Приказ основних података о документу

dc.creatorPajić-Lijaković, Ivana
dc.creatorPlavšić, Milenko B.
dc.creatorNedović, Viktor
dc.creatorBugarski, Branko
dc.date.accessioned2021-03-10T10:51:43Z
dc.date.available2021-03-10T10:51:43Z
dc.date.issued2008
dc.identifier.issn1120-4826
dc.identifier.urihttp://TechnoRep.tmf.bg.ac.rs/handle/123456789/1221
dc.description.abstractAim. A phase-field mathematical model was formulated to describe yeast cell growth within the Ca-alginate microbead during air-lift bioreactor cultivation. Model development was based on experimentally obtained data for the intra-bead yeast cell volume fraction profile within the microbead after reaching the equilibrium state for cells (150 h), as well as, total yeast cell volume fraction per microbead and microbead volume as functions time. Microbead with growing yeast cells is treated as a two-phase system. one phase represents the cell agglomerates, while the other is the alginate hydrogel matrices. The interactions between phases are simulated using the Langevin class, non-conservative phasefield model based on the reduction of the modeling resolution. The model considered the growth of small domains of one phase (cell agglomerates) as nucleation. Methods. Total yeast cell volume fraction in the beads was estimated by using Thoma counting chamber after dissolution of beads. Local cell volume fraction per microbead layers is calculated from experimentally determined surface fraction of cells for various microbead cross sections by image analysis. Microbead volume is estimated by measuring the microbead diameter. Diameters of microbeads were measured using the optical microscope equipped with a micrometric device. Results. The proposed model offered the only one model parameter, which represents the specific measure of microenvironmental restrictive action to the cell growth dynamics. The optimal value of this model parameter is obtained by comparison analysis between experimental data and model predictions. Conclusion. Besides giving useful insights into the dynamics of restrictive cell growth within the Ca-alginate microbead, the model can be used as a tool to design/optimize the performance of microbead and studying the microenvironmental restrictive mechanism action of the cell growth.en
dc.relationinfo:eu-repo/grantAgreement/MESTD/MPN2006-2010/142075/RS//
dc.relation371005
dc.rightsrestrictedAccess
dc.sourceMinerva Biotecnologica
dc.subjectyeastsen
dc.subjectcell growth processesen
dc.subjectmicrospheresen
dc.titleModeling of microenvironmetal restricted yeast cell growth within Ca-alginate microbeaden
dc.typearticle
dc.rights.licenseARR
dc.citation.epage102
dc.citation.issue2
dc.citation.other20(2): 99-102
dc.citation.rankM23
dc.citation.spage99
dc.citation.volume20
dc.identifier.pmid
dc.identifier.rcubhttps://hdl.handle.net/21.15107/rcub_technorep_1221
dc.identifier.scopus2-s2.0-49149111921
dc.identifier.wos000258613200007
dc.type.versionpublishedVersion


Документи

ДатотекеВеличинаФорматПреглед

Уз овај запис нема датотека.

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу