Приказ основних података о документу

dc.creatorAntanasijević, Davor
dc.creatorPocajt, Viktor
dc.creatorPerić-Grujić, Aleksandra
dc.creatorRistić, Mirjana
dc.date.accessioned2021-03-10T12:26:48Z
dc.date.available2021-03-10T12:26:48Z
dc.date.issued2014
dc.identifier.issn0022-1694
dc.identifier.urihttp://TechnoRep.tmf.bg.ac.rs/handle/123456789/2703
dc.description.abstractThis paper describes the training, validation, testing and uncertainty analysis of general regression neural network (GRNN) models for the forecasting of dissolved oxygen (DO) in the Danube River. The main objectives of this work were to determine the optimum data normalization and input selection techniques, the determination of the relative importance of uncertainty in different input variables, as well as the uncertainty analysis of model results using the Monte Carlo Simulation (MCS) technique. Min-max, median, z-score, sigmoid and tanh were validated as normalization techniques, whilst the variance inflation factor, correlation analysis and genetic algorithm were tested as input selection techniques. As inputs, the GRNN models used 19 water quality variables, measured in the river water each month at 17 different sites over a period of 9 years. The best results were obtained using min-max normalized data and the input selection based on the correlation between DO and dependent variables, which provided the most accurate GRNN model, and in combination the smallest number of inputs: Temperature, pH, HCO3-, SO42-, NO3-N, Hardness, Na, Cl-, Conductivity and Alkalinity. The results show that the correlation coefficient between measured and predicted DO values is 0.85. The inputs with the greatest effect on the GRNN model (arranged in descending order) were T, pH, HCO3-, SO42- and NO3-N. Of all inputs, variability of temperature had the greatest influence on the variability of DO content in river body, with the DO decreasing at a rate similar to the theoretical DO decreasing rate relating to temperature. The uncertainty analysis of the model results demonstrate that the GRNN can effectively forecast the DO content, since the distribution of model results are very similar to the corresponding distribution of real data.en
dc.publisherElsevier Science Bv, Amsterdam
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172007/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Hydrology
dc.subjectDOen
dc.subjectGRNNen
dc.subjectMCSen
dc.subjectVIFen
dc.subjectGenetic algorithmen
dc.subjectCorrelation analysisen
dc.titleModelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysisen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage1907
dc.citation.other519: 1895-1907
dc.citation.rankaM21
dc.citation.spage1895
dc.citation.volume519
dc.identifier.doi10.1016/j.jhydrol.2014.10.009
dc.identifier.scopus2-s2.0-84908377307
dc.identifier.wos000347018100054
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу