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Absract: Two series of thermoplastic elastomers, based on poly(dimethylsiloxane),

PDMS, as the soft segment and poly(butylene terephthalate), PBT, as the hard seg-

ment, were synthesized by catalyzed transesterification, from dimethyl terephtha-

late, DMT, silanol-terminated poly(dimethylsiloxane), PDMS-OH, Mn = 1750 g/mol,

and 1,4-butanediol, BD. The mole ratio of the starting comonomers was selected to

result in a constant hard to soft weight ratio of 55:45. The first series was synthesized

in order to determine the optimal mole ratio of BD and DMT for the synthesis of

high molecular weight thermoplastic poly(ester-siloxane)s, TPESs. The second se-

ries was performed in the presence of the high-boiling solvent, 1,2,4-trichlorben-

zene in order to increase the mixing between the extremely non-polar siloxane

prepolymer and the polar reactants, DMT and BD, and, therefore, avoid phase sepa-

ration during synthesis. The structure and composition of the synthesized poly(es-

ter-siloxane)s were verified by 1H-NMR spectroscopy, while the melting tempera-

tures and degree of crystallinity were determined by differential scanning calorime-

try (DSC). The effectiveness of the incorporation of the silanol-terminated po-

ly(dimethylsiloxane) into the polyester chains was verified by chloroform extrac-

tion. The rheological properties of the poly(ester-siloxane)s were investigated by

dynamic mechanical spectroscopy (DMA).

Keywords: poly(ester-siloxane)s, thermoplastic elastomers, silanol-terminated poly(di-
methylsiloxane)

INTRODUCTION

Thermoplastic elastomers are an important category of engineering materials

because they frequently have extraordinary combinations of physical properties,

such as elasticity, low-temperature flexibility, impact strength, toughness and ease
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of processing (extrusion, injection molding, etc.). Block copolymers belonging to

the class of thermoplastic elastomers consist of two types of chemically incompati-

ble segments, i.e., hard-crystalline and soft-amorphous segments, and show a

phase-separated microstructure. Micro-domains rich in hard-segments, resulting

from intermolecular actions (e.g., crystallization, hydrogen bonds) from so-called

physical crosslinks and guarantee good mechanical strenght, while the soft amor-

phous matrix improves the flexibility. The properties of thermoplastic elastomers

depend on the type and nature of the hard and soft segments, and also on their mass

ratio and respective lengths.1,2

Poly(organosiloxane) containing multiphase copolymers have been exten-

sively studied and described frequently in the literature. Polycondensation is the

most versatile technique for the synthesis of such block or segmented copolymers.

This is mainly due to the availability of a wide variety of well-defined reactive

telechelic siloxane oligomers.3 Poly(organosiloxane)s exibit many important and

interesting properties. Although possessing a very low glass transition tempera-

tures, these polymers are able to maintain thermal stability over a wide temperature

range in both inert and oxidizing environments. Furthermore, these materials are

resistant to UV radiation, ozone and atomic oxygen. Low surface tension, low sur-

face energy, physiological inertness and high gas permeability are only a few of the

many other interesting properties exhibited by these materials. These physical

properties are relatively unaffected by temperature.3,4 As a result of the described

unique combination of the properties of poly(organosiloxane)s, siloxane contain-

ing block or segmented copolymers have received special attention for applica-

tions such as biomaterials, photoresists, gas separation membranes, protective

coatings, elastomers and emulsifiers.3

A number of copolymers based on poly(butylene terephthalate) (PBT) hard seg-

ments and low molecular weight soft segments consisting of various poly(dimethyl-

siloxane)s (PDMS), and polyethers have been synthesized using the so-called cata-

lyzed two-step transesterificaton reaction in the melt.5–14 Poly(butylene terephthalate)

has high structural regularity, it crystallizes rapidly and has a high degree of crystalli-

nity.15,16 As a result of its rapid crystallization, PBT is very suitable for use as the hard

segment in segmented copolymers. The incorporation of poly(organosiloxane)-seg-

ments into a PBT-backbone results im improved clarity, surface smoothness and

non-sticking properties, as well as good film, fiber and hydrophobic properties of the

resulting copolymers.17–22 In order to incorporate effictively poly(organosiloxa-

ne)-segments into a polyester-backbone, the most common approach has been to

endcap the poly(organosiloxane) with terminal silanol,5,6,9,10,12 hydroxyalkyl,17–22,

carbohypropyl12–14 or aminopropyl8 groups, and also various poly(organosiloxa-

ne)-polyether copolymers with hydroxyl end groups.5–7,11

In previous papers,12–14 the synthesis, structure and properties of different ther-

moplastic poly(ester-siloxane)s, TPESs, based on PBT as the hard segment and PDMS
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as the soft segment were described. The obtained TRESs differed in: 1) the functional-

ity of the end-terminated poly(dimethylsiloxane)s (i.e., either silanol- or carboxypro-

pyl-) which were incorporated into the polyester-backbone as flexible segments,12 2)

the length of the carboxypropyl-terminated PDMS prepolymers with a constant mass

ratio of the hard and soft segments13 and 3) the mass ratio of the hard and soft seg-

ments with a constant length of the carboxypropyl-terminated PDMS prepolymer.14

In the present work, two series of thermoplastic poly(ester-siloxane)s based on

a silanol-terminated PDMS prepolymer were prepared in the melt and in solution

of 1,2,4-trichlorbenzene. The first series was prepared in order to optimize the

polymerization conditions in the melt and second one in solution with the intention

of improving the compatibility of the reaction mixture and, therefore, the effective-

ness of the incorporation of poly(dimethylsiloxane) into the polymer chains. Ther-

moplastic poly(ester-siloxane)s were synthesized by catalyzed transesterification,

from dimethyl terephthalate, DMT, 1,4-butanediol, BD, and silanol-terminated po-

ly(dimethylsiloxane), PDMS-OH. The catalyst was tetra-n-butyl-titanate, Ti(OBu)4.

The first series was prepared by reaction in the melt, with the mass ratio of hard to

soft segments in the reaction mixture constant at 55/45. In this series, the influence

of the mole ratio of BD and DMT (varied in the range from 1.2 to 2.2), was investi-

gated in order to determine the optimal ratio for TPES synthesis. In the second se-

ries, the effect of the amount of added solvent (1,2,4-trichlorbenzene) on the inher-

ent viscosity of the prepared TPESs was investigated, at the optimal BD/DMT molar

ratio of 1.4. Phase separation during the synthesis of segmented copolymers can be

avoided either by the addition of an appropriate solvent24,25 or by using silo-

xane-containing triblock prepolymers with hydrophilic terminal blocks, such as

poly(ethylene oxide) (PEO), when the terminal blocks serve as a compatibilizer

between the extremely non-polar PDMS and the polar DMT and BD.11 In this

work, it was decided to use a solvent to improve the mixing of the reactants and to

increase the incorporation of PDMS-OH on the PBT chains, as well as to increase

the molar mass of the synthesized copolymers. The effect of the structure and size

of the synthesized poly(ester-siloxane)s on the their thermal and rheological prop-

erties was determined by differential scanning calorimetry (DSC) and by dynamic

mechanical spectroscopy (DMA).

EXPERIMENTAL

Reagents

���-Disilanol-poly(dimethylsiloxane) (PDMS-OH), from ABCR (Germany), was dried over

molecular sieves before use. The number-average molar mass of the PDMS-OH, as determined by

vapor pressure osmometry, was 1750 g/mol. Dimethl terephthalate (DMT) was purified by recrysta-

llization from absolute ethanol and dried at 80

oC for 24 h before use. 1,4-Butanediol (BD), was dis-

tilled and dried over molecular sieves before use. Tetra-n-butyl-titanate (Ti(OBu)4 (from Aldrich)

was used as a solution in dry n-butanol (1 : 9 vol.). N,N’-Diphenyl-p-phenylenediamine (DPPD)

(from Bayer) and 1,2,4-trichlorobenzene (from Merck) were used as received.
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Poly(ester-siloxane) synthesis

The thermoplastic poly(ester-siloxane)s of the first series (TPES 1-7M, Table I) were syntne-

sized by a catalyzed two-step reaction involving transesterificaton and polycondenzation in the

melt. The amounts of the individual reactants were fixed according to the following considerations:

DMT and PDMS-OH in order to obtain a constant mass ratio of hard to soft segments (55/45) in the

copolymer products, while the molar BD/DMT ratio was varied in the range from 1.2 to 2.2. The

amount of thermal stabilizer, DPPD, was 0.5 mass % in the starting reaction mixture, while the

amount of catalyst, Ti(OBu)4, was 1.0 mmol per mol of dimethyl terephthalate. It was also found

that the catalyst should be added in two portions: 60 mass % at the beginning of the reaction, and the

remaining 40 mass %, together with the thermal stabilizer, when the second reaction step was com-

menced.12,23

TABLE I. Reaction mixture compositions for the syntheses of the TPESs

Sample mol BD/mol DMT MeOH/%

Series I, syntheses in the melt

TPES-1M 2.20 88.2

TPES-2M 1.55 83.1

TPES-3M 1.45 83.1

TPES-4M 1.40 83.1

TPES-5M 1.35 78.1

TPES-6M 1.30 78.1

TPES-7M 1.20 68.0

Series II, syntheses in solution

TPES-1S 1.40 87.2

TPES-2S 89.7

TPES-3S 89.7

The starting reaction mixture (e.g., for TPES-4M: 0.0981 mol of DMT, 0.1373 mol of BD,

0.0086 mol of PDMS-OH and 0.06 mmol of catalyst) was charged into a reactor at room temperature

and then heated under nitrogen at atmospheric pressure for approximately 2.0–2.5 hours. The first

step, transesterification, was carried out from 160 to 240 oC, when the methanol was distilled off.

After the first step, DPPD stabilizer (0.232 g) and the second portion of catalyst (0.04 mmol) were

added and vacuum was applied. The reaction mixture was kept at 250 oC, under vacuum < 1 mm Hg,

for 3.0 h. Finally, the obtained viscous slurry was allowed to cool to ambient temperature in the reac-

tor under nitrogen.12,23

The thermoplastic poly(ester-siloxane)s of the second series (TPES 1-3S, Table I) were

synthesized in a solution of 1,2,4-trichlorbenzene23–25 10 mass % (TPES-1S) 25 mass % (TPES-2S)

and 50 mass % (TPES-3S) of solvent in the reaction mixture). The reaction mixture compositions

were in all cases the same as for the synthesis of sample TPES4 in the first series, and the reaction

conditions were also the same. The synthesis in solution differed from the synthesis in the melt in

that a reduced pressure of 12–15 mm Hg (water vacuum pump) was applied after the transeste-

rification, to remove the solvent. Subsequently, a vacuum oil pump was used and a pressure lower

than 1 mm Hg was applied, as in the first series.

Soxhlet extraction of the TPES-samples

The synthesized TPES samples, weight about 0.15 g, were extracted with 100 cm3 of chloro-

form in a Soxhlet apparatus for seven days.11 The extracted and insoluble fractions were dried for
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five hours at 100 oC. The dry soluble and dry insoluble fractions were weighed and the samples were

analyzed by 1H-NMR spectroscopy in order to determine the composition of the copolymers.

Characterization of the TPES samples

1H-NMR (200 MHz) spectra of the TPESs were obtained on a Varian Gemini-200 instrument

using their solutions in CF3COOD. The solvent was simultaneously used as the internal standard.

The inherent viscosities, �inh, of the TPESs were measured in a mixture of phenol/trichloroeth-

ylene/toluene (1:1:2 vol.) at 30 oC, using an Ubbelohde viscometer. The concentration of the copol-

ymer in the solution was 0.5 g/dl.

The rheological measurements of the TPESs melts (�*, G', G"), was performed using a

Rheometrics Mechanical Spectrometer RMS-605, operating in the dynamic shear mode between

two parallel plates in the temperature range 180–240 oC. The frequency was varied from 0.1 to 100

rad/s. The radius of the samples was 25 mm and the thickness about 1.0 mm. The samples were pre-

pared by press molding at 250 oC.

Differential scanning calorimetry (DSC) was performed using a Perkin–Elmer DSC-2 thermal

analyzer. The DSC scans were recorded between 50 and 250 oC under a dynamic nitrogen atmo-

sphere (flow rate 25 cm 3/min) at a heating and cooling rate of 10 oC/min (two scans were run for

each sample). The weight of the samples was approximately 10 mg. From the scans, the melting

point (Tm) and the crystallization point (Tc) of the hard segment were determined.

RESULTS AND DISCUSSION

The synthesis of the thermoplastic poly(ester-siloxane) copolymers is shown

in Scheme 1:

Two series of thermoplastic poly(ester-siloxane)s, TPESs, were synthesized

by a catalyzed two-step reaction, involving transesterification and polyconden-

zation. TPES samples of the first series were prepared in the melt, while the sam-

ples of the second series were prepared in a solution of 1,2,4-trichlorobenzene. In

the case of the first series, the first reaction step, transesterification of dimethyl

terephthalate with 1,4-butanediol and PDMS-OH, was carried out in the melt, in
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the temperature range 160 – 240 oC, at normal pressure in the presence of

Ti(OBu)4 catalyst. During the first step, butylene terephthalate-oligomeric esters

were formed. After most of the methanol (80 – 90 %, Table I) had been distilled off,

the second, polycondensation step was carried out under reduced pressure. The

polycondensation was performed by heating the mixture to 250 oC to remove the

excess 1,4-butanediol and, hence, to obtain high molar mass copolymers. In the

case of the second series (syntheses in solution), after the transesterification, re-

duced pressure of a water vacuum pump was applied to remove the solvent and

subsequently, a vacuum oil pump was used in order to reduce the pressure to below

1 mm Hg, as in the first series. N,N’-Diphenyl-p-phenylenediamine, DPPD, a heat

stabilizer, was used in both series to protect the polymer chains from thermal deg-

radation during the polycondensation reaction at 250 oC.

Viscosities of the synthesized TPESs

The compositions of the starting reaction mixtures were selected to result in

copolymers with a constant hard-to-soft mass ratio of 55/45 in both series, while

the molar mass of the employed PDMS-OH was 1750 g/mol. In the first series,

mole ratio of the reacting –OH groups from BD and –COOCH3 groups from DMT

was varied from 1.2 to 2.2, in order to determine the optimal ratio for the synthesis

of TPES copolymers. Poly(ester-siloxane)s are not soluble in common organic sol-

vents, such THF or chloroform, which are usually used for GPC.12 Therefore, as an

indicator of the molar masses of the prepared copolymers, the inherent (�inh) and

the complex dynamic viscosity (�*), which are given in Table II, were used. The in-

herent viscosities of the TPESs, determined in a solvent mixture of phenol/trichlo-

roethylene/toluene, were between 0.34 and 0.54 dl/g in the first series. It can be

seen that the inherent viscosity increases from 0.34 to 0.54 with increasing mole

BD/DMT ratio and then decreased to 0.36, showing a pronounced maximum at a

mole BD/DMT ratio of 1.4 (Table II, Fig. 1). It can be concluded that the optimal

BD/DMT ratio was 1.4, in which case a copollymer with the highest viscosity of

0.54 dl/g (TPES-4M), was obtained.

TABLE II. Inherent and melt viscosities of the synthesized TPESs and their chemical compoosition

calculated from their 1H-NMR spectra

Sample �inh
1)/(dl/g) �* (1 Hz) 235 oC/Pa s mass % of PBT segments m2)

Seryes I, syntheses in the melt

TPES-1M 0.36 30 65.0 15.9

TPES-2M 0.43 40 60.2 12.9

TPES-3M 0.46 50 59.5 12.5

TPES-4M 0.54 170 56.9 11.3

TPES-5M 0.41 70 60.0 12.9

TPES-6M 0.44 50 58.8 12.2
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Sample �inh
1)/(dl/g) �* (1 Hz) 235 oC/Pa s mass % of PBT segments m2)

TPES-7M 0.34 - 55.3 10.6

Series II, syntheses in solution

TPES-1S 0.43 80 62.5 14.3

TPES-2S 0.49 120 56.9 11.3

TPES-3S 0.57 240 55.6 10.7

1Concentration of the copolymer solution = 0.5 g/dl; 2The degree of polymerization of the hard PBT

segments, m (Scheme 1), predetermined by the reaction mixture compositions, was 10.4

The amount of distilled methanol was higher in the second series than in the

first one (Table I), i.e., transesterification in solution was more efficient than in the

melt. It is well known that the efficiency of transesterification has an effect on the

further course of the TPES synthesis, i.e., (on the polycondensation, and, finally,

on the molar mass of the obtained copolymer. Due to the high incompatibility of

the extremely non-polar PDMS-OH with the polar rectants, DMT and BD, phase

separation occurs during the reaction in the melt. It was observed that, when stir-

ring was stopped during the transesterification step, the PDMS-OH floated to the

surface of the reaction mixture, hence the reaction mixture was not homogeneous.

This problem can be solved by using a high boiling solvent, as 1,2,4-trichlo-

robenzene, which is a good solvent for both PBT and PDMS-OH at elevated tem-

peratures (above 150 oC).24,25 A clear solution was obtained at the synthesis tem-

perature. The effect of the amount of 1,2,4-trichlorobenzene on the inherent vis-

cosity at the optimal BD/DMT ratio of 1.4 was investigated in the second series.

The solvent was added in different amounts to the reaction mixture (10, 25 and 50

mass %) in order to improve the mixing of PDMS-OH with DMT and BD, which

would result in an increased inherent viscosity, i.e., higher molar mass copoly-

mers. 23,24 The inherent viscosity increased from 0.43 to 0.57 dl/g on increasing

the amount of the solvent from 10 to 50 mass %. From the viewpoint of the molar

mass of the synthesized TPESs, the best results were obtained when the amount of

the solvent was 50 mass % (TPES-3S).
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The complex dynamic viscosity (�*) shows the same behaviour as the �inh –

first it increased with increasing –OH/–COOCH3 mole ratio, showing a maximum at

a mole ratio of 1.4 and then decreased in series I, while it increases with increasing

amount of solvent in series II (Table II). The recorded changes of the complex dy-

namic viscosity with temperture and frequency are presented in Fig. 2. From the

complex dynamic viscosity measurements, it can be concluded that the synthesized

TPES show pseudoplastic behavior over the whole studied temperature range.

Structure of the synthesized TPESs

The molecular structure of the poly(ester-siloxane)s was investigated by
1H-NMR spectroscopy. A typical 1H-NMR spectrum of a TPES is shown in Fig. 3.

The spectra gave chemical shifts at 0.39–0.72 ppm of the Si–CH3 protons; at 8.36

ppm of the aromatic protons; at 2.29 and 4.77 ppm of the central and terminal

methylene protons of the BD-residue from the hard segments, respectively. The

signals of the –CH2OH or OCH3 end-groups were absent in the 1H-NMR spectra,

indicating that copolymers of high molar masses were obtained. The two main

peaks of the Si–CH3 protons at 0.39 and 0.64 ppm indicate that siloxane-equilibra-

tion takes place in CF3COOD and reformation of octamethylcyclotetrasiloxane

occurs. The quanity of Si-CH3 protons is the same before and after equilibration in

the PDMS-segments and, therefore, has no influence on the calculations based on

the 1H-NMR spectra.12,13

The mass fractions of hard, and soft segments, SS, as well as the average de-

gree of polymerizaation of the hard segments,(m, in Scheme 1), where calculated

from the ratio of the integrals of the methylene protons of the BD-residue from the

hard segments and the Si-CH3 protons from the soft segments.12,23

pSS / pSS + pHS) = mole fraction of soft segments = XSS

1 – XSS = mole fraction of hard segments = XHS

where:pSS = the intensity of 1 proton from SS = the intensity of the Si–CH3 pro-

tons signal / 140.43; 140.43 = the number of Si–CH3 protons in the soft segment =
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Xn (PDMS-OH) � 6 + 12; Xn(PDMS–OH) = (Mn(PDMS–OH) – 166) / 74; Xn

(PDMS–OH) = 21.4 – number average degree of polymerization; pHS = the inten-

sity of 1 proton from the HS = the intensity of protons (b + c)/8 (Fig. 1)

The mass fraction % of soft segments was calculated in the following manner:

{(XSS � MSS)/(XSS � MSS + XHS � MHS)} � 100 = mass % of the soft segment

where: MSS = 1880 g/mol – molar mass of the soft segment PDMS; MHS = 220

g/mol – molar mass of the base unit of the hard segment.

The data obtained from the 1H-NMR spectra are presented in Table II. The

values for the mass fractions of the PBT segments were 53.9–65.0 %, which agree

relatively well with the value that was predetermined from the composition of the

reaction mixture (55 mass. % PBT). It can be seen in Fig. 4 that the mass fraction of

PBT segments in the copolymer increased with increasing BD/DMT ratio.

The average length (degree of polymerization) of the hard PBT segment (m in

Scheme 1), calculated from the reaction mixture compositions, was in both series

10.4. The average degree of polymerization of the PBT segments was calculated

according to 1 mol of soft PDMS segment (n = 1 in Scheme 1). The possibility of y

> 1 was small, due to the relatively low mole fraction of PDMS-prepolymer in the

starting reaction mixtures (2.7 – 3.8 mol %). The average length of the hard seg-

ments, calculated from the 1H-NMR spectra, ranged from 10.6 (TPES-7M) to 15.9

(TPES-1M).
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Analysis of the homogeneity of the synthesized TPESs

The effectiveness of the incorporation of PDMS into the copolymer chains

was proven by Soxhlet extracton with chloroform.12–14 It is well known that

PBT-homopolymers and the block copolymers are insoluble in chloroform, while

the PDMS-OH prepolymer and block copolymers with very low PBT content are,

however, soluble and, therefore, extractable with chloroform. The results presen-

ted in Table III, show that the extracted and insoluble fractions of the examined

TPES samples differed in both their composition and structure, containing consid-

erably different amounts of PDMS and PBT segments. The TPES samples lost

about 32–37 mass % of their weight during extraction with chloroform. Examina-

tion of the extracted and insoluble fractions by 1H-NMR spectroscopy showed that

both contained aromatic rings from the PBT segments and also PDMS segments.

The soluble fractions contained 92.5–96.0 mass % of PDMS segments, while the

insoluble fractions contained 3.2–11.2 mass % of PDMS segments. The calculated

value of m (Scheme 1) in the soluble portion was very small and nearly constant

(msol = 0.4–0.7), while, on the contrary, in the insoluble portion it was very high

(mins = 67–255). It can be concluded that both the extracted and insoluble fractions

still have a multiblock structure, but with very short PBT blocks in the soluble and

very long PBT blocks in the insoluble fractions.

TABLE III. 1H-NMR analysis of the chloroform soluble and insoluble fractions of the TPESs

Sample
Soluble
fraction
mass %

Soluble fraction Insoluble
fraction
mas %

Insoluble fraction

mass % of
PDMS

msol in
Scheme 1

mass % of
PDMS

mins in
Scheme 1

TPES-4M 32.5 96.0 0.4 67.5 11.2 67

TPES-1S 36.7 93.6 0.6 63.3 6.5 122

TPES-2S 37.0 94.1 0.5 63.0 3.2 255

TPES-3S 37.3 92.5 0.7 62.7 4.6 178

It can be concluded that, in spite of the fact that the reaction was carried out in

the presence of a high boiling solvent in order to compatibilize the immiscible
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components, phase separation occurred, as was reported by Walch.24 The rather

unsatisfactory incorporation of the PDMS segments into the poly(butylene tereph-

thalate) chains and the incomplete homogeneity of the TPESs could be explained

by the chemical reactivity of the silanol groups, which prefer to form silanol ethers

either with the excess diol present in the reaction mixture or, more likely, with the

hydroxyl end groups of the growing polyester chains,10 as was reported before.

Since a longer reaction time (about 6 h at 180 oC)26 is required for the formation of

similar ethers, it was not unexpected that incorporation of PDMS-OH through

ether linkages was rather poor under the reaction conditions applied in this work.

DSC analysis of the poly(ester-siloxane)s

DSC analysis demonstrated that the synthesized poly(ester-siloxane)s were

semicrystalline polymers. The transition temperatures, i.e., melting and crystalli-

zation temperatures, of the hard segments were observed by DSC analysis.

The DSC measurements, between 50 and 250 oC, were performed using the

so-called triple cycle, 'heating-cooling-heating', to determine the melting tempera-

ture (Tm), the enthalpy of melting (�Hm), the crystallization temperature (Tc), the

enthalpy of crystallization (�Hc) and the degree of crystallinity of some samples of

the poly(ester-siloxane)s. The results are presented in Fig. 5 and Table IV.

The DSC curves show high-temperature transitions corresponding to the melt-

ing and crystallization temperature of the PBT-segments (Fig. 5). The melting of

the crystallites of the TPES samples occured in the temperature region of 210–225
oC, while crystallization occured in the region of 180–200 oC. The melting and

crystallization temperatures increased with increasing content and length of the

hard PBT segments (Table IV). The multiple peaks, which were evident in some of

the thermograms, indicate the presence of crystallites of different size and perfec-

tion, due to the irregularity of the length of the PBT-segments or due to the effect of

crystal reorganization occuring during heating. This results in the appearance of

small exo- and endo-peaks before and after the main melting peaks.27–30
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TABLE IV. Differential scanning colorimetry (DSC) results for the poly(ester-siloxane)s

Sample Tm
a)/oC �Hm

a/(J/g) Tc/
oC �Th (Tm–Tc)/

oC �Hc/(J/g) wc (DSC)a)/%wc
PBT (DSC)a)/%

TPES-4M 224 22.4 189 35 –29.8 15.5 26.9

(222) (21.8) (15.1) (262)

TPES-1S 224 25.1 191 33 –35.9 17.4 29.6

(223) (24.8) (17.2) (29.2)

TPES-2S 224 24.2 190 34 –33.4 16.7 31.1

(223) (25.0) (17.3) (32.1)

TPES-3S 223 23.1 187 36 –30.6 16.0 25.9

(223) (22.6) (15.6) (25.3)

PBTb) 225 51.6 193 32 –54 35.7 35.7

(224) (46.0) (31.8) (31.8)

aIn the brackets are the values from the second run; bPBT-homopolymer, synthesized in the same

way as sample TPES-4M

The melting and crystallization thermograms (Fig. 5) were used to calculate the

corresponding heat effects, enthalpies of melting and crystallization, �Hm and �Hc,

respectively, which also increased with increasing content and length of the hard PBT

segments (Table IV). In the second scans, the enthalpies of melting were smaller than

in the first scans, except for the sample TPES-2S, which indicate a decrease in the de-

gree of crystallinity of the TPESs. The ratio of the measured �Hm of the TPES sample

to the melting enthalpy of completely crystalline PBT-homopolymer (�H m
� = 144.5

J/g)31 gave the total DSC-degree of crystallinity, i.e., the mass fraction of crystallites in

the TPESs, wc. The ratio of the total degree of crystallinity and the determined

(1H-NMR) mas fraction of PBT-segments gave the mass fraction of hard segments that

were incorporated into the crystallites, wc
PBT:

wc = �Hm/��m
� and wc

PBT = wc / wPBT

where: �Hm is the enthalpy of the melting of the poly(ester-siloxane), �H m
� =

144.5 J/g – the enthalpy of the melting of perfectly crystalline PBT-homopolymer,

and wPBT – the mass fraction of hard segments in the poly(ester-siloxane), deter-

mined by 1H-NMR spectroscopy.

The total degree of crystallinity (wc) was in the range of 15.5 to 17.4 % (in the

first scan), while the degrees of crystallinity, wc
PBT, which were calculated taking

into account the mass fraction of the PBT-segments in the TPESs, were in range

from 25.9 to 31.1 %. This means that less than 30 mass % of the PBT-segments in

all the TPES samples crystallized. These results show that not all of the hard seg-

ments in the TPES could crystallize completely due to their partial incorporation

into the amorphous matrix. This is in agreement with earlier resuts,12–14 and also

with results described for thermoplastic poly(ester-ether).29–32 The obtained re-

sults show that wc and wc
PBT increasing with increasing mass fraction of PBT seg-

1480 DOJ^INOVI] et al.



ments in the copolymers and also with increasing degree of polymerization of the

PBT segments in the chloroform insoluble fractions, mins (Fig. 6). With increasing

mass fraction of PBT segments and mins, the size of th crystallites increases and

consequently wc and wc
PBT.

PBT homopolymer is a fast crystallizing polymer. By comparing the super-

cooling (the difference between the melting and crystallization temperature), it is

possible to analyze the rate of crystallization of different segmented copolymers.

PBT has a supercooling of 32 oC (Table IV). The supercooling of the hard seg-

ments (�Th = Tm–Tc) of the synthesized poly(ester-siloxane)s was in the range 33

to 36 oC, indicating that the rate of crystallization of TPES samples was lower than

that of PBT due to the presence of the soft segment (Table IV). The results showed

that the crystallization rates of these copolymers were independent of the structure

and composition of the synthesized TPESs in the examined range.

Rheological behavior of poly(ester-siloxane)s

The dependence of the storage (G') and loss (G") shear moduls, tan � and complex

dynamic viscosity (�*
) (Fig. 2 and Fig. 8) on temperature and frequency was followed in

the rheological measurements. The temperature dependencies of G', G" and tan � show

two region of viscoelastic behaviour from 180 to 240

oC, a rubbery region and a flow re-

gion (Fig. 7). In the rubbery plateau region, the storage and the loss modules decrease

slowly with temperature due to the incomplete homogeneity of the samples. The rubbery

plateau region is characteristic for chemically or physically cross-linked polymers and

also for amorphous polymers of high molecular weight. The two-phase microstructure

of the thermoplastic elastomers, which is a consequence of the chemical incompatibility

of the physically cross-linked hard segments and the amorphous soft segments is respon-

sible for the appearance of the rubbery plateau region.

From Fig. 7, only a transition from the rubbery plateau region to the flow re-

gion can be seen for the investigated poly(ester-siloxane)s. The cross-over temper-
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Fig. 6. Degree of crystallinity, wc and wc
PBT in dependence on the mass % of PBT segments (A)

and degree of polymerization of the PBT segments in the chloroform insoluble
fractions, mins (B).



ature, TG'=G", when G' is equal to G", i.e., tan � = 1, corresponds to the transition

from the rubbery to the flow region. Below the cross-over temperature, the behav-

iour of the poly(ester-siloxane)s is mainly elastic, i.e., G' > G", and above this tem-

perature the behaviour changes to viscous (G" > G').33 The cross-over temperature

(TG’=G = 180 – 194 oC, Table V), corresponds to the temperature of the onset of the

melting process determined by DSC. In the investigated poly(ester-siloxane)s se-

ries, the values of the storage modules at 200 oC were about (2.5 – 4.3) � 104 Pa and

the loss modules about (7.0 – 9.0) � 104 Pa (Table V). It can be seen that the values

of the storage modules at 190 oC in Series II increased with increasing mass % of

PBT segments, i.e., with increasing rigidity of the chains of the copolymer (Tables

II and V).

TABLE V. Storage (G'), loss (G") shear modulus and complex dynamic viscosity at 200 oC, crossing

temperature (TG'=G") and microphase separation transition temperature (TMST) of some of the TPES

samples

Sample G' (200 oC)/Pa G" (200 oC)/Pa 	
*, (200 °C)/Pa s TG'=G'/

oC TMST/°C

TPES-4M 2.5 � 104 8.8 � 104 1.4 � 104 180 232

TPES-1S 2.5 � 104 9.0 � 104 1.5 � 104 193 236

TPES-2S 4.3 � 104 7.5 � 104 1.5 � 104 194 234

TPES-3S 3.1 � 104 7.5 � 104 1.3 � 104 186 235

An important rheological parameter for phase segregated copolymers, such as

poly(ester-siloxane)s, is the microphase separation transition temperature, TMST,

(also referred to as the order-disorder transition).34–36 At room temperature,

poly(ester-siloxane)s consist of a crystalline PBT-phase which is dispersed in an

amorphous PDMS-phase. However, as the temperature is increased above a certain

critical value, the size of the PBT-crystallites begins to decrease and the ordered

microdomain structure changes to a disordered homogeneous phase (isotropic

melt) at TMST. The microphase separation transition temperatures for the poly(es-

ter-siloxane)s were determined from Han’s diagrams (plots of log G’ versus log

G’’, Fig. 8). The Han’s diagrams show that microstructure transformations were

1482 DOJ^INOVI] et al.

Fig. 7. Storage (G' and loss (G") shear

modulas and tan � of sample TPES-2S

in dependence on the temperature, at

6.31 rad/s.



manifested by changes in the shape and slope of the curves G’vs. G’’ as the temper-

ature is increased. At TMST and above that temperature, the log G' versus log G"

plots cease to vary with temperature. In other words, TMST is the lowest tempera-

ture at which the polymer melt is isotropic. The microphase separation transition

temperatures for the investigated poly(ester-siloxane)s were in the range from 232

to 236 oC (Table V). The TMST values were very similar, which was to be expected,

as the structure and composition of the synthesized TPESs were similar.

CONCLUSIONS

Two series of thermoplastic poly(ester-siloxane)s were synthesized by cata-

lyzed two-step transesterification–polycondensation reaction in the melt and in so-

lutions of 1,2,4-trichlorbenzene. The reactants were dimethyl terephthalate, 1,4-buta-

nediol and silanol-terminated poly(dimethylsiloxane) (Mn = 1750 g/mol). In both

series, the compositions of the reaction mixtures were varied in order to obtain a

mass ratio of 55/45 for PBT/PDMS segments in the resulting copolymers. The syn-

thesized poly(ester-siloxanes) had multiblock structures, as was confirmed by

NMR analysis. The mass fraction of PBT segments lay between 55 to 65 % and the

average lengths of the PBT segments lay between 11 and 16, calculated on 1 mole

of soft segment, depending on the mole ratio of the reactants for the first series and

on the amount of added solvent for the second one. It was concluded that the opti-

mal BD/DMT ratio is 1.4, in which case, the obtained copolymer had a inherent

viscosity of 0.54 dl/g. Investigation of the influence of the amount of 1,2,4-tri-

chlorbenzene on the inherent viscosity showed that the inherent viscosity of the

synthesized TPESs increases with increasing amount of added solvent. The opti-

mal amount of the solvent in the reaction mixture was 50 mass %, in which case the

obtained copolymer had the highest inherent viscosity. Extraction with chloroform

showed that both the soluble and insoluble fractions had multiblock structures,

while the homogeneity of the synthesized samples was not significantly improved

in spite of the addition of solvent. The melting temperature of the TPESs was 223 –

224 oC, the enthalpy of melting 22.4–25.1 J/g and the degree of crystallilnity,
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Fig. 8. log G' versus log G’’ for
TPES-2S at different temperatures
(Han’s diagram).



calcualted from the DSC data, was in the range from 15.5 to 17.4 %. The rheologi-

cal measurements of poly(ester-siloxane)s performed in the dynamic mode sho-

wed that a microphase reorganization occurred during the melting process. The

microphase separation transition temperatures, determined from Han’s diagrams

(plots of log G’ versus log G’’) were in range from 232 to 236 oC. In the isotropic

molten state, the dynamic complex viscosity increased with increasing content of

PBT segments, as well as with their length.

I Z V O D

SINTEZA TERMOPLASTI^NIH POLI(ESTAR-SILOKSANA) U RASTOPU

I RASTVORU
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1
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1
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IHTM, Centar za hemiju – Odeqewe za polimerne materijale, Studentski trg 12–16, 11000 Beograd i

2
Tehnolo{ko-metalur{ki fakultet, Karnegijeva 4, 11000 Beograd

Dve serije termoplasti~nih elastomera na bazi poli(dimetilsiloksana) kao me-

kog segmenta i poli(butilentereftalata) kao tvrdog segmenta sintetisane su katali-

zovanom transesterifikacijom polaze}i od dimetiltereftalata, DMT, silanol-ter-

minarnog poli(dimetil-siloksana), PDMS-OH, Mn = 1750 g/mol i 1,4-butandiola, BD.

Molski odnos po~etnih komonomera odabran je tako da je rezultovao u konstantnom

masenom odnosu tvrdih i mekih segmenata od 55:45. Prva serija je sintetisana sa

ciqem da se odredi optimalan molski odnos komonomera BD i DMT za dobijawe

termoplasti~nih elastomera velikih molarnih masa. U drugoj seriji sinteze su izvo-

|ene u prisustvu te{ko isparqivog rastvra~a 1,2,4-trihlorbenzena sa ciqem da se po-

ve}a me{qivost izuzetno nepolarnog poli(dimetilsiloksanskog) pretpolimera i

polarnih reaktanata, kao {to su DMT i BD i samim tim da se izbegne fazna separacija

u reakcionoj sme{i tokom sinteze. Struktura i sastav sintetisanih poli(estar-si-

loksana) potvr|eni su 1H-NMR spektroskopijom, dok su temperatura topqewa i ste-

pen kristalini~nosti odre|eni diferencijalnom skeniraju}om kalometrijom (DSC).

Efikasnost ugradwe silanol-terminiranog poli(dimetilsiloksana) u poliestarske

lance utvr|ena je na osnovu ekstrakcije hloroformom. Reolo{ka svojstva poli(esta-

ra-siloksana) ispitana su dinami~ko-mehani~kom spektroskopijom.

(Primqeno 24. marta, revidirano 16. maja 2005)
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