TechnoRep - Repozitorijum Tehnološko-metalurškog fakulteta
Repozitorijum Tehnološko-metalurškog fakulteta
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • Pregled zapisa
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

A highly efficient diastereoselective synthesis of alpha-isosalicin by maltase from Saccharomyces cerevisiae

Samo za registrovane korisnike
2011
Autori
Veličković, Dušan
Dimitrijević, Aleksandra
Bihelović, Filip
Bezbradica, Dejan
Jankov, Ratko
Milosavić, Nenad
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
In this report, alpha-isosalicin, a potent anticoagulant and skin whitening agent, was synthesized by a highly efficient chemoselective and diastereoselective reaction, catalyzed by maltase from bakers' yeast (Saccharomyces cerevisiae). The highest yield of this one-step transglucosylation reaction was achieved with 50 mM of salicyl alcohol as a glucose acceptor. The key reaction factors were optimized using response surface methodology (RSM) with an enzyme concentration of 10 U/mL. The optimum temperature of the reaction was determined as 36.5 degrees C, the optimal maltose concentration was 40% (w/v), the optimal pH was 6.5, and the optimal reaction time was 16 h. Under these conditions 75% of alpha-isosalicin was obtained, with a yield of 10 g/L, and no by product formation was observed.
Ključne reči:
alpha-Isosalicin / Glucosidase / Salicyl alcohol / Transglucosylation / Bakers' yeast
Izvor:
Process Biochemistry, 2011, 46, 8, 1698-1702
Izdavač:
  • Elsevier Sci Ltd, Oxford
Finansiranje / projekti:
  • Alergeni, antitela, enzimi i mali fiziološki značajni molekuli: dizajn, struktura, funkcija i značaj (RS-172049)
  • Razvoj novih inkapsulacionih i enzimskih tehnologija za proizvodnju biokatalizatora i biološki aktivnih komponenata hrane u cilju povećanja njene konkurentnosti, kvaliteta i bezbednosti (RS-46010)

DOI: 10.1016/j.procbio.2011.05.007

ISSN: 1359-5113

WoS: 000293438300025

Scopus: 2-s2.0-79959922337
[ Google Scholar ]
11
9
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1891
Kolekcije
  • Radovi istraživača / Researchers’ publications (TMF)
Institucija/grupa
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Veličković, Dušan
AU  - Dimitrijević, Aleksandra
AU  - Bihelović, Filip
AU  - Bezbradica, Dejan
AU  - Jankov, Ratko
AU  - Milosavić, Nenad
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1891
AB  - In this report, alpha-isosalicin, a potent anticoagulant and skin whitening agent, was synthesized by a highly efficient chemoselective and diastereoselective reaction, catalyzed by maltase from bakers' yeast (Saccharomyces cerevisiae). The highest yield of this one-step transglucosylation reaction was achieved with 50 mM of salicyl alcohol as a glucose acceptor. The key reaction factors were optimized using response surface methodology (RSM) with an enzyme concentration of 10 U/mL. The optimum temperature of the reaction was determined as 36.5 degrees C, the optimal maltose concentration was 40% (w/v), the optimal pH was 6.5, and the optimal reaction time was 16 h. Under these conditions 75% of alpha-isosalicin was obtained, with a yield of 10 g/L, and no by product formation was observed.
PB  - Elsevier Sci Ltd, Oxford
T2  - Process Biochemistry
T1  - A highly efficient diastereoselective synthesis of alpha-isosalicin by maltase from Saccharomyces cerevisiae
EP  - 1702
IS  - 8
SP  - 1698
VL  - 46
DO  - 10.1016/j.procbio.2011.05.007
UR  - conv_3639
ER  - 
@article{
author = "Veličković, Dušan and Dimitrijević, Aleksandra and Bihelović, Filip and Bezbradica, Dejan and Jankov, Ratko and Milosavić, Nenad",
year = "2011",
abstract = "In this report, alpha-isosalicin, a potent anticoagulant and skin whitening agent, was synthesized by a highly efficient chemoselective and diastereoselective reaction, catalyzed by maltase from bakers' yeast (Saccharomyces cerevisiae). The highest yield of this one-step transglucosylation reaction was achieved with 50 mM of salicyl alcohol as a glucose acceptor. The key reaction factors were optimized using response surface methodology (RSM) with an enzyme concentration of 10 U/mL. The optimum temperature of the reaction was determined as 36.5 degrees C, the optimal maltose concentration was 40% (w/v), the optimal pH was 6.5, and the optimal reaction time was 16 h. Under these conditions 75% of alpha-isosalicin was obtained, with a yield of 10 g/L, and no by product formation was observed.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Process Biochemistry",
title = "A highly efficient diastereoselective synthesis of alpha-isosalicin by maltase from Saccharomyces cerevisiae",
pages = "1702-1698",
number = "8",
volume = "46",
doi = "10.1016/j.procbio.2011.05.007",
url = "conv_3639"
}
Veličković, D., Dimitrijević, A., Bihelović, F., Bezbradica, D., Jankov, R.,& Milosavić, N.. (2011). A highly efficient diastereoselective synthesis of alpha-isosalicin by maltase from Saccharomyces cerevisiae. in Process Biochemistry
Elsevier Sci Ltd, Oxford., 46(8), 1698-1702.
https://doi.org/10.1016/j.procbio.2011.05.007
conv_3639
Veličković D, Dimitrijević A, Bihelović F, Bezbradica D, Jankov R, Milosavić N. A highly efficient diastereoselective synthesis of alpha-isosalicin by maltase from Saccharomyces cerevisiae. in Process Biochemistry. 2011;46(8):1698-1702.
doi:10.1016/j.procbio.2011.05.007
conv_3639 .
Veličković, Dušan, Dimitrijević, Aleksandra, Bihelović, Filip, Bezbradica, Dejan, Jankov, Ratko, Milosavić, Nenad, "A highly efficient diastereoselective synthesis of alpha-isosalicin by maltase from Saccharomyces cerevisiae" in Process Biochemistry, 46, no. 8 (2011):1698-1702,
https://doi.org/10.1016/j.procbio.2011.05.007 .,
conv_3639 .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu TechnoRep | Pošaljite zapažanja

OpenAIRERCUB
 

 

Kompletan repozitorijumInstitucije/grupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu TechnoRep | Pošaljite zapažanja

OpenAIRERCUB