TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering

Authorized Users Only
2020
Authors
Stevanović, Milena
Đošić, Marija
Janković, Ana
Kojić, Vesna
Vukašinović-Sekulić, Maja
Stojanović, Jovica
Odović, Jadranka
Crevar-Sakač, Milkica
Kyong Yop, Rhee
Mišković-Stanković, Vesna
Article (Published version)
Metadata
Show full item record
Abstract
Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition stron...gly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction gt 3 logarithmic units) compared toEscherichia coli(bacteriostatic, lt 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.

Keywords:
antibacterial activity / cytotoxicity / electrophoretic deposition / gentamicin / graphene
Source:
Journal of Biomedical Materials Research Part A, 2020, 108, 11, 2175-2189
Publisher:
  • Wiley, Hoboken
Funding / projects:
  • Basic Science Research Program of the Ministry of Education, Science and Technology of Korea [2018R1A2B5A02023190]
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
Note:
  • Peer-reviewed manuscript: http://technorep.tmf.bg.ac.rs/handle/123456789/4725

DOI: 10.1002/jbm.a.36974

ISSN: 1549-3296

PubMed: 32323414

WoS: 000543218000001

Scopus: 2-s2.0-85087206871
[ Google Scholar ]
17
14
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4501
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Kojić, Vesna
AU  - Vukašinović-Sekulić, Maja
AU  - Stojanović, Jovica
AU  - Odović, Jadranka
AU  - Crevar-Sakač, Milkica
AU  - Kyong Yop, Rhee
AU  - Mišković-Stanković, Vesna
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4501
AB  - Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition strongly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction  gt 3 logarithmic units) compared toEscherichia coli(bacteriostatic, lt 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.
PB  - Wiley, Hoboken
T2  - Journal of Biomedical Materials Research Part A
T1  - Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering
EP  - 2189
IS  - 11
SP  - 2175
VL  - 108
DO  - 10.1002/jbm.a.36974
UR  - conv_6147
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Kojić, Vesna and Vukašinović-Sekulić, Maja and Stojanović, Jovica and Odović, Jadranka and Crevar-Sakač, Milkica and Kyong Yop, Rhee and Mišković-Stanković, Vesna",
year = "2020",
abstract = "Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition strongly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction  gt 3 logarithmic units) compared toEscherichia coli(bacteriostatic, lt 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.",
publisher = "Wiley, Hoboken",
journal = "Journal of Biomedical Materials Research Part A",
title = "Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering",
pages = "2189-2175",
number = "11",
volume = "108",
doi = "10.1002/jbm.a.36974",
url = "conv_6147"
}
Stevanović, M., Đošić, M., Janković, A., Kojić, V., Vukašinović-Sekulić, M., Stojanović, J., Odović, J., Crevar-Sakač, M., Kyong Yop, R.,& Mišković-Stanković, V.. (2020). Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. in Journal of Biomedical Materials Research Part A
Wiley, Hoboken., 108(11), 2175-2189.
https://doi.org/10.1002/jbm.a.36974
conv_6147
Stevanović M, Đošić M, Janković A, Kojić V, Vukašinović-Sekulić M, Stojanović J, Odović J, Crevar-Sakač M, Kyong Yop R, Mišković-Stanković V. Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. in Journal of Biomedical Materials Research Part A. 2020;108(11):2175-2189.
doi:10.1002/jbm.a.36974
conv_6147 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Kojić, Vesna, Vukašinović-Sekulić, Maja, Stojanović, Jovica, Odović, Jadranka, Crevar-Sakač, Milkica, Kyong Yop, Rhee, Mišković-Stanković, Vesna, "Antibacterialgraphene-basedhydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering" in Journal of Biomedical Materials Research Part A, 108, no. 11 (2020):2175-2189,
https://doi.org/10.1002/jbm.a.36974 .,
conv_6147 .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB