Show simple item record

dc.creatorIvanović, Tijana
dc.creatorPopović, Daniela
dc.creatorMiladinović, Jelena
dc.creatorRard, Joseph A.
dc.creatorMiladinović, Zoran P.
dc.creatorBelošević, Svetlana
dc.creatorTrivunac, Katarina
dc.date.accessioned2021-03-10T14:01:56Z
dc.date.available2021-03-10T14:01:56Z
dc.date.issued2019
dc.identifier.issn0095-9782
dc.identifier.urihttp://TechnoRep.tmf.bg.ac.rs/handle/123456789/4174
dc.description.abstractIsopiestic measurements have been made for aqueous mixtures of NaH2PO4 and KH2PO4 at T=(298.15 +/- 0.01) K, at NaH2PO4 ionic strength fractions y=(0, 0.19108, 0.38306, 0.58192, and 1), assuming that both electrolytes dissociate as 1:1 electrolytes, using KCl(aq) as the reference standard solution. Model parameters for an extended form of Pitzer's ion-interaction model and also for the Clegg-Pitzer-Brimblecombe equations based on the mole-fraction-composition scale were evaluated at T=298.15K for NaH2PO4(aq) using the present isopiestic results (13 values), as were those for KH2PO4(aq) using the present isopiestic results (12 values), together with numerous critically-assessed osmotic coefficients for both electrolytes taken from the published literature. The thermodynamic models for KH2PO4(aq) extend to m=2.187molkg(-1), which is slightly above saturation, while those for NaH2PO4(aq) extend to m=7.5molkg(-1), which is below saturation. The 39 osmotic coefficients for the ternary mixtures from the present study along with 42 values from a published study were likewise represented with these models, with both the usual Pitzer mixing terms and also Scatchard's neutral-electrolyte model mixing terms being used for the extended ion-interaction model. Two mixing parameters were needed for each of the models, and all three models gave similar quality representations of the experimental results. Maximum differences in calculated values of mean molality-based activity coefficients for these three models are (+/-)(NaH2PO4)0.0080 and (+/-)(KH2PO4)0.0043. The experimental results were also found to nearly conform to Zdanovskii's rule.en
dc.publisherSpringer/Plenum Publishers, New York
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172063/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Solution Chemistry
dc.subjectAqueous solutionsen
dc.subjectIsopiestic measurementsen
dc.subjectNaH2PO4en
dc.subjectKH2PO4en
dc.subjectOsmotic coefficientsen
dc.subjectActivity coefficientsen
dc.titleIsopiestic Determination of the Osmotic and Activity Coefficients of the {yNaH(2)PO(4)+(1-y)KH2PO4}(aq) System at T=298.15Ken
dc.typearticle
dc.rights.licenseARR
dc.citation.epage328
dc.citation.issue3
dc.citation.other48(3): 296-328
dc.citation.rankM23
dc.citation.spage296
dc.citation.volume48
dc.identifier.doi10.1007/s10953-018-0839-4
dc.identifier.rcubconv_5823
dc.identifier.scopus2-s2.0-85057604777
dc.identifier.wos000462984100003
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record