TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis

Authorized Users Only
2017
Authors
Adamović, Vladimir M.
Antanasijević, Davor
Ristić, Mirjana
Perić-Grujić, Aleksandra
Pocajt, Viktor
Article (Published version)
Metadata
Show full item record
Abstract
This paper presents the development of a general regression neural network (GRNN) model for the prediction of annual municipal solid waste (MSW) generation at the national level for 44 countries of different size, population and economic development level. Proper modelling of MSW generation is essential for the planning of MSW management system as well as for the simulation of various environmental impact scenarios. The main objective of this work was to examine the potential influence of economy crisis (global or local) on the forecast of MSW generation obtained by the GRNN model. The existence of the so-called structural breaks that occur because of the economic crisis in the studied period (2000-2012) for each country was determined and confirmed using the Chow test and Quandt-Andrews test. Two GRNN models, one which did not take into account the influence of the economic crisis (GRNN) and another one which did (SB-GRNN), were developed. The novelty of the applied method is that it ...uses broadly available social, economic and demographic indicators and indicators of sustainability, together with GRNN and structural break testing for the prediction of MSW generation at the national level. The obtained results demonstrate that the SB-GRNN model provide more accurate predictions than the model which neglected structural breaks, with a mean absolute percentage error (MAPE) of 4.0 % compared to 6.7 % generated by the GRNN model. The proposed model enhanced with structural breaks can be a viable alternative for a more accurate prediction of MSW generation at the national level, especially for developing countries for which a lack of MSW data is notable.

Keywords:
MSW management / General regression neural network / Structural breaks
Source:
Environmental Science and Pollution Research, 2017, 24, 1, 299-311
Publisher:
  • Springer Heidelberg, Heidelberg
Funding / projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)

DOI: 10.1007/s11356-016-7767-x

ISSN: 0944-1344

WoS: 000392105700029

Scopus: 2-s2.0-84990940819
[ Google Scholar ]
43
22
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3675
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Adamović, Vladimir M.
AU  - Antanasijević, Davor
AU  - Ristić, Mirjana
AU  - Perić-Grujić, Aleksandra
AU  - Pocajt, Viktor
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3675
AB  - This paper presents the development of a general regression neural network (GRNN) model for the prediction of annual municipal solid waste (MSW) generation at the national level for 44 countries of different size, population and economic development level. Proper modelling of MSW generation is essential for the planning of MSW management system as well as for the simulation of various environmental impact scenarios. The main objective of this work was to examine the potential influence of economy crisis (global or local) on the forecast of MSW generation obtained by the GRNN model. The existence of the so-called structural breaks that occur because of the economic crisis in the studied period (2000-2012) for each country was determined and confirmed using the Chow test and Quandt-Andrews test. Two GRNN models, one which did not take into account the influence of the economic crisis (GRNN) and another one which did (SB-GRNN), were developed. The novelty of the applied method is that it uses broadly available social, economic and demographic indicators and indicators of sustainability, together with GRNN and structural break testing for the prediction of MSW generation at the national level. The obtained results demonstrate that the SB-GRNN model provide more accurate predictions than the model which neglected structural breaks, with a mean absolute percentage error (MAPE) of 4.0 % compared to 6.7 % generated by the GRNN model. The proposed model enhanced with structural breaks can be a viable alternative for a more accurate prediction of MSW generation at the national level, especially for developing countries for which a lack of MSW data is notable.
PB  - Springer Heidelberg, Heidelberg
T2  - Environmental Science and Pollution Research
T1  - Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis
EP  - 311
IS  - 1
SP  - 299
VL  - 24
DO  - 10.1007/s11356-016-7767-x
UR  - conv_5200
ER  - 
@article{
author = "Adamović, Vladimir M. and Antanasijević, Davor and Ristić, Mirjana and Perić-Grujić, Aleksandra and Pocajt, Viktor",
year = "2017",
abstract = "This paper presents the development of a general regression neural network (GRNN) model for the prediction of annual municipal solid waste (MSW) generation at the national level for 44 countries of different size, population and economic development level. Proper modelling of MSW generation is essential for the planning of MSW management system as well as for the simulation of various environmental impact scenarios. The main objective of this work was to examine the potential influence of economy crisis (global or local) on the forecast of MSW generation obtained by the GRNN model. The existence of the so-called structural breaks that occur because of the economic crisis in the studied period (2000-2012) for each country was determined and confirmed using the Chow test and Quandt-Andrews test. Two GRNN models, one which did not take into account the influence of the economic crisis (GRNN) and another one which did (SB-GRNN), were developed. The novelty of the applied method is that it uses broadly available social, economic and demographic indicators and indicators of sustainability, together with GRNN and structural break testing for the prediction of MSW generation at the national level. The obtained results demonstrate that the SB-GRNN model provide more accurate predictions than the model which neglected structural breaks, with a mean absolute percentage error (MAPE) of 4.0 % compared to 6.7 % generated by the GRNN model. The proposed model enhanced with structural breaks can be a viable alternative for a more accurate prediction of MSW generation at the national level, especially for developing countries for which a lack of MSW data is notable.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Environmental Science and Pollution Research",
title = "Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis",
pages = "311-299",
number = "1",
volume = "24",
doi = "10.1007/s11356-016-7767-x",
url = "conv_5200"
}
Adamović, V. M., Antanasijević, D., Ristić, M., Perić-Grujić, A.,& Pocajt, V.. (2017). Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis. in Environmental Science and Pollution Research
Springer Heidelberg, Heidelberg., 24(1), 299-311.
https://doi.org/10.1007/s11356-016-7767-x
conv_5200
Adamović VM, Antanasijević D, Ristić M, Perić-Grujić A, Pocajt V. Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis. in Environmental Science and Pollution Research. 2017;24(1):299-311.
doi:10.1007/s11356-016-7767-x
conv_5200 .
Adamović, Vladimir M., Antanasijević, Davor, Ristić, Mirjana, Perić-Grujić, Aleksandra, Pocajt, Viktor, "Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis" in Environmental Science and Pollution Research, 24, no. 1 (2017):299-311,
https://doi.org/10.1007/s11356-016-7767-x .,
conv_5200 .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB