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Abstract 

The effect of proof over-pressure on pressure vessels structural integrity is analysed. Risk based approach is applied using Failure 
Analysis Diagramme to assess likelihood of failure. Special attention is paid to crack-like defects detected by NDT regular testing 
which are unacceptable by standards, but difficult to be repaired. It was show, using two examples, that such defects can remain if 
some strict conditions are fulfilled. In any case, with or without crack-like defects, it was shown that testing of pressure vessels with 
significant over-pressure can cause much more problems than it has benefits, because it acts more like the first step in eventual 
failure, than being proof to anything. 
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1. Introduction 

      Pressure vessels structural integrity assessment is of utmost importance for their safe and reliable operation, especially 
in the case of high potential consequences, as shown in [1-5]. This is especially important when it comes to the proof 
testing, since it has been shown that overpressure can cause significant damage and brings no benefit, [5, 6]. Therefore, 
the basic aim of this paper is to make risk based analysis of pressure vessels structural integrity with focus of over-pressure 
effect. Toward this aim, a simple engineering tool will be used to estimate likelihood, [7-12], and simple reasoning will 
be used to estimate consequence, [4, 8], so that risk will be evaluated as the product of these two. This approach is also 
adopted in the scope of ESIS TC12 activities, [13]. The main concern is the initiation of crack-like defects due to over-
pressure, which was a typical consequence of over-pressure after repair welding of HSLA steel welded joints in spherical 
pressure vessels back in seventies and eighties, [5]. Therefore, here we will apply a simple engineering tool to evaluate 
the effect of over-loading in two cases, one being the spherical storage tank for VCM, [3, 5, 11], and the other one, storage 
tanks for compressed air in the Reversable Hydro Power Plant Bajina Basta in Serbia, [1, 6, 7]. 
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pressure vessels back in seventies and eighties, [5]. Therefore, here we will apply a simple engineering tool to evaluate 
the effect of over-loading in two cases, one being the spherical storage tank for VCM, [3, 5, 11], and the other one, storage 
tanks for compressed air in the Reversable Hydro Power Plant Bajina Basta in Serbia, [1, 6, 7]. 

2 Author name / Structural Integrity Procedia  00 (2019) 000–000 

2. Structural integrity assessment 

2.1. Spherical tank for vinyl-chloride monomer (VCM) 

    As the first case study, the large spherical tank, Fig. 1a, was considered, to analyse over-pressure effect on its 
integrity, which was jeopardized after leakage caused by undetected micro-cracks in welded joint, grown through the 
thickness during proof testing (pressure up to 50% above the design pressure), Fig. 1b-d, [11]. 
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d) Welded joint 

Fig. 1. a) Spherical storage tank, b-d) Cracks on inner wall side of spherical tank, [11] 
 

Here we analyse the large sphere for VCM, volume 2,000 m3, diameter 15.6 m, made of fine grain, micro-alloyed 
steel TTSt E-47, Steelworks Jesenice. Design pressure was 0.5 MPa, creating membrane stress σ=pR/2t=97.6 𝑀𝑀𝑀𝑀𝑀𝑀. 
Residual stress was taken into account since no record of post weld heat treatment (PWHT) was available, R=196 
MPa - maximum value transverse to the weld (40% of the Yield Stress, Reh) and R=480 MPa - maximum value in 
the longitudinal direction, (100% of the Yield Stress, Reh), [11]. 

During NDT inspection, many crack-like defects were detected in welded joints, mostly in radial welded joints 
(RIII, Fig. 1a), at the border of liquid and gaseous phases, [11]. Typically, crack location was in the heat-affected-
zone (HAZ), not uncommon for the steel TTSt E-47, as also indicated by the data for fracture toughness: KIc 
(BM)=4420 MPamm, KIc (WM)=2750 MPamm, KIc (HAZ)=1580 MPamm, [11].  

All detected cracks were three-dimensional (3D), surface cracks, with different lengths (100-200 mm) and depth 
approximately 5 mm. For cracks of such shape, it has been shown that they would grow into depth [11], i.e. leakage 
would precede catastrophic failure. In the scope of conservative and at the same time simplified approach, cracks are 
represented as being 2D edge crack, with length 5 mm, as they are schematically shown in Fig. 1b-c. The stress 
intensity factor (SIF) is calculated for longitudinal cracks (HAZ and WM, Figs. 1b and 1c, respectively), and for the 
transverse crack (BM, Fig. 1d) as follows: 

𝐾𝐾𝐼𝐼 = 1.12 ⋅ (𝑝𝑝𝑝𝑝/2𝑡𝑡 + 𝜎𝜎𝑅𝑅)√𝜋𝜋𝜋𝜋 = 1302.5𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚𝑚𝑚 (WM and HAZ), 
𝐾𝐾𝐼𝐼 = 1.12 ⋅ (𝑝𝑝𝑝𝑝/2𝑡𝑡 + 𝜎𝜎𝑅𝑅)√𝜋𝜋𝜋𝜋 = 2562.8𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚𝑚𝑚 (BM), 

providing the following ratios 𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼: 
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 1302.5/2750 = 0.47 (WM), 
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 1302.5/1580 = 0.82 (HAZ),  
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 2562.8/4420 = 0.58 (BM). 
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Fig. 1. a) Spherical storage tank, b-d) Cracks on inner wall side of spherical tank, [11] 
 

Here we analyse the large sphere for VCM, volume 2,000 m3, diameter 15.6 m, made of fine grain, micro-alloyed 
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the longitudinal direction, (100% of the Yield Stress, Reh), [11]. 
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(RIII, Fig. 1a), at the border of liquid and gaseous phases, [11]. Typically, crack location was in the heat-affected-
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All detected cracks were three-dimensional (3D), surface cracks, with different lengths (100-200 mm) and depth 
approximately 5 mm. For cracks of such shape, it has been shown that they would grow into depth [11], i.e. leakage 
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represented as being 2D edge crack, with length 5 mm, as they are schematically shown in Fig. 1b-c. The stress 
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𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 1302.5/2750 = 0.47 (WM), 
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 1302.5/1580 = 0.82 (HAZ),  
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 2562.8/4420 = 0.58 (BM). 
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The net stress, n, is taken for all zones in welded joint as 𝜎𝜎𝑛𝑛 = 1.33 ⋅ 𝑝𝑝𝑝𝑝/2𝑡𝑡 (coefficient 1.33=20/15 due to 
reduced cross-section), whereas the flow stress, F, is estimated to 𝜎𝜎𝐹𝐹 = (𝑅𝑅𝑒𝑒𝑒𝑒 + 𝑅𝑅𝑀𝑀)/2 = 580 𝑀𝑀𝑀𝑀𝑀𝑀 for BM, 610 
MPa for HAZ and 510 MPa for WM, according to data provided in [11]. Now, one can calculate 𝑆𝑆𝑅𝑅 =
(1.33 ⋅ 97.5)/580 = 0.22, for BM, 0.21 for HAZ and 0.24 for WM. 

The coordinates (KR, SR) for design pressure are as follows: WM (0.24, 0.47), HAZ (0.21, 0.82), BM (0.22, 0.58), 
respectively, as shown in Fig. 2, with failure likelihoods 0.49 (WM), 0.85 (HAZ) and 0.61 (BM). Now for the 30% of 
over-pressure, the net stress is proportionally increased, whereas stress intensity factors get the following values: 

𝐾𝐾𝐼𝐼 = 1.12 ⋅ (𝑝𝑝𝑝𝑝
2𝑡𝑡 + 𝜎𝜎𝑅𝑅) √𝜋𝜋𝜋𝜋 = 1520 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚𝑚𝑚 (WM and HAZ), 

𝐾𝐾𝐼𝐼 = 1.12 ⋅ (𝑝𝑝𝑝𝑝
2𝑡𝑡 + 𝜎𝜎𝑅𝑅) √𝜋𝜋𝜋𝜋 = 2781 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚𝑚𝑚 (BM), 

providing the following ratios 𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼: 
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 1520/2750 = 0.53 (WM), 
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 1520/1580 = 0.96 (HAZ),  
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 2781/4420 = 0.63 (BM). 

The coordinates (KR, SR) for over-pressure are as follows: WM (0.31, 0.53), HAZ (0.27, 0.96), BM (0.29, 0.63), 
respectively, also shown in Fig. 2, with failure likelihoods 0.56 (WM), 0.99 (HAZ) and 0.66 (BM). Based on the 
results shown here, one can notice that the over-pressure brings HAZ practically on the limit line, providing a simple 
explanation why new cracks are produced. 
 

 
Fig. 2. The FAD for VCM storage tank with cracks in WM, HAZ and BM, design and over-pressure 

 
Corresponding risk levels are defined in Table 1, with a consequence taken as very high, [11]. indicating the medium, 

high and very high risk level for WM, BM and HAZ, respectively, both under design and over-pressure. Anyhow, 
detrimental effect of over-pressure is clearly shown by increased value of HAZ failure likelihood up to 0.99. 

Table 1. Risk matrix for spherical storage tank for VCM 

 
Consequence category 

1 – very low 2 - low 3 - medium 4 - high 5 - very high Risk legend 

Pr
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ry
 ≤0.2 very low      Very low  

0.2-0.4 low      Low 

0.4-0.6 medium     p=0.5/0.75 MPa 
 0.49/0.56, WM Medium 

0.6-0.8 high     p=0.5/0.75 MPa 
 0.61,0.66, BM High 

0.8-1.0 
very high     p=0.5/0.75 MPa 

 0.85/0.99, HAZ Very High 
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2.2. Storage tanks for compressed air 

     Eight cylindrical storage tanks for compressed air in Reversible Hydro Power Plant Bajina Basta were originally 
used to establish the risk based procedure, [4, 6]. They have been working more than 20 years before the regular NDT 
(radiography) revealed non-acceptable defects, according to standards. Having in mind the fact that no mechanisms for 
crack growth is acting, it was decided to leave these defects and follow closely behaviour of storage tanks. Later on, since 
2019, radiography was replaced with conventional ultrasonic testing (UT), providing somewhat different results, as 
shown in [14] and discussed here. 
   Consequence in this case is the highest possible, because eventual failure could cause disaster, [4]. Probability of failure 
is now calculated for the most critical defect, according to recent UT results. Following data is used in this analysis: 
• Storage tank geometry: thickness t=50 mm, diameter D=2075 mm. 
• Material (HSLA steel): Reh=500 MPa, RM=650 MPa; KIc=1580 MPamm. 
• Crack geometry: length 2c=180 mm, depth c= 32 mm (circumferential weld – lack of fusion, from 18-50 mm). 
• Longitudinal stress pR/2t=87 MPa. 

Now, one can calculate the stress intensity factor KI=Y(a/W,a/c)(pR/2t)a=1,25(87)32=1090 MPamm, 
where Y(a/W,a/c) is obtained following the procedure described elsewhere, [15]. Taking into account the fracture 
toughness, one gets KI/KIc=0.69. 

Plastic collapse ratio is calculated as follows: SR=n/F=87∙2.78/575=0.42. Thus, the coordinates in FAD are (0.42, 
0.69), as shown in Fig. 3, and the probability is 0.72, making risk level high. In the case of 43% over-pressure (proof 
test), probability is 1.02, which is unreasonable and beyond discussion. Therefore, the recommendation was to limit over-
pressure to 10%, which would correspond to high risk level, but not extremely high (probability 0.79). 
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The net stress, n, is taken for all zones in welded joint as 𝜎𝜎𝑛𝑛 = 1.33 ⋅ 𝑝𝑝𝑝𝑝/2𝑡𝑡 (coefficient 1.33=20/15 due to 
reduced cross-section), whereas the flow stress, F, is estimated to 𝜎𝜎𝐹𝐹 = (𝑅𝑅𝑒𝑒𝑒𝑒 + 𝑅𝑅𝑀𝑀)/2 = 580 𝑀𝑀𝑀𝑀𝑀𝑀 for BM, 610 
MPa for HAZ and 510 MPa for WM, according to data provided in [11]. Now, one can calculate 𝑆𝑆𝑅𝑅 =
(1.33 ⋅ 97.5)/580 = 0.22, for BM, 0.21 for HAZ and 0.24 for WM. 

The coordinates (KR, SR) for design pressure are as follows: WM (0.24, 0.47), HAZ (0.21, 0.82), BM (0.22, 0.58), 
respectively, as shown in Fig. 2, with failure likelihoods 0.49 (WM), 0.85 (HAZ) and 0.61 (BM). Now for the 30% of 
over-pressure, the net stress is proportionally increased, whereas stress intensity factors get the following values: 

𝐾𝐾𝐼𝐼 = 1.12 ⋅ (𝑝𝑝𝑝𝑝
2𝑡𝑡 + 𝜎𝜎𝑅𝑅) √𝜋𝜋𝜋𝜋 = 1520 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚𝑚𝑚 (WM and HAZ), 

𝐾𝐾𝐼𝐼 = 1.12 ⋅ (𝑝𝑝𝑝𝑝
2𝑡𝑡 + 𝜎𝜎𝑅𝑅) √𝜋𝜋𝜋𝜋 = 2781 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚𝑚𝑚 (BM), 

providing the following ratios 𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼: 
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 1520/2750 = 0.53 (WM), 
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 1520/1580 = 0.96 (HAZ),  
𝐾𝐾𝑅𝑅 = 𝐾𝐾𝐼𝐼/𝐾𝐾𝐼𝐼𝐼𝐼 = 2781/4420 = 0.63 (BM). 

The coordinates (KR, SR) for over-pressure are as follows: WM (0.31, 0.53), HAZ (0.27, 0.96), BM (0.29, 0.63), 
respectively, also shown in Fig. 2, with failure likelihoods 0.56 (WM), 0.99 (HAZ) and 0.66 (BM). Based on the 
results shown here, one can notice that the over-pressure brings HAZ practically on the limit line, providing a simple 
explanation why new cracks are produced. 
 

 
Fig. 2. The FAD for VCM storage tank with cracks in WM, HAZ and BM, design and over-pressure 
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2.2. Storage tanks for compressed air 

     Eight cylindrical storage tanks for compressed air in Reversible Hydro Power Plant Bajina Basta were originally 
used to establish the risk based procedure, [4, 6]. They have been working more than 20 years before the regular NDT 
(radiography) revealed non-acceptable defects, according to standards. Having in mind the fact that no mechanisms for 
crack growth is acting, it was decided to leave these defects and follow closely behaviour of storage tanks. Later on, since 
2019, radiography was replaced with conventional ultrasonic testing (UT), providing somewhat different results, as 
shown in [14] and discussed here. 
   Consequence in this case is the highest possible, because eventual failure could cause disaster, [4]. Probability of failure 
is now calculated for the most critical defect, according to recent UT results. Following data is used in this analysis: 
• Storage tank geometry: thickness t=50 mm, diameter D=2075 mm. 
• Material (HSLA steel): Reh=500 MPa, RM=650 MPa; KIc=1580 MPamm. 
• Crack geometry: length 2c=180 mm, depth c= 32 mm (circumferential weld – lack of fusion, from 18-50 mm). 
• Longitudinal stress pR/2t=87 MPa. 

Now, one can calculate the stress intensity factor KI=Y(a/W,a/c)(pR/2t)a=1,25(87)32=1090 MPamm, 
where Y(a/W,a/c) is obtained following the procedure described elsewhere, [15]. Taking into account the fracture 
toughness, one gets KI/KIc=0.69. 

Plastic collapse ratio is calculated as follows: SR=n/F=87∙2.78/575=0.42. Thus, the coordinates in FAD are (0.42, 
0.69), as shown in Fig. 3, and the probability is 0.72, making risk level high. In the case of 43% over-pressure (proof 
test), probability is 1.02, which is unreasonable and beyond discussion. Therefore, the recommendation was to limit over-
pressure to 10%, which would correspond to high risk level, but not extremely high (probability 0.79). 
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Discussion and conclusions 
 
Simple engineering tools are used to assess structural integrity of pressure vessels containing crack-like defects, 

classified as unacceptable according to standards. Successful application of this approach is based on the fact that the 
geometry, including crack-like defects, considered in presented cases, are simple, so that analytical expressions can 
be used. In the case of more complex geometries, requiring 3D analysis, numerical methods are inevitable, as shown 
in [16-18]. 

Both here and in previous research on this topic detrimental role of proof testing was illustrated and explained, [3, 
7, 11, 15], more or less proportionally to the level of over-pressure. Not only that nothing is really proved by this 
unnecessary procedure, but also damage in form of plastic strain and consequent cracking can appear. Especially if a 
crack-like defect already exists, one should not even consider proof testing. Therefore, the following conclusion is 
obvious: 
• Effect of over-pressure on pressure vessels is detrimental from the point of view of structural integrity since it 

can cause unnecessary damage of welded joints, as the most crack sensitive regions. Both simple engineering 
method, as presented here, and previously performed more complex computational fracture mechanics analysis, 
lead to that conclusion. 
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