








### TWENTY-SECOND ANNUAL CONFERENCE

## **YUCOMAT 2021**

Hunguest Hotel Sun Resort, Herceg Novi, Montenegro August 30 - September 3, 2021 http://www.mrs-serbia.org.rs

# Program and Book of Abstracts

Organised by: **Materials Research Society of Serbia** 

**Endorsed by: Federation of European Material Societies** 

CIP - Каталогизацијаупубликацији НароднабиблиотекаСрбије, Београд

66.017/.018(048)

DRUŠTVO za istraživanje materijala Srbije (Beograd). Godišnja konferencija (22 ; 2021 ; Herceg Novi)

Programme; and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021; organised by Materials Research Society of Serbia; [editor Dragan P. Uskoković]. - Belgrade: Materials Research Society of Serbia, 2021 (Herceg Novi; Biro Konto). - XXXIII. 146 str.; ilustr.; 23 cm

Tiraž 150. - Bibliografija uz pojedine apstrakte. - Registar.

ISBN 978-86-919111-6-4

а) Наука оматеријалима-- Апстрактиб) Техничкиматеријали—Апстракти

COBISS.SR-ID 44447497

Title: THE TWENTY-SECOND ANNUAL CONFERENCE

YUCOMAT 2021

Program and Book of Abstracts

**Publisher:** Materials Research Society of Serbia

Knez Mihailova 35/IV, P.O. Box 433, 11000 Belgrade, Serbia Phone: +381 11 2185-437; hhttp://www.mrs-serbia.org.rs

**Editor:** Prof. Dr. Dragan P. Uskoković

Technical editor: Jasmina R. Jevtić

**Typesetting** 

and prepress: Dr. Aleksandar Dekanski

**Cover page:** Nenad Ignjatović

Covers: Images on front & back covers are the property of MRS Serbia

ISBN 978-86-919111-6-4

Copyright © 2021 Materials Research Society of Serbia - MRSS

MRSS is member of the Federation of European Materials Societies



**Printed in:** Biro Konto

Sutorina bb, Igalo – Herceg Novi, Montenegro

Phones: +382-31-670123, 670025, E-mail: bkonto@t-com.me Circulation: 150 copies. The end of printing: August 2021

#### TWENTY-SECOND ANNUAL CONFERENCE YUCOMAT 2021 Herceg Novi, August 30 – September 3, 2021

P.S.III.14.

### 3D printed mucoadhesive gelatin based buccal films

Marija N. Jovanović<sup>1</sup>, Anđela N. Radisavljević<sup>2</sup>, Miloš M. Petrović<sup>3</sup>, Dušica B. Stojanović<sup>1</sup>, Svetlana R. Ibrić<sup>4</sup>, Petar S. Uskoković<sup>1</sup>

<sup>1</sup>University of Belgrade - Faculty of Technology and Metallurgy, Department of Materials Science and Engineering, Karnegijeva 4, 11120 Belgrade, Serbia, <sup>2</sup>University of Belgrade, Innovation Centre, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia, <sup>3</sup>University of Belgrade - Faculty of Technology and Metallurgy, Department of General Technical Sciences, Karnegijeva 4, 11120 Belgrade, Serbia, <sup>4</sup>University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia

The oral mucoadhesive film is a novel and attractive formulation for local and/or systemic drug delivery through the mucosal membrane of the oral cavity. Certain active pharmaceutical ingredients (API) in conventional formulations (tablets, capsules, syrups) are absorbed in the gastrointestinal tract and undergo first-pass metabolism through the liver, thereby reducing their bioavailability. This problem can be overcome by using intraoral formulations, such as mucoadhesive buccal films that disintegrate and dissolve in the oral cavity where the absorption of API occurs. In this work, the mucoadhesive films were prepared by 3D paste printing and the influence of processing parameters on film properties and the release rate of a drug was investigated. Gelatin (GA) and the blend of gelatin/polyvinylpyrrolidone (GA/PVP) were used because of their biocompatibility. Propranolol hydrochloride (PRH) was used as a model substance because it has high first-pass metabolism and is soluble in water. Film morphology and drug distribution were followed by SEM analysis. Dissolution test in simulated saliva was done to see how PRH was released from films. Mucoadhesion test revealed that the GA/PVP films with PRH have the highest adhesion force. Obtained results introduce GA/PVP as a promising material with good adhesion and rate of drug release.

Acknowledgement: This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-9/2021-14/200135 and No. 451-03-9/2021-14/200161)