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ural network with multi-filter
feature selection for the prediction of transition
temperatures of bent-core liquid crystals

Davor Antanasijević,a Jelena Antanasijević,*b Viktor Pocajtb and Gordana Ušćumlićb

A novel strategy for the prediction of the transition temperature of bent-core liquid crystals (LCs) based on

the combination of multi filter feature selection and group method of data handling (GMDH) type neural

networks is reported. An entire set of 243 compounds was randomly divided into a training set of 207

compounds and a test set of 36 compounds. Descriptors were selected from a pool of 2D, and two

pools of 2D and 3D ones, optimized by molecular mechanics (MM) and semi-empirical (SE) method. The

reduction of the pool of descriptors was performed using multi filters based on chi square and v-WSH

algorithm, while the final subset selection was performed by GMDH algorithm during the learning

process. The obtained 2D, MM and SE GMDH models have 11, 13 and 16 descriptors, respectively, and

demonstrate good generalization and predictive ability (R2 ¼ 0.92). The final models were subjected to

a randomization test for validation purpose. Those models appear to be not only suitable for prediction,

but they also allow the identification of key structural features that alter the transition temperature of

bent-core LCs.
Introduction

Liquid crystal (LC) molecules share important properties of
both liquids and crystals: they ow like a liquid and at the same
time maintain some degree of positional and/or orientational
order.1 As such, they have unique physicochemical properties
and consequently wide application in various elds.2,3 But, in
order to be used in any particular technological application,
thermotropic LCs have to possess stable mesophases in a suit-
able temperature range.4 The upper temperature limit (i.e.
transition temperature) at which mesophase exists can be used
as a measure of its stability.5

Quantitative structure–property relationship (QSPR) meth-
odology has been oen used to predict various physical and
chemical properties of LCs.4–10 Articial neural networks
(ANNs), as a nonlinear modelling approach, are mostly used for
this purpose, due to complex relationships exist between
a property of molecule and its structure.6 Among rst, Johnson
and Jurs4 have shown that the clearing temperatures of a series
of structurally similar rod-like LCs can be successfully predicted
using ANNs. In a recent study, Antanasijević et al. have used
QSPR method in combination with ANNs, decision trees (DTs)
and MARS (multivariate adaptive regression splines) technique
for the prediction of liquid crystallinity,10 and with DT and
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MARS for the estimation of the clearing temperatures7 of ve-
ring bent-core molecules.

Feature selection is an important step in QSPR development,
concerning that a large number of molecular descriptors (up to
two thousands) can be calculated for each structure.11 In general,
a large pool of descriptors can be reduced using lter, wrapper or
embedded feature selectionmethods. Filter techniques eliminate
irrelevant and redundant features by checking data consistency,12

while wrappers evaluate the usefulness of an input set during the
model training.13 Embedded methods perform variable selection
in the process of training and they are specic to given learning
machines.14 Since lters work much faster, they are suitable for
large datasets, while wrapper and embedded methods achieve
excellent accuracy at the cost of signicant time.15 In recent years,
hybrid approaches are proposed in order to combine the advan-
tages of both methods.16,17

It is generally more convenient to have a linear or polynomial
QSPR model that enables analysis of particular descriptor
contribution and therefore group method of data handling
(GMDH) type neural networks can be used as an alternative to
standard ANNs, which operates like a ‘black box’ model.18

GMDH is a specic type of feed-forward ANNs, which algo-
rithm was rstly introduced by Ivakhnenko19 and enhanced by
others.20 The GMDH-type ANNs, oen referred to as polynomial
neural networks, are based on the identication of the func-
tional structure of a model, which is extracted from the
empirical data by polynomial functions.21 Therefore,
a nonphysical model, with high accuracy and simpler structure
than a corresponding physical model, can be obtained by
This journal is © The Royal Society of Chemistry 2016
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applying GMDH on complex (non-linear) input–output rela-
tionships, especially if the available dataset is small and noisy
inputs are present.22

In the last decade, GMDH has been used to solve complex
engineering problems and to identify the behaviour of nonlinear
systems inmany elds, such as control engineering, datamining,
process optimization, and medical image recognition and diag-
nosis (see studies23–26 and reference cited therein).

In this study, we report the development of QSPR model
using GMDH-type neural network for the prediction of the
transition temperatures of ve-ring bent-core LCs. Although
GMDH operates as an embedded feature selection method, chi
square ranking and correlation lter were applied in the pre-
processing step in order to reduce the pool of descriptors and
to enhance the descriptor selection process. To date, this is the
rst application of GMDH-type neural networks for the predic-
tion of LC properties.
Computational methods
Dataset

A recently published dataset (see Table S1 in the supplemental
material of paper by Antanasijević et al.7), which contains
transition temperature values for 243 bent-core LC compounds,
was utilized for the development and testing of GMDH models.
In this dataset the transition temperatures were in the range
from 352.15 to 458.15 K. The dataset consisted of structurally
diverse ve-ring aromatic compounds in the terms of the type of
linkage groups and their orientation, substituents on the rings,
and the type and length of terminal chains. The same subset of
36 compounds was used for model testing, in order to allow
direct comparison with the models created in the previous
study.7
Fig. 1 (a) Strategies for the selection of descriptors (b) the number of
descriptors selected in each step. CF90 and CF99 stand for correlation
filter with r cut-off equal to 0.90 and 0.99, respectively.
Structure optimization and descriptor generation

The molecular structures were rstly sketched in ChemDraw
soware, and then initially optimized using MMFF94 optimi-
zation routine (ChemAxon, Marvin27). The nal geometry of the
minimum energy conformation was obtained using the semi-
empirical PM3 method (Polak–Ribiere algorithm) using
HyperChem8.0 program.28 The structures were optimized at the
restricted Hartree–Fock level until the RMS gradient was 0.01
kcal Å�1 mol�1.

In order to check the accuracy of the applied optimisation
methods, the obtained structures were compared with available
optimized structures from DFT studies. For example, the DFT
study29 for the compound 161 indicates that bending angle (a),
which determines molecular packing and therefore its transi-
tion temperature, has the value of 121�. The a of 125� and 126�

obtained in this study for the same compound by MM and SE
method, respectively, is in the fair agreement with the above-
mentioned DFT value.

Subsequently, the calculation of molecular descriptors was
performed using PaDEL-Descriptor soware.30 Aer the elimi-
nation of descriptors with constant and near constant values, the
This journal is © The Royal Society of Chemistry 2016
pool of 501 constitutional, topological, geometric, electrostatic
and hybrid descriptors (360 2D and 141 3D) was remained.
Descriptor selection

The feature selection was performed as presented in Fig. 1a:
(a) The A models were created using correlation lter (CF) in

order to eliminate collinear descriptors (r > 0.90), aer which
GMHD is used to select the best subset of descriptors during
learning (embedded feature selection);

(b) The B models were created using multi lter approach
that combines a chi square (CS) ranking in the rst step with
a collinear based elimination of descriptors in the second step,
aer which, in the third step, GMHD was used as embedded
method. Prior the use of CS, near constant and highly correlated
(r > 0.99) descriptors were removed in order to reduce redun-
dant and non-useful information.31

The V-WSP variable reduction algorithm, proposed by Bal-
labio et al.,32 was used as correlation lter. This lter is an
adaptation of the WSP (Wootton, Sergent, Phan-Tan-Luu's)
algorithm, which was developed for space-lling designs of
experiments and has been modied with the aim to select
a representative set of variables instead of points.32 A Java
implementation of this algorithm (the V-WSP tool) by Ambure
et al.33 has been used in this study.

The CS is a supervised univariate feature selection method
that ranks the molecular descriptors according to their statis-
tical association with the modelled output, where larger CS
values imply more signicant descriptors. A CS feature selection
implementation in Statistica34 was used, and because the CS is
RSC Adv., 2016, 6, 99676–99684 | 99677
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an association measure for categorical variables, the soware's
default number of bins (ten) was used for the chi square dis-
cretizing of molecular descriptors.35

The nal step in the both feature selection approaches is the
application of GMDH, which has been proved to be effective
with neural network classiers.12

GMDH-type neural network

The GMDH algorithm, details of which can be found in litera-
ture,36 differs from standard regression analysis and it is “similar
to the way in which nature evolves by natural selection”.37 There is
a variety of supervised GMDH algorithms:38 combinatorial algo-
rithm, multilayered iterative algorithm (MIA), harmonical algo-
rithm, objective system analysis, etc. Also, several enhancements
related to the determination of structure, parameters and
uncertainty of the GMDH models have been proposed in the
recent years,39,40 in order to increase their effectiveness for certain
tasks. For example, unscented Kalman lter approach was
applied for the design of GMDH model and determination of its
Fig. 2 A typical architecture of GMDH-type neural network.

Fig. 3 (a) Cross testing results (RCT
2) with datasets containing different nu

first layer of GMDH network depending on the number of inputs (Ni).

99678 | RSC Adv., 2016, 6, 99676–99684
uncertainty in order to obtain robust sensor and actuator for fault
detection and diagnosis.41,42

In this study, the MIA variant of GMDH that is implemented
in NeuroShell 2 (ref. 43) was used. This is a self-organizing
algorithm that uses the best polynomial terms (so-called
“survivors”) from the rst layer (eqn (1) and (2)) obtained by
regressing pair of inputs (e.g. x1 and x2), as arguments in the
next layer (eqn (3)).

The rst layer

y1 ¼ a10 + a11x1 + a12x2 + a13x1x2 (1)

y2 ¼ a20 + a21x3 + a22x4 + a23x3x4 (2)

The next layer

z1 ¼ b0 + b1y1 + b2y2 + b3y1y2 (3)

As can be observed, the original inputs can be propagated
thought the network without a construction of their polynomial
form, which can reduce overall model complexity.

The layers were built until a certain stopping criterion was
met. Over-tting can be prevented using cross-validation or
a statistical metric that penalize model complexity. In this
study, the prediction squared error (PSE), introduced by Bar-
ron,44 was applied as a stopping criterion, see eqn (4), where To
is the observed temperature, Tp is predicted temperature, so is
output variance, k is the number of model parameters and Np is
the number of training data points.

PSE ¼
X�

To � Tp

�2
X

ðToÞ2
þ kso

Np

(4)

In comparison with standard neural networks, the GMDH
architecture (Fig. 2) is being fully adjusted both structurally and
parametrically during training.45 It is composed of an input
layer, several hidden layers and an output layer. The number of
input neurons is equal to the number of inputs, while each
mbers of inputs (b) the maximum number of polynomials (Nmax
L1S ) in the

This journal is © The Royal Society of Chemistry 2016
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hidden layer consists of one or more neurons. Each hidden
neuron is actually the resultant network that processes two
inputs and generate one polynomial term.

The input layer scales the descriptor values, while the rst
hidden layer performs the selection of descriptors. In the
second, third and etc. hidden layers, higher order polynomials
are being built. Since the number of survivors in the rst hidden
layer affects the diversity of nal polynomial model and the
quality of choice of important variables, the optimal maximum
number of survivors (Nmax

L1S ) that are propagated to the second
hidden layer needs to be dened.

Nmax
L1S depends on the complexity of the problem, as well on

the number of inputs presented to the GMDH. In order to
empirically determine the optimal value of Nmax

L1S in respect to
the number of inputs, initial simulations with 2D descriptors
were performed. The soware that was used limits the value of
Nmax
L1S to 100, while in the case where the number of inputs (Ni) is

lower than 50, the Nmax
L1S is limited to twice Ni. The results ob-

tained on cross-testing (with two datasets where each contained
20% of the original dataset) and Nmax

L1S dependence of Ni are
presented in Fig. 3. As can be observed, the dependence of
Nmax
L1S on Ni decreases with the increase of Ni, and can be

approximated with linear/constant relationships in four
regions.

Other GMDH parameters that need to be dened prior to the
training are the maximum number of descriptors in poly-
nomials term, which was set to 4 for linear and to 3 for all other
terms, and degree of polynomials, which was set to 3.
Results and discussion
The comparison of models

Both feature selection approaches were performed separately
for each pool of descriptors (Fig. 1b). The number of CS ranked
descriptors (150 and 200) that were to be further used was set to
Fig. 4 Taylor diagram for the A and B GMDH models.

This journal is © The Royal Society of Chemistry 2016
be about 50% higher that the number of descriptors that have
remained aer the application of correlation lter in the case of
A models. The lowest ranked descriptor selected by GMDH in
the case of 2D model had the rank of 136, while in the case of
MM and SE the rank was 195 and 168, respectively. All three B
models used lower number of descriptors in comparison with
the corresponding A models.

The obtained A and B models were evaluated using Taylor
diagram (Fig. 4). Taylor diagrams46 provide a concise statistical
summary of how well different models perform in the terms of
their correlation (r), centered root mean square error (RMSE),
and amplitude of their variations (standard deviations). Those
three metrics are plotted simultaneously in the two-
dimensional space using the following equation:

E2 ¼ so
2 + sp

2 � 2so
2sp

2r (5)

where E is the centered RMSE (eqn (6)), so and sp are standard
deviations of observed and predicted values, respectively.

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

��
Tpi � Tp

�� ðToi � ToÞ
�2

vuut (6)

In Fig. 4, it can be easily observed that the B models have
lower error (i.e. centered RMSE) and higher correlation in
comparison with the A models. Therefore, the applied multi
ltered feature selection provides more accurate GMDHmodels
than those obtained using the single correlation lter.

Regarding the B models, it can be seen that the models 2D
and MM have almost the same centered RMSE and correlation,
while the SE model has the standard deviation very similar to
the observed one. In the next section, a detailed evaluation of
the performance of B models is presented.

The GMDH parameters and performance metrics for B
models are summarized in Table 1. The pool of 2D descriptors
RSC Adv., 2016, 6, 99676–99684 | 99679
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Table 1 GMDH parameters and the performance of B models

Pool of
descriptors Type 2D

MM
(2 & 3D)

SE
(2 & 3D)

Ni 70 104 101
GMDH
parameters

Nmax
L1S 62 66 66

NL
a 8 8 8

Descriptors
usedb

(pool
reduction)

11 (84%) 13 (88%) 16 (84%)

Performance
metrics

Adjusted R2 0.920 0.922 0.916
F 401.7 414.7 372.9
RMSE (K) 6.66 6.52 6.87
Absolute
error (K)

Min. 0.021 0.028 0.006
Mean 5.15 4.89 5.02
Max. 19.4 15.6 18.5

a Number of hidden layers. b To access descriptors see Table 2.

Fig. 5 Y-Randomization results.
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has been reduced to 19% of its initial size (from 360 to 70) aer
the multi lter feature selection was applied. A similar reduc-
tion of approximately 80% was obtained for the 2 & 3D models
as well. All three models have the same number of hidden
layers, but use a different number of descriptors which seems to
correspond with the size of initial pool. The adjusted R2 (0.92)
and RMSE (6.68 � 0.14 K) demonstrate that the generalization
of all three QSPR models is statistically stable and that the
models t the test data well. The MM model performed slightly
better, with the RMSE of 6.52 K, which is an improvement of 0.9
K in comparison with the results obtained in previous study7

using the MARS technique.
The Y-randomization was performed as an additional valida-

tion step in order to obtain an estimate of chance correlation.47–52

The measured transition temperatures were shuffled by 10
random exchanges in their positions for each model, while the
descriptors matrix has remained unchanged. In order to include
the “selection bias”, as suggested by Rücker et al.,53 randomized
GMDH models were created using the same pool of descriptors
and network parameters as the real ones. The risk of chance
correlation was quantied by the value of Rp

2 that is calculated
from the eqn (7) in which Rr

2 describes the training performance
of randomized models, while R2 stands for real QSPR models.54

For a QSPRmodel having Rp
2 > 0.5, it may be considered that the

model has not been obtained by chance alone.55

Rp
2 ¼ R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Rr

2

q
(7)

For all models, the Rp
2 value was higher than 0.5 (Fig. 5),

which indicates that they have passed the randomization test.
Also, the real GMDH models have R2 higher than the corre-

sponding randomized models by more than 3 standard devia-
tions (SD) (16 SD for 2D, 8 SD for MM and 11 SD for SE), which
conrms their statistical signicance at the 0.1% level.53

As expected, the randomization results have shown that the
risk of randomly obtained correlation increases with the size of
pool of descriptors. Therefore, GMDH should be applied to the
lowest possible pool of descriptors, and results suggest that the
99680 | RSC Adv., 2016, 6, 99676–99684
critical value is 115 descriptors (Fig. 5). On the other hand, it
should be noted that the randomly correlated GMDH models
can be easily identied, since all of them have more than 30
hidden layers and very complex polynomial equations.

The correlation between the experimental and predicted
transition temperatures is shown graphically in Fig. 6a, where
the outliers are also labelled. As can be seen from Fig. 6a, the
compound 40 is an outlier in all three models, while the
compound 42, which is from the same series, is an outlier only
in the case of 2D model, but its transition temperature was also
predicted with a higher error by both 2 & 3D models.
Compounds 40 and 42 are from the series 38–42, which is
structurally very similar to the series 29–37, the only difference
being the orientation of the azomethine group (Fig. 6b). This
small structural variation signicantly alters the transition
temperatures, i.e. corresponding homologues differ up to 30 K.
This effect has not been captured by the selected descriptors,
thus the predicted transition temperatures of those compounds
correspond to their homologues from the series 29–37, which
was more prevalent in the training set.

Regarding the compound 50, it exhibits an unexpectedly
high transition temperature in comparison with its homologues
from the same series (Fig. 6c), while in the case of compound 87
no obvious reason can be found for it to be an outlier.
The interpretation of descriptors

The eqn (8)–(10) were obtained using GMDH method with the
pool of descriptors reduced by multi lter feature selection
approach. In those equations, the descriptors are labelled
according to the group they belong (Table 2), while in addition
the 3D ones are marked with bold letters.

(8)
This journal is © The Royal Society of Chemistry 2016
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Fig. 6 (a) Measured vs. predicted plots with outliers. Solid lines represent the line of slope 1, while dashed lines indicate 3 SD error, (b) structure of
outliers from the series 38–42, (c) structure and transition temperature of compounds from the series 50–58.

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 99676–99684 | 99681
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(9)

(10)

The descriptors used and their interactions in polynomial
terms are depicted in Fig. 7, in order to simplify the analysis of
their contribution. The 2D model (Fig. 7a) uses 11 descriptors
from 6 different groups, the most abundant being the molecular
distance edge descriptors, which are topological descriptors that
describe structural differences between compounds.56 The MM
model (Fig. 7b) utilizes 13 descriptors from 10 groups, three of
Table 2 List of descriptors with labels and short description

Group Label (Eq. symbol) Description

ALOGP AlogP (Xa) Ghose-Crippen LogKow
Barysz matrix SM1_Dzi (Xb1

) Spectral moment of order 1 we
SM1_DzZ (Xb2

) Spectral moment of order 1 we
VR2_Dzs (Xb3

) Normalized Randic-like eigenve
VE1_Dzp (Xb4

) Coefficient sum of the last eige
BCUTa BCUTp-1l (Xc) High lowest polarizability weig
Carbon types C3SP2 (Xd1

) Doubly bound carbon bound to
C2SP2 (Xd2

) Doubly bound carbon bound to
Chi path cluster VPC-4 (Xe) Valence path cluster, order 4
Information content TIC5 (Xf1) Total information content inde

CIC1 (Xf2) Complementary information co
MIC0 (Xf3) Modied information content i

Molecular
distance edge

MDEN-22 (Xg1) Molecular distance edge betwe
MDEO-11 (Xg2) Molecular distance edge betwe
MDEO-12 (Xg3) Molecular distance edge betwe
MDEC-11 (Xg4) Molecular distance edge betwe

MLFERb MLFER_BH (Xh) Overall or summation solute h
Path count piPC3 (Xi1) Conventional bond order ID nu

MPC9 (Xi2) Molecular path count of order
Topological charge GGI5 (Xj1) Topological charge index of ord

GGI8 (Xj2) Topological charge index of ord
CPSAc RPCS (Xk1) Relative positive charge surface

PNSA-1 (Xk2) Partial negative surface area (su
Gravitational index GRAV-4 (Xl) Gravitational index of all pairs
WHIMd Du (Xm1

) D total accessibility index (unw
E1v (Xm2

) The rst component accessibil

a Burden – CAS – University of Texas eigenvalue. b Molecular linear free ene
molecular.

99682 | RSC Adv., 2016, 6, 99676–99684
them being 3D descriptors. Similar can be observed in the case of
SE model (Fig. 7c): 16 descriptors were selected from 10 groups,
whereby three of them are 3D descriptors. A signicant number
of descriptors (nine) are shared between SE and MM model,
while the same ve 2D descriptors are common for all
three models. These ve descriptors (MDEO-11, MDEN-22,
MLFER_BH, GGI5 and GGI8) can be found in the standalone
terms of different degrees and in combined polynomial terms in
which they describe synergetic effect on transition temperature.

Concerning the complexity of GMDH equations, it should be
emphasized that for the majority of descriptors the assessment
of their contribution can be performed only if synergetic effect
is taken into account.

Also, about half of the descriptors are based on graph theory
and similar mathematics, and therefore are difficult to inter-
pret.57 In order to decode the impact of descriptors on the
transition temperature, GMDH models need to be split on
several sub-equations according to the descriptors interactions
(coloured terms in eqn (8)–(10)).

Molecular distance edge (MDE) descriptors can be directly
linked to themolecular structure. TheMDEO-11 gives the distance
between all primary oxygen atoms, while the MDEO-12 accounts
for the distance between all primary and secondary oxygen atoms.
Concerning that in this study MDEO-11 and MDEO-12 describe
a similar structural feature (mainly the number of ester groups
and their position and orientation), MDEO-11 was used in all
three models, while MDEO-12 was present only in the 2D model
ighted by rst ionization potential
ighted by atomic number
ctor-based index weighted by I-state
nvector weighted by polarizabilities
hted BCUTS
three other carbons
two other carbons

x (neighborhood symmetry of 5-order)
ntent index (neighborhood sym. of 1-order)
ndex (neighborhood symmetry of 0-order)
en all secondary nitrogens
en all primary oxygens
en all primary and secondary oxygens
en all primary carbons
ydrogen bond basicity
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Fig. 7 Descriptors and their interactions: (a) 2D, (b) MM and (c) SE
model.
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(in the combined polynomial term with MDEO-11). From eqn (9)
and (10) it can be observed that MDEO-11 individually contributes
negatively to the transition temperatures of LCs, while in the 2D
model (eqn (8)) its synergetic effect with MDEO-12 is prevalent,
thus this negative inuence is determined by the position of
primary and secondary oxygen atoms.
This journal is © The Royal Society of Chemistry 2016
In this study, MDEN-22 encodes information about the
number and position of azo and azomethine groups, and it also
can be found in all three models, whereby it affects transition
temperature synergistically with several other descriptors
(topological charge, carbon types and MLFER). Since the
distribution of charge determines the nature of intermolecular
forces,58 the selected topological charge descriptors (GGI5 and
GGI8) suggest that the net charge transfer between ve and
eight atoms, among others, mostly affects the transition
temperature. Carbon type descriptors, namely C3SP2 and
C2SP2, indicate the type of linkage groups and presence of
substituents on the phenyl rings. MLFER_BH is a measure of all
hydrogen bond acceptor sites of a molecule, thus it describes
the ability of molecule to form hydrogen bonds, which has
inuence on the transition temperature.

MDEC-11 descriptor affects transition temperature synergisti-
cally with Baryszmatrix spectralmoment descriptor. It decodes the
inuence of the size of molecule on the transition temperature.

GRAV-4 is the only 3D descriptor that is common for both 2 &
3Dmodels, and it synergistically affects the transition temperature
with BCUT, CPSA and path count descriptors. The gravitational
index simultaneously gives the atomic masses and their distribu-
tion in amolecule, and it was found that it reectsmost adequately
molecular size-dependent bulk effects on the boiling points.59

Conclusion

In this study, nonlinear GMDH-type QSPR models were devel-
oped to predict transition temperatures for a dataset of 243 ve-
ring bent-core LC compounds, using multi-lter feature selec-
tion approach based on chi square and v-WSH algorithm.
Descriptors were selected from a pool of 2D, and two pools of 2D
and 3D ones, optimized by molecular mechanics (MM) and
semi-empirical (SE) method. The nal subset selection was
performed using GMDH algorithm during the learning process.
The models were compared using Taylor diagram, and
a detailed evaluation of their performance (external testing,
outlier analysis and randomization) was performed. Although
all models demonstrated good accuracy (R2¼ 0.92), the MM has
showed slightly better performance, with a RMSE of 6.52 K for
the external test set. Concerning that GMDH-type neural
network gives polynomial equation that describe relationship
between output and selected inputs, the obtained models have
allowed the identication of key structural features that alter
the transition temperature of ve ring bent-core LCs.
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53 C. Rücker, G. Rücker and M. Meringer, J. Chem. Inf. Model.,
2007, 47, 2345–2357.

54 M. Nekoeinia, S. Yousenejad and A. Abdollahi-Dezaki, Ind.
Eng. Chem. Res., 2015, 54, 12682–12689.

55 K. Roy, S. Kar and R. N. Das, in A Primer on QSAR/QSPR
Modeling, Springer, New York, 2015, pp. 37–59.

56 L. Jiao, X. Wang, S. Bing, Z. Xue and H. Li, RSC Adv., 2015, 5,
6617–6624.

57 K. Varmuza, P. Filzmoser and M. Dehmer, Comput. Struct.
Biotechnol. J., 2013, 5, e201302007.

58 J. Galvez, R. Garcia, M. T. Salabert and R. Soler, J. Chem. Inf.
Comput. Sci., 1994, 34, 520–525.

59 A. R. Katritzky, L. Mu, V. S. Lobanov, M. Karelson and
V. Gaines, J. Phys. Chem., 1996, 100, 10400–10407.
This journal is © The Royal Society of Chemistry 2016

https://doi.org/10.1039/c6ra15056j

	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals

	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals

	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals
	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals


