Приказ основних података о документу

dc.creatorGuo, Fei
dc.creatorLi, Ning
dc.creatorFecher, Frank W.
dc.creatorGasparini, Nicola
dc.creatorQuiroz, Cesar Omar Ramirez
dc.creatorBronnbauer, Carina
dc.creatorHou, Yi
dc.creatorRadmilović, Vuk
dc.creatorRadmilović, Velimir R.
dc.creatorSpiecker, Erdmann
dc.creatorForberich, Karen
dc.creatorBrabec, Christoph J.
dc.date.accessioned2021-03-10T12:53:24Z
dc.date.available2021-03-10T12:53:24Z
dc.date.issued2015
dc.identifier.issn2041-1723
dc.identifier.urihttp://TechnoRep.tmf.bg.ac.rs/handle/123456789/3116
dc.description.abstractThe multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series-and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.en
dc.publisherNature Publishing Group, London
dc.relationCluster of Excellence 'Engineering of Advanced Materials (EAM)' at the University of Erlangen-Nuremberg, Germany [EXC315]
dc.relationUniversity of Erlangen-Nuremberg [SFB 953]
dc.relationDFG research training group GRK 1896 at the Erlangen University
dc.relationChina Scholarship CouncilChina Scholarship Council
dc.relationJoint Project Helmholtz-Institute Erlangen Nurnberg (HI-ERN) [DBF01253]
dc.relation'Aufbruch Bayern' initiative of the state of Bavaria
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172054/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45019/RS//
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceNature Communications
dc.titleA generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cellsen
dc.typearticle
dc.rights.licenseBY
dc.citation.other6: -
dc.citation.rankaM21
dc.citation.volume6
dc.identifier.doi10.1038/ncomms8730
dc.identifier.fulltexthttp://TechnoRep.tmf.bg.ac.rs/bitstream/id/1115/3113.pdf
dc.identifier.pmid26177808
dc.identifier.scopus2-s2.0-84937596831
dc.identifier.wos000358858500036
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу