Show simple item record

dc.creatorPerić, Milica
dc.creatorKomatina, Mirko
dc.creatorAvtonijević, Dragi Lj.
dc.creatorBugarski, Branko
dc.creatorDželetović, Željko
dc.date.accessioned2021-03-10T14:03:44Z
dc.date.available2021-03-10T14:03:44Z
dc.date.issued2019
dc.identifier.issn0354-9836
dc.identifier.urihttp://TechnoRep.tmf.bg.ac.rs/handle/123456789/4202
dc.description.abstractIn this paper "well-to-pump" environmental analysis of pyrolytic diesel from Miscanthus gigantheus is performed. The average annual yield of Miscanthus from III-V year of cultivation on 1 ha of chernozem soil in Serbia (23.5 t) is considered as an input for the process. Two pyrolytic diesel pathways are considered: distributed pyrolytic pathway with external hydrogen production (from natural gas) and integrated pyrolytic pathway with internal hydrogen production (from pyrolytic oil). and are compared to a conventionally produced diesel pathway. The results of the analysis reveal that integrated-internal pyrolytic diesel pathway has lowest resources consumption and lowest pollutant emissions. Compared to conventionally produced diesel, integrated-internal pyrolysis pathway consumes 80% less of fossil fuels, and 92% more of renewables, has 90% lower global warming potential, 30% lower terrestrial acidification potential but 38% higher particulate matter formation potential. Compared to the distributed-external pathway, 88% less fossil fuels, and 36% less renewables are consumed in the integrated-internal pathway, global warming potential is 97% lower, terrestrial acidification is 20% lower, and particulate matter formation is 49% lower. Nevertheless, this pathway has high coal and hydroelectrical power consumption due to electricity production and high emissions of particulate matter, CO2, SOx, and N2O. Another drawback of this production pathway is the low yield of diesel obtained (38% lower than in distributed-external pathway). With this regard, it is still hard to designate production of diesel from fast pyrolysis of Miscanthus as a more environmentally friendly replacement of the conventional production diesel pathway.en
dc.publisherUniverzitet u Beogradu - Institut za nuklearne nauke Vinča, Beograd
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/42011/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/33042/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/176006/RS//
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceThermal Science
dc.subjectdieselen
dc.subjectpyrolysisen
dc.subjectMiscanthusen
dc.subjectlife cycle assessmenten
dc.titleDiesel production by fast pyrolysis of miscanthus giganteus, well-to-pump analysis using the greet modelen
dc.typearticle
dc.rights.licenseBY-NC-ND
dc.citation.epage378
dc.citation.issue1
dc.citation.other23(1): 365-378
dc.citation.rankM23
dc.citation.spage365
dc.citation.volume23
dc.identifier.doi10.2298/TSCI171215113P
dc.identifier.rcubconv_5808
dc.identifier.scopus2-s2.0-85057093922
dc.identifier.wos000460088000031
dc.type.versionpublishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record