethane-based
composite materials reinforced with waste polyester. They examined how waste semi-urethane influenced the density, hardness
(measured by Shore D), thermal conductivity coefficient, thermal stability, and porosity of the produced composites. The results
indicated that as the VPU ratio increased, the density and thermal conductivity coefficient of the composite decreased. The factors
affecting the production of polyester composites were optimized using the response surface method (RSM).

The goal of this study is developing a composite material composed of a polymer matrix created from recycled PET polyester resins
and a reinforcing phase made up of silica nanoparticles derived from rice husks. This composite is significant both commercially and
environmentally, given that its components, matrices, and reinforcements originate from renewable and recycled sources. The individual
structural-mechanical characteristics of thematrix and reinforcement, aswell as their combined qualities and characterization parameters,
determine the values of observed mechanical properties of the final composite (measurement parameters).

To examine the synergistic impact of elements affecting measured composite mechanical characteristics, for example,
composite microhardness, two classes of parameters can be selected: one concerning the synthesis and composition and other
the way of characterization of the material. In order to do good comparison of composite materials properties the modification
of the surface was selected as a key parameter defining different sets of specimens. The characterization process involves
applied indentation loads and dwell times that were varied for characterization purposes. Regression analysis was a tool to
approach those two classes of parameters to obtain optimal measuring parameters for composite hardness determination that
enable establishing good and reliable mechanical characteristics of the studied composite.

Materials and methods

Materials

The rice husk was provided from Kočani (North Macedonia). Surface modification of the obtained silica particles was
performed using three types of silanes: 3-trimethoxysilylpropyl methacrylate (MEMO), trimethoxyvinylsilane (TMEVS) and
3-aminopropyltrimethoxysilane (APTMS) were purchased from Sigma-Aldrich, Darmstadt, Germany.12 Waste PETwas used
to produce the unsaturated polyester resin.

Preparation of biosilica particles from rice husk

Rice husks were first cleaned with water, dried, and treated in 10% sulfuric acid at 80°C for 3 h. This process produces silica
particles. Following this, the husks were washed in purified water until a neutral reaction was achieved, and dried at 50°C for
further treatment. A Bunsen flame is used to burn the shells. The obtained substance is heated to 900°C in a furnace for 4 h,
producing a white biosilica powder having amorphous structure.12

Surface modification of biosilica particles

Surface treatment of biosilica (SiO2) was performed with MEMO silane SiO2-M, TMEVS silane SiO2-V, and SiO2-ABD
(modified with 3-aminopropyltrimethoxysilane, i.e., APTES, followed by biodiesel of soybean oil, APTMS + BD).12 Those
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modifications gave different surface that are enabling establishing bonding between the reinforcements and the matrix in
different ways having short and long molecules on the surface.

Synthesis of unsaturated polyester resin from waste PET and bio-based MA and PG

The unsaturated resin UPR was obtained by glycolysis depolymerization of PET waste flakes. This step was followed by
polycondensation with biomass derived MA enabling the greenest synthesis of the matrix for this purpose.12

Preparation of composites reinforced with biosilica nano particles

Both modified and as produced biosilica particles served as reinforcement in composites, and UPR was used as the polymer
matrix. Dispersion of 2.5 wt.% particles was provided using the magnetic stirrer. Resisting bubles were removed using a
laboratory planetary mixer designed to vacuum evacuate gaseous bubbles from processing material for 10 min. After that time,
the initiator MEKP (1 wt. %) and cobalt-octoate (0.5 wt. %) were added, and the mixture was homogenized (at 200 r/min for
2 min under vacuum) to create a homogeneous, pasty dispersion that was quickly poured into molds. After curing the
compound for 24 h at room temperature, it was heated for 4 h at 80°C.

Response surface method

The advantage of Response Surface Methodology (RSM) is that RSM can provide quantitative values of possible interactions
between influencing factors, which are difficult to obtain by other techniques.13 Another advantage of this technique compared
to the other prediction technique such as an ANN, to predict Vickers microhardness14,15 is the use of a smaller data set and
giving optimal combinations of input parameters for planning or designing the experiment with a low trials,16–18 but ANN
application in materials science has increased rapidly during the past years.19–22

Factors for RSM. In this investigation, interaction factors for Response Surface Methodology design were a combination of
synthesis and measurement parameters.

Synthesis parameter. The sort of chemical modification of silica particles acting as reinforcing components in the polymer
composite was noted among the synthesis parameters. AMINO,MEMO, and VINYLmodified and unmodified silica particles
were used for this purpose, and particles were mixed in the basic polyester polymer matrix at 2.5 wt. %.Modifications were put
on particles to enhance mixing and improve properties. Composites were modified to pure matrix.

The matrix of the composite was kept the same in the composites under investigation, and in all cases, it was the unsaturated
polyester resin from recycled sources that was polymerized after the dispersion of particles.

Measurement parameters. The measurement parameters and their impact on the measured value of composite hardness of
synthesized materials were noted from the characterization parameters used to measure the composite microhardness using a
micro indenter in accordance with the Vickers method. Both the applied force (mass of the weight) and the pressing time
(dwell time or retention time of the indenter) had an effect. Eight levels of dwell time, ranging from 0 to 60 s, were available (0,
10, 20, 30, 40, 50, 100, and 300 s). The exerted force was between 0.2452 N and 0.9806 N, or between 25 and 100 gf. Three
levels, or three distinct weights of 25, 50, and 100 gf, were selected.

Designee experiments and variables. Mathematical regression technique named RSM “Response Surface Methodology” was
used to connect (correlate) synthesis and measurement parameters as influential (input parameters) on the value of composite
microhardness as a response of the system (output size). The correlation mode was created using an ideal and randomized trial
design. Regression analysis can be applied to experiments that are not planned in order to observe the influence of individual factors,
their mutual interaction, their influence on the measured quantity (system response), and most importantly, to produce a math-
ematical model that can be used to predict the value of an observed output quantity. Although the main goals of applying regression
analysis are to design and plan an optimal experiment and optimize parameters, the methodology can also be applied to unplanned
experiments. Depending on the complexity of the system and the interactions and correlations among factors, multiple regression
analysis can produce both linear correlations between the measured quantities and more intricate polynomial forms of higher order.

An analysis of variance was used to determine the degree of impact of input variables on the system’s response (in this case,
the value of the material’s composite microhardness) and to determine the accuracy (adequacy) of the created mathematical
regression model (ANOVA). In order to predict the value of the composite hardness of the synthesized material, a mul-
tiparameter regression model was created using 120 experimentally measured values of composite microhardness and three
input variables. The levels for each factor can be coded as dimensionless quantities to make it easier to create a matrix with
factors influencing the system’s reaction. The measured influence factors and their intervals are displayed in Table 1. In
Table 1, the value of n increases to 4, which denotes a sample of vinyl-modified silica-reinforced polyester, for the descriptive
factor linked to the type of sample, i.e., the synthesis parameters C (n).
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Results and discussion

Statistical analysis of the regression model

For statistical analysis, the program “Design-Expert,” version 12 (Stat-Ease Inc., Minneapolis, US), was used. All regression
coefficients were calculated using the data from the created experimental matrix, and a mathematical model (second-order
polynomial type) was produced. The software package makes recommendations regarding which model to use during data
processing based on regression parameters.

Table 2 demonstrates parameters for selection of an adequate model which is describe composite hardness as response. The
values of the sequential p-value of the probability, adjusted (mean) values of the regression coefficient, and predicted values of
the regression coefficient R2 are noted for the criteria of adequacy and model selection (Table 2). Table 2’s results make it
abundantly obvious that the model accounts for 79.91% of the variance in the output variable (hardness).

The analysis of variance is used to show the statistical analysis’s findings in a table (ANOVA). The ANOVA test is used to
evaluate the model’s suitability and the importance of the derived regression equation’s coefficients. The number of degrees of
freedom (DF), sum of squares (SS), mean square (MS), value (p-value), and Fisher’s test value are the statistical parameters
that were used (F- value). The impact of the analysis factors was examined based on the p-value. If the p-value is less than
0.05,23 input parameters or influence factors are considered important.24–26

The influencing variables: A, B, C, AC, A2, and B2 are presented in Table 3.When p is larger than 0.1, there are linear interaction
parameters AB and BC, and the factors are not significant. The errors are bigger if there are many unimportant model terms
(excluding those needed for the ANOVA for the quadratic model), but factor reduction can help themodel. Themodel is likely to be
significant, according to Fisher’s test, or F - value of 28.85. Only 0.01% of the time could noise cause the F-value to show.

Table 4 shows the values of the classified values’ regression coefficients. When all other factors are held constant, the
coefficient estimate shows the anticipated change in the response per unit change in the value of the factor.

The overall average response of all experiments is the intercept in an orthogonal design (runs). Based on the factor changes, the odds
are modified around that average. The VIFs are around 1 when the correlation is higher, the factors are orthogonal. VIFs of less than
10 are generally considered appropriate andVIFs less than 10 are tolerable. The oscillation of values around 1 showsmulticollinearity of
the experimental hardness points, and since they are less than 10, they are acceptable based on the values of VIFs shown in Table 4.

Table 2. Selection of an adequate mathematical form of the model based on regression criteria.

Source Sequential p-value Adjusted R2 Predicted R2

Linear <0.0001 0.4553 0.4198
2FI 0.3206 0.4627 0.3937
Quadratic < 0.0001 0.7991 0.7696 Suggested
Cubic <0.0001 0.9174 0.8587 Aliased

Table 1. Input parameters (factors) and levels.

Factor/unit Factor label Lower level Upper level Data type

Dwell time, t (s) A 0 300 numerical
Applied load, P (gf) B 25 100 numerical
Sample type, n (/) C (n) UPR UPR/SiO2-V descriptive

Table 3. Results of the ANOVA test for the selected model of the second-order polynomial form. DF�degrees of freedom, F�value
according to Fisher’s statistic test, p�probability.

Source Sum of Squares-SS DF Mean Square-MS F-value p-value

Model 0.8168 17 0.0480 28.85 <0.0001 Significant
A-A 0.1694 1 0.1694 101.70 <0.0001
B-B 0.0310 1 0.0310 18.59 <0.0001
C-C 0.2760 4 0.0690 41.43 <0.0001
AB 0.0004 1 0.0004 0.2349 0.6290
AC 0.0431 4 0.0108 6.48 0.0001
BC 0.0035 4 0.0009 0.5193 0.7217
A2 0.1575 1 0.1575 94.56 <0.0001
B2 0.1359 1 0.1359 81.62 <0.0001
Residual 0.1699 102 0.0017
Cor Total 0.9866 119
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Model setting

Taking all statistical characteristics into account, a mathematical model of the influence of sample type (synthesis parameters),
indenter retention duration, and applied force on the composite hardness values of the investigated polymer/ceramic
composites was developed. The equations for encoded factor values (Equation (1)) and actual factor values (Equation (2)) are
shown as second-order polynomial equations.

R ¼ 0:1437� 0:0693Aþ 0:0290B� 0:0376C½1� � 0:0194C½2� � 0:0062C½3� þ 0:0068C½4� þ 0:0035ABþ 0:0297AC½1�
þ 0:0196AC½2� þ 0:0144AC½3� � 0:0065AC½4� � 0:016BC½1� � 0:0014BC½2� þ 0:0027BC½3� � 0:0098BC½4�
þ 0:1287A2 � 0:0818B2

(1)

The R value indicates the output variable’s coded response value, which is the composite hardness. Factor A denotes the
indenter’s dwell time during the Vickers test, factor B is the applied stress, and factor C is the kind of specimenwith variants with/
without reinforcement and reinforcement with unmodified/modified silica particles in the epoxy matrix. Individual components’
influence can be determined based on the values of the regression model’s coefficients. The factor-coded equation can be used to
predict the hardness response for different degrees of each factor. High levels of a factor are coded as +1 by default, while low
levels are represented as �1. By comparing factor coefficients, the coded equation can be used to determine the relative
importance of factors. The uncoded equation is equation (2):

R1 ¼

Cð1Þ

þ0:007461� 0:002020Aþ 0:007909Bþ 6:29523E � 07A*Bþ 5:72165E � 06A2 � 0:000058B2

Cð2Þ

þ0:035427� 0:002087Aþ 0:007913Bþ 6:29523E � 07A*Bþ 5:72165E � 06A2 � 0:000058B2

Cð3Þ (2)

þ0:046951� 0:002122Aþ 0:008023Bþ 6:29523E � 07A*Bþ 5:72165E � 06A2 � 0:000058B2

Cð4Þ

þ0:101799� 0:002261Aþ 0:007689Bþ 6:29523E � 07A*Bþ 5:72165E � 06A2 � 0:000058B2

Cð5Þ

þ0:168820� 0:002599Aþ 0:008218Bþ 6:29523E � 07A*Bþ 5:72165E � 06A2 � 0:000058B2

Table 4. Coefficients for coded factor values.

Term Coefficient estimate DF Standard error 95% CI low 95% CI high VIF

Intercept 0.1437 1 0.0124 0.1191 0.1684
A-A �0.0693 1 0.0062 �0.0816 �0.0570 1.04
B-B 0.0290 1 0.0060 0.0170 0.0410 1.82
C(1) �0.0376 1 0.0100 �0.0574 �0.0177
C(2) �0.0194 1 0.0100 �0.0392 0.0005
C(3) �0.0062 1 0.0100 �0.0260 0.0136
C(4) 0.0068 1 0.0100 �0.0130 0.0267
AB 0.0035 1 0.0073 �0.0110 0.0180 1.80
AC1 0.0297 1 0.0122 0.0056 0.0538
AC2 0.0196 1 0.0122 �0.0045 0.0437
AC3 0.0144 1 0.0122 �0.0097 0.0385
AC4 �0.0065 1 0.0122 �0.0306 0.0176
BC1 �0.0016 1 0.0090 �0.0193 0.0162
BC2 �0.0014 1 0.0090 �0.0192 0.0164
BC3 0.0027 1 0.0090 �0.0150 0.0205
BC4 �0.0098 1 0.0090 �0.0276 0.0080
A2 0.1287 1 0.0132 0.1025 0.1550 1.02
B2 �0.0818 1 0.0091 �0.0998 �0.0638 1.04
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For given levels of each element, an equation in terms of the actual factors can be used to estimate the hardness response.
Each factor’s levels in the original units should be given here. Because the coefficients are scaled to fit the units of each factor
and the intercept is not at the center of the projected space, this equation should not be used to determine the relative influence
of each factor.

According to equation (1), the synthesis parameters, i.e., the kind of sample, are the most important and influential factor in
determining the composite hardness value. Aside from the synthesis parameter, the indenter retention time as a measurement
parameter has a significant impact. The chosen load has a slightly weaker effect on the change in composite hardness. The
linear interaction parameters are insignificant, as expected. Based on the values of the coefficients in front of them, the squared
parameters of the measurement factors are also influential factors.

The experimentally found dependences of the composite hardness in GPa (R1) on the input observed factors: (a) indenter
retention time or dwell time in s (A), (b) applied indenter load in gf (B), and (c) sample type (UPR, UPR/SiO2, UPR/SiO2

-ABD, UPR/SiO2 -M, UPR/SiO2 -V) are shown in Figure 1.
According to Figure 1(a), the measured composite hardness of the synthesized material decreases with increasing load

duration up to a critical value of 60 s, after which the composite hardness value does not change. The greatest change in
hardness is observed for a short dwell time, based on the steepness (slope) of the curve that may be traced through the
experimental points of the composite hardness. The viscoelastic composite based on epoxy matrix has a high degree of
recovery during pressing, i.e., a bigger percentage of the elastic component than the inelastic component during mechanical
deformation of the material during pressing, as expected. For a short stay time (indentation time), the elastic recovery of the
material during the unloading period following micro indentation is greater. The elastic recovery decreases with increasing
loading time due to persistent deformation of the material and the loss of its ability to restore itself to its former state.

Figure 1(b) shows the relationship between composite hardness and load intensity. Using a weight of 50 gf, the highest
value was obtained for a medium load, as determined by the distribution of experimental composite hardness measurements.
When utilizing too-small loads, there may be a “difficult” reading of the print size, described as the “Indentation Size Effect”

Figure 1. Change of composite hardness (system response) with variation of influencing factors: (a) dwell time, (b) applied load and (c)
sample type.
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or an increase in hardness with decreasing penetration depth27–29 in the literature. Poor readings of the diagonal size may occur
when utilizing weights of 100–500 gf owing to print degradation.

Figure 1(c) shows the change in composite hardness as a function of sample type, i.e., the reinforcement and the method of
altering the reinforcement. The pure matrix is proven to be the softest sample. The use of silica particle filler raises the
composite hardness in comparison to the pure matrix. The composites treated with vinyl-modified silica particles showed the
greatest increase in composite hardness. When the type of alteration of silica particles on the change in composite hardness is
compared, the modification to amino has the least influence, as can be demonstrated by comparing with unmodified samples.
Each combination of three variables is marked with squares of different colors, i.e., one color corresponds to one experimental
run. The blue color corresponds to the matrix sample (UPR), while the red color corresponds to the composite sample based on
UPR + silica particles modified with vinyl (UPR/SiO2-V).

Comparison of predicted and experimental values of composite hardness

Figure 2 shows the normal Student’s distribution for all composite hardness experimental values. In regression analysis, the
residual indicates the difference between the observed and anticipated values. The red line is the forecast for each data set, and
the probabilities represent the deviations/matches between the expected and observed quantities. Oscillations of the point
around the dashed red line suggest a uniform distribution and good collinearity. This view can also be used to discover
experimental measurement deviations, often known as measurement error, which were detected in this case for two sets of
experimental point combinations (red points out of range).

Figure 3 shows the dependencies of external residuals for each experimental combination (Figure 3(a)) and predicted
values (Figure 3(b)).

Figure 4 shows a graphical representation of the agreement (or deviation) between the experimentally obtained values of
composite microhardness and the value of composite hardness predicted by the regression model. The line at a 45° angle
shows the ideal location of the agreement, indicating that the points on the ideal line indicate that the projected hardness value
is identical to the experimental (current) value. This is unlikely to happen in real systems with random experimental values.
The squares reflect the measured composite hardness values and are distributed relatively close to the ideal regression line,
indicating a satisfactory degree of agreement between the experimental and projected composite hardness values. However,
there are also deviations from the ideal line, and the lower value of the coefficient of determination indicates this discrepancy.

Dependence of response on influencing factors

Figure 5 shows the three-dimensional graphs of the composite hardness response depending on the influencing factor.
Figure 5’s figures demonstrate that applied force and indenter dwell time do not linearly relate to composite microhardness.
The measured composite hardness diminishes with increasing holding duration and reaches its maximum value when the
indenter is held for a short period of time. All samples show a nonlinear dependency of measured composite hardness on the
applied load. It is inferred that the response is identical for all samples since the matrix material (UPR) is greater (97.5%) than
the reinforcement (2.5 wt. % of SiO2).

Figure 2. Display of residuals.
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The largest increase in hardness compared to the matrix (Figure 5(a)) was obtained in the sample reinforced with vinyl-
modified silica particles (Figure 5(e)), and the smallest increase was the sample containing unmodified silica particles
(Figure 5(b)). The composite reinforced with silica particles that were modified using AMINO and MEMO does not show
drastic differences in the value of the composite hardness (Figure 5(c) and (d)).

Optimization

The optimization criteria influence the selection of optimal parameters. Minimum/maximum or optimal values of both
system responses (observed quantities) and influencing factors can be used to define optimization criteria. The purpose of
this study was to acquire the maximal composite hardness of the synthesized samples; hence, the optimization criterion
was established.

Figure 6 shows the optimization solution, i.e., the combination of the observed influencing factors to obtain the highest
value of the composite microhardness of the synthesized polyester resin reinforced with silica particles obtained from
rice husk.

The composite reinforced with silica particles altered in vinyl had the highest composite hardness when measured using the
followingmicrohardness parameters: employing 1.58243E-05 s of dwell time and 70.6278 gf of load. The delayed period after
the indenter penetrates the material is referred to as the indenter dwell time, which is close to 0 (no dwell).

Figure 3. External residuals of Student’s distribution shown as a function of a) experimental and b) predicted values.

Figure 4. Dependence between measured values of composite microhardness and predicted values calculated based on the generated
model.
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Validation

The optimal parameters obtained for criteria maximal value of composite hardness it can also show apparent optimization.
This criterion is favorable only in the sense of choosing the modification, i.e., type of sample, but not in the sense of choosing
the real dwell time of the indentation. If the dwell time tends to zero, we have no impression or it is very small and disappears

Figure 6. The combination of optimal parameters to achieve the maximum composite hardness of the synthesized material.

Figure 5. Three-dimensional representation of the dependence of the predicted values of the composite microhardness of the synthesized
material on the retention time and the applied load for each synthesized sample (a) UPR, (b) UPR/SiO2, (c) UPR/SiO2 -M, (d) UPR/SiO2

-ABD, and (e) UPR/SiO2 -V.
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quickly (high value of viscoelasticity of the material), so we get a false value of high composite hardness. The optimal value is
located on the edge of the flat part and the dotted part of the graphs 5. Green surface corresponds to the area of high elasticity of
the material, and blue surface corresponds to the area of high plasticity of the material.

The optimal measurement parameters are: 55 s for dwell time and 100 gf for applied load. The validation is shown both, through
the images of the Vicker’s imprints and numerical through a mathematical model obtained for series with 2.5 % wt. silica particles.
The new series of samples with the same modification and 1.0 wt. % of silica particles in UPR matrix was used to validate the set
model. Figure 7 shows the appearance of prints depending on the type of sample, i.e., applied modification of silica. Modification of
silica with vinyl (see Figure 7(e)) proved to be the most adequate, while modification withMEMOwas a poor choice (Figure 7(c)).
Excessive dwell time causes deformation of both the matrix and the composite and permanent plastic deformation (Figure 7(a), (c)
and (d)). Too short a dwell time leads to rapid elastic recovery and falsely smaller impression (Figure 7(b)).

Numerical validation of RSMmodel was done on new experimental set of samples with 1.0 wt. % of silica and comparation
was given in Table 5. The mean absolute percentage error (MAPE) obtained for all 120 runs was 12.51171% for sets with
2.5 wt.%, but value of MAPE for individual selected points is shown in the Table 5.

Conclusion

Statistical analysis revealed that the factor related to the type of sample (pure matrix, composite with unmodified rein-
forcement, or composite with modified reinforcement) has a statistically significant influence on the formation of the

Figure 7. Appearance of Vickers imprints on variation samples without/with silica particles (1.0 wt. %.) added in UPR matrix: (a) UPR
(300 s, 100 gf), (b) UPR/SiO2 (10 s, 25 gf), ((c) UPR/SiO2 -M (300 s, 50 gf), (d) UPR/SiO2 -ABD (100 s, 100 gf), (e) UPR/SiO2 -V (30 s, 25 gf),
and (f) microscope scale.

Table 5. Numerical validation of RSMmodel for two experimental sets (1.0 and 2.5 wt.% of SiO2). MAPE Mean absolute percentage error.

Sample
Dwell time,
t (s)

Applied load,
P (gf)

Run
order

Experimental
composite
hardness for
2.5 wt. % of SiO2

(actual value)

Predicted
value of
composite
hardness for
2.5 wt. % of
SiO2 MAPE

Experimental
composite
hardness for
1.0 wt. % of
SiO2

Predicted
value of
composite
hardness for
1.0 wt. % of
SiO2 MAPE

UPR/SiO2 20 50 36 0.242 0.247 12.074 0.217 0.239 10.318
UPR/SiO2 300 100 49 0.141 0.153 13.613 0.132 0.147 11.422
UPR/SiO2-AMBD 20 50 60 0.253 0.263 10.334 0.236 0.195 17.393
UPR/SiO2-AMBD 300 100 73 0.142 0.165 17.476 0.136 0.149 9.765
UPR/SiO2-MEMO 20 50 84 0.280 0.299 17.588 0.246 0.278 13.084
UPR/SiO2-MEMO 300 100 97 0.143 0.144 16.203 0.121 0.139 15.194
UPR/SiO2-V 20 50 108 0.384 0.385 7.840 0.355 0.42 18.525
UPR/SiO2-V 300 100 121 0.192 0.163 14.654 0.187 0.206 10.208
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mathematical model of the change in composite hardness, followed by the linear term of the model related to the char-
acterization parameter (retention time of the indenter). This is related to the bonds established on the surface of the rein-
forcement depending on the modification molecules placed to influence the link between the reinforcement and the matrix. In
the case of viscoelastic composites, the applied load was revealed to be a less important parameter in determining the influence
of the change in composite hardness on the duration of indentation. It was discovered that the interaction linear terms in the
model had no discernible impact on the shift in the composite microhardness of the system. However, in the constructed
model, the quadratic terms of the measurement parameters (retention time and applied stress) have a considerable influence on
the contribution to forecasting the value of the composite hardness. The appropriate synthesis and material characterization
parameters were determined. For the manufacture of polyester composites, the ideal parameter is mixing with vinyl-treated
silica particles. The best measurement parameters are 0.69258 N applied load and minimal dwell time. The optimal composite
microhardness of a polyester resin reinforced with modified silica particles (2.5 wt. %) in vinyl is 0.459064 GPa. With an 80%
confidence level, the regression analysis was successfully applied to a set of 120 experimental measurements. Future research
will be focused on the optimization of silica particle mixing parameters (mechanical mixing and sonication), the variation of
the mass amounts of particles in the composite, and the variation of the size of the particle. The dispersion of silica
nanoparticles in the polyester matrix will be studied, as will their influence on microhardness values. The purpose of this
research is to ensure that the measuring conditions represented in applied load and dwell time are giving reproducible results
and that the results from different measurements could be compared and extrapolated to the behavior of the material in use.
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