J. Chem. Thermodynamics 109 (2017) 137-154

Contents lists available at ScienceDirect

J. Chem. Thermodynamics

journal homepage: www.elsevier.com/locate/jct

Excess molar volumes and viscosity behaviour of binary mixtures of aniline/or *N*,*N*-dimethylaniline with imidazolium ionic liquids having triflate or bistriflamide anion

Danijela Soldatović^a, Jelena Vuksanović^b, Ivona Radović^b, Zoran Višak^{c,*}, Mirjana Kijevčanin^{b,*}

^a Public Company Nuclear Facilities of Serbia, 12-14 Mike Petrovića Alasa, Vinča, 11351 Belgrade, Serbia
^b Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
^c School of Engineering and Applied Sciences, Aston University, Birmingham B4 7ET, United Kingdom

ARTICLE INFO

Article history: Received 12 July 2016 Received in revised form 7 February 2017 Accepted 8 February 2017 Available online 14 February 2017

Keywords: Density Viscosity Excess molar Gibbs free energy Aniline N,N-dimethylaniline Ionic liquids

1. Introduction

One of the most exact definitions of ionic liquids [1] defines them as ionic compounds (salts) that have glass transition or normal melting points below 100 °C. They possess two main characteristics that qualify them as promising alternatives to classical (toxic) solvents: (i) negligible vapour pressures in a wide temperature range [2,3] thus providing low atmospheric pollution and (ii) diverse solvent power – they dissolve well a number of both polar and non-polar solutes, as it was reported [4] and reviewed in literature [5,6]. Therefore, ionic liquids found their applications as separation/extraction solvents for diverse solutes: for amino acids separation and purification [7–9], carbohydrate separation [10], for extraction of proteins [11], phenols [12], azo dyes [13], or for removal of free fatty acids [14].

On the other hand, ionic liquids reveal very interesting fundamental features: (i) they have specific structure represented by polar (ionic) and non-polar (aliphatic) domains [4], which is crucial for the aforementioned diverse solvent power and (ii) they allow a variety of interactions in their mixtures: dispersion forces between

ABSTRACT

In this study, densities and viscosities of four binary systems {aniline/*N*,*N*-dimethylaniline + 1-butyl-3-methylimidazolium triflate ([bmim][OTf])} and {aniline/*N*,*N*-dimethylaniline + 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][NTf₂])} were measured at atmospheric pressure and within the temperature range *T* = (288.15 to 333.15) K. Excess molar volumes V^E , viscosity deviations $\Delta \eta$ and excess molar Gibbs energies of activation of viscous flow ΔG^{*E} were calculated and the results were fitted to a Redlich-Kister polynomial equation. Also, enthalpic and entropic parts of the ΔG^{*E} function were determined, at the same composition, for three studied systems that exhibit complete miscibility, since {aniline + [bmim][OTf]} is a partially miscible system. Considering the calculated thermodynamic properties, molecular interactions in the investigated binary systems were analysed and are discussed.

© 2017 Elsevier Ltd.

aliphatic chains present in the mixtures of imidazolium ionic liquids with alcohols [15]; strong interactions such as ionic (Coulomb forces [16] and ion-dipole interactions [17]), hydrogen bonds [15,18–20], and specific interactions with the aromatic compounds [21–23].

Thus, following the aforementioned attractiveness and importance of ionic liquids and their mixtures, we have carried out studies that include phase behaviour of ionic liquid mixtures [24–26] or their thermophysical properties [27]. In this work, as a continuation of these efforts, densities and viscosities have been measured for four binary mixtures of important toxic solvents aniline or N,Ndimethylaniline with two imidazolium ionic liquids based on triflate ([OTf]⁻) or bistriflamide ([NTf₂]⁻) anion: {aniline/N,N-dime thylaniline+1-butyl-3-methylimidazolium triflate([bmim][OTf]] and {aniline/*N*,*N*-dimethylaniline + 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][NTf₂])}. The measurements were carried out at ten temperatures ranging from 288.15 K to 333.15 K with a step of 5 K and at atmospheric pressure. From these experimental results, excess molar volumes V^{E} , deviations in viscosity $\Delta \eta$ and excess molar Gibbs energies of activation of viscous flow ΔG^{*E} were calculated and correlated by the Redlich-Kister equation [28]. Considering these calculated properties, the molecular interactions existing between the aniline and N, *N*-dimethylaniline with ILs were analysed and are discussed.

^{*} Corresponding authors.

E-mail addresses: z.visak@aston.ac.uk (Z. Višak), mirjana@tmf.bg.ac.rs (M. Kijevčanin).

2. Experimental

2.1. Chemicals

The list of studied chemicals, their suppliers and stated purities is presented in Table 1. All the chemicals were kept in dark bottles in an inert atmosphere and degassed by an ultrasonic bath before sample preparation. Ionic liquids were already purified of volatile solvents and dried using the usual vacuuming procedure applied in our earlier studies [24–27]. In order to check the purity of the pure components, their experimental values of densities ρ and viscosities η were compared with the respective literature values at several temperatures (Table 2). A more thorough comparison of the experimental values for density and viscosity with the available literature is given graphically in Figs. 1 and 2. From this detailed analysis the average relative deviations ARD (ARD = 100- $(Y_{exp} - Y_{cal})/(n \cdot Yexp)$, where *n* is the total number of literature data points for each property Y and each compound), were calculated. The highest ARD in density is 0.1% and in viscosity 3.22%. Thus, the agreement with literature is rather good for both studied properties and no further purification was applied.

2.2. Apparatus and procedures

Experimental measurements of density ρ were performed by an Anton Paar DMA 5000 digital vibrating U-tube densimeter. Viscosities η of the pure substances and the corresponding binary mixtures were measured using a digital Stabinger viscometer (model SVM 3000/G2). Detailed description of both apparatus can be found in our previous work [37].

All the mixtures were prepared gravimetrically using a Mettler AG 204 balance with a precision 1×10^{-7} kg. The uncertainty of the mole fraction calculation was less than $\pm 1\times 10^{-4}.$ Densities and viscosities were measured with the repeatability of $\pm 1 \times 10^{-2}$ -

Table 1

Sample description.

kg·m ⁻³ and $\pm 3 \times 10^{-3}$ mPa·s, respectively. However, average stan-
dard uncertainty of the measured densities was estimated to be
1 kg·m ⁻³ taking into account the stated purity of chemicals as sug-
gested in literature [38]. For the viscosity measurements of the
pure components average standard uncertainty was 3×10^{-3}
mPass for less viscous fluids and 1.2 mPass for those of high viscos-
ity, assessed using the following equation:

$$\mathbf{u}(\eta) = \left[\frac{1}{n(n-1)} \sum_{1=1}^{n} (\eta_{exp,i} - \bar{\eta}_{lit,i})^2\right]^{1/2}$$
(1)

In the equation above $\eta_{exp,i}$ and $\bar{\eta}_{lit,i}$ are our measured viscosity for the pure compounds and the average experimental viscosity obtained from the reported experimental values in literature for a given isotherm and given compound, respectively; *n* is the number of experimental points (in this case actually the number of isotherms).

For the mixture measurements the average standard uncertainties calculated using Eq. (1) applied on our measurements of both density and viscosity were lower than the respective values for the pure components given above. The relative standard uncertainty 2.2% was accepted for the mixture properties.

3. Results

The experimental values of densities ρ and viscosities η and the calculated values of the excess molar volumes V^E, viscosity deviations $\Delta \eta$ and excess molar Gibbs energies of activation of viscous flow ΔG^{*E} of four binary mixtures in temperature range T =(288.15 to 333.15) K and at atmospheric pressure are reported in Table 3. However, the system aniline + [bmim][OTf] was already investigated in literature [80,81] revealing partial miscibility. Consequently, following the liquid-liquid miscibility data from reference [80] all the measurements for this system were performed

Component full name	Abbreviation used in the text	Source	Initial mass fraction purity
Aniline		Sigma-Aldrich	≥0.995
N,N-dimethylaniline		Merck	≥0.99
1-Butyl-3-methylimidazolium triflate	[bmim][OTf]	IOLITEC	0.99
1-Butyl-3-methylimidazolium bis	[bmim][NTf ₂]	IOLITEC	0.99
(trifluoromethylsulfonyl)imide			

Table	2
Table	~

Densities ρ and viscosities η of the pure components at temperature T and at atmospheric pressure (0.1 MPa).^a

Component	T/K	$10^{-3} \rho/\text{kg} \cdot \text{m}^{-3}$		η/mPa·s	
		exp.	lit.	exp.	lit.
Aniline	293.15	1.0217	1.021747 ^b	4.407	4.404 ^c
	298.15	1.0174	1.017404 ^b	3.737	3.773 ^d
	303.15	1.0130	1.013152 ^b	3.197	3.190 ^e
N,N-dimethylaniline	293.15	0.9565	0.956033 ^f	1.415	1.373 ^f
	298.15	0.9523	0.951946 ^f	1.302	1.289 ^f
[bmim][OTf]	298.15	1.2991	1.29868 ^g	80.10	
[bmim][NTf ₂]	293.15	1.4398	1.43927 ^h	61.47	62.08 ^h
	298.15	1.4350	1.43430 ^h	49.11	50.05 ^h
	303.15	1.4302	1.42940 ^h	39.95	41.24 ^h

Standard uncertainties u are: u(T) = 0.01 K; u(p) = 0.005 MPa; $u(\rho) = 1$ kg·m⁻³, and relative standard uncertainty $u_r(\eta) = 2.2\%$, with a level of confidence of 68%.

^b Alonso et al. [29].

Tsierkezos et al. [30].

^d Katz et al. [31].

^e Kharat and Nikam [32].

Master and Malek [33].

Arce et al. [34]. ^h Vraneš et al. [35].

ⁱ Dominguez et al. [36].

Fig. 1. Comparison of the current experimental density values (\blacksquare) vs. temperature with literature values for pure: (a) aniline- (\bigcirc) Vogel et al. [39]; (\bigtriangledown) Sumer et al. [40]; (\blacklozenge) Katz et al. [41]; (\square) Kumar et al. [42]; (+) Almasi et al. [43]; (\divideontimes) Costello et al. [44]; (\bigstar) MacNeil et al. [45]; (\bigcirc) Alonso et al. [29]; (b) *N*,*N*-dimethylaniline – (\bigcirc) Costello et al. [44]; (\bigstar) Vogel et al. [39]; (\bigcirc) Oskoei et al. [46]; (\diamondsuit) Saleh et al. [47]; (\square) Pandiyan et al. [48]; (+) Katz et al. [41]; (\divideontimes) Kumar et al. [42]; (\bigstar) Radwan et al. [49]; (\checkmark) Kondaiah et al. [50]; (\bigstar) MacNeil et al. [45]; (\diamondsuit) Master and Malek [33]; (C) Dimin][OTT] – (\blacktriangle) Vercher et al. [51]; (\bigtriangledown) Montalbán et al. [52]; (\diamondsuit) Soriano et al. [53]; (\square) Tokuda et al. [54]; (+) Gardas et al. [55]; (\divideontimes) Fredlake et al. [57]; (\bigstar) Shamsipur et al. [58]; (\checkmark) Mondo et al. [59]; (\diamondsuit) Batista et al. [60]; (\bigstar) McHale et al. [61]; (\bigstar) Acceved et al. [65]; (\bigstar) Hamidova et al. [62]; (\bigstar) Hamidova et al. [63]; (\bigstar) Tariq et al. [70]; (\checkmark) Jacquemin et al. [71]; (\bigstar) Montalbán et al. [52]; (\diamondsuit) Zhang et al. [66]; (+) Currás et al. [67]; (\bigstar) Hamidova et al. [69]; (\bigstar) Haring et al. [76]; (\bigstar) Salgado et al. [77]; (\bigstar) Noralbán et al. [52]; (\diamondsuit) Zhang et al. [72]; (\circledast) Tariq et al. [73]; (\bigstar) Salgado et al. [71]; (\bigstar) Montalbán et al. [52]; (\diamondsuit) Zhang et al. [66]; (\bigstar) Tariq et al. [76]; (\bigstar) Salgado et al. [77]; (\bigstar) Noralbán et al. [52]; (\diamondsuit) Zhang et al. [72]; (\bigstar) Tariq et al. [73]; (\bigstar) Salgado et al. [77]; (\bigstar) Noralbán et al. [52]; (\diamondsuit) Zhang et al. [66]; (\bigstar) Tariq et al. [76]; (\bigstar) Salgado et al. [77]; (\bigstar) Noralbán et al. [52]; (\diamondsuit) Zhang et al. [72]; (\bigstar) Tariq et al. [76]; (\bigstar) Salgado et al. [77]; (\bigstar) Noralbán et al. [52]; (\diamondsuit) Zhang et al. [72]; (\bigstar) Tariq et al. [73]; (\bigstar) Solgado et al. [77]; (\bigstar) Noralbán et al. [52]; (\diamondsuit) Zhang et al. [72]; (\bigstar) Tariq et al. [73]; (\bigstar) Salgado et al. [77]; (\bigstar) Noralbán et al. [52]; (\diamondsuit) Zhang et al. [72]; (\bigstar) Tariq et al.

only in the miscible region but the results were not presented graphically but only in the table. Also, for the system {N,N-dimethylaniline + [bmim][OTf]}, irregularity in IL rich concentration range is observed, and in order to investigate actual mixture's behaviour, additional measurements were conducted in composition region close to 0.1 N,N-dimethylaniline mole fraction. The additional results confirmed this density behaviour in the IL rich region. The graphical representation is given in the Fig. S1.

The excess molar volumes V^{E} were calculated using the experimental densities ρ of binary mixtures and the pure components ρ_i from the equation:

$$V^{E} = \sum_{i=1}^{N} x_{i} M_{i} \left[\left(\frac{1}{\rho} \right) - \left(\frac{1}{\rho_{i}} \right) \right]$$
(2)

where N equals the number of components, x_i is the mole fraction of component i in mixture and M_i is the molar mass of component i.

The viscosity deviations $\Delta \eta$ were calculated from the viscosity of the pure component η_i and mixture η , according to the equation:

$$\Delta \eta = \eta - \sum_{i=1}^{N} x_i \eta_i \tag{3}$$

Excess molar Gibbs energies of activation of viscous flow, ΔG^{*E} , were calculated combining the obtained volumetric and viscosity values, following the equation:

$$\Delta G^{*E} = RT \left[ln \left(\frac{\eta V}{\eta_2 V_2} \right) - x_1 ln \left(\frac{\eta_1 V_1}{\eta_2 V_2} \right) \right]$$
(4)

Fig. 2. Comparison of the current experimental viscosity values (■) vs. temperature with literature values for pure: (a) aniline– (\(\car\) Almasi et al. [43]; (♦) MacNeil et al. [45]; ((□) Tsierkezos et al. [30]; ((○) Katz et al. [31]; (★) Kharat and Nikam [32]; (b) *N*,*N*-dimethylaniline – ((○) Oskoei et al. [46]; (▲) Katz et al. [41]; (♦) Kondaiah et al. [50]; (□) MacNeil et al. [45]; (+) Master and Malek [33]; (c) [bmim][OTf] – ((○) Tokuda et al. [54]; (▲) Shamsipur et al. [58]; (\(\ny\) Seddon et al. [78]; (♦) Mbondo et al. [59]; (+) Batista et al. [60]; (★) Mchale et al. [61]; (d) [bmim][NTf2] – ((○) Hiraga at al. [62]; (▲) Tariq et al. [79]; (\(\ny\) Harris et al. [75]; (♦) Atilhan et al. [76]; (□) Salgado et al. [77]; (★) Vraneš et al. [35].

In Eq. (3) η and V represent viscosity and molar volume of solution, respectively; the subscripts 1 and 2 indicate components of a binary mixture.

Three properties calculated by Eqs. (2)-(4) were correlated with Redlich-Kister (RK) polynomial equation [28]:

$$Y = x_i x_j \sum_{p=0}^{k} A_p (2x_i - 1)^p$$
(5)

In Eq. (5) Y represents V^{E} , $\Delta \eta$ or ΔG^{*E} ; A_{p} are the fitting parameters, and k + 1 equals the number of parameters, which was optimized using the F-test. The fitting parameters A_{p} and the corresponding root-mean-square deviations (rmsd) σ , defined by:

$$\sigma = \left(\sum_{i=1}^{m} \frac{\left(Y_{exp}^{E} - Y_{cal}^{E}\right)^{2}}{m}\right)^{1/2}.$$
(6)

Values are given in Table 4 for excess molar volume V^{E} and viscosity deviation $\Delta \eta$. In Eq. (6), *m* equals the number of experimental data points.

Excess molar volumes obtained from the experimental values and those calculated using the RK polynomial are presented in Fig. 3, as a function of amine mole fraction x_1 . The systems {aniline + [C₄mim][NTf₂]} and {*N*,*N*-dimethylaniline + [C₄mim][OTf]} have a S-shaped V^E -curve which changes sign from positive to negative values, while going to higher x_1 mole fractions; the maximum and minimum are at $x_1 = 0.1$ and $x_1 = 0.6$, respectively (Fig. 3 (a) and (b)). System {*N*,*N*-dimethylaniline + [bmim][NTf₂]} (Fig. 3 (c)) exhibits an asymmetrical curve with negative V^E values and the minimum approximately at $x_1 = 0.6$. As we mentioned ahead, the system {aniline + [bmim][OTf]} was already investigated and reported in the literature revealing its partial miscibility [80,81] and, thus, its presentation is not given graphically. For all systems,

Table 3

Density ρ , viscosity η , excess molar volumes V^{E} , viscosity deviations $\Delta \eta$, excess Gibbs energy of activation of viscous flow ΔG^{*E} for the investigated binary systems in temperature range T = (288.15 to 333.15) K and at atmospheric pressure (0.1 MPa).^a

$\begin{tabular}{ $	<i>x</i> ₁	$10^{-3} \cdot \rho/\text{kg} \cdot \text{m}^{-3}$	$10^6 \cdot V^E/m^3 \cdot mol^{-1}$	η/mPa·s	$\Delta \eta/mPa \cdot s$	$\Delta G^{*E}/kJ\cdot kmol^{-1}$
Losse T - 283.15 K TT TT <tht< th=""> <tht< th=""></tht<></tht<>			Aniline (1) + [br	nim][OTf] (2)		
0.000 1.000 1.000 1.000 1.000 1.013 -0.033 9.163 <t< td=""><td></td><td></td><td><i>T</i> = 288</td><td>.15 K</td><td></td><td></td></t<>			<i>T</i> = 288	.15 K		
bit mode 1.2352 -0.319 1.033 -0.239 2.2318 0.0000 1.0241 -0.254 3.334 -0.124 5.714 0.0000 1.011 -0.254 3.231 -0.124 5.714 0.000 1.011 -0.022 3.021 -5.650 1.0131 7.84.11 0.0000 1.2372 -0.0381 -0.650 7.712 -6.650 1.057 0.0000 1.2372 -0.0381 7.65 -1.56 1.057 1.051 0.0000 1.2372 -0.0744 7.63 -4.063 46.05 0.1000 1.2372 -0.0744 7.53 -4.053 46.05 0.1000 1.2372 -0.0612 -1.18 1.060.45 5.14 0.3002 1.2613 -0.0612 -0.14 7.33 -4.053 42.15 0.3002 1.2713 -0.0569 4.13 -2.36 7.15 1.060 0.1000 1.2321 -0.0679 5.14 -3.528 7.115	0.0000	1.3070	0.0005	132.7	0.000	202.44
Dasse 1.000 -0.0254 9.03 -9.134 987.14 0.0000 1.021 -0.0254 1.020 -	0.1000	1.2932	-0.0095	00.03	-9.092	595.44 751.88
1000 1201 1304 324 1000 10000 1331 T231.5K 1000 1391.1 1000 10000 12312 -0.0769 7.75 -1.075 1000 10000 12372 -0.0769 7.75 -1.065 1005 10000 12372 -0.0793 7.75 -1.065 551.48 10000 12372 -0.0793 6.051 -4.078 406.65 10000 12372 -0.0793 6.51 -9.058 466.65 10000 12373 -0.0612 45.00 -1.189 186.45 01000 12373 -0.0612 45.00 -1.28 186.45 01000 12373 -0.0873 3.77 -3.492 1075.15 01000 12374 -0.0873 3.77 -3.492 1075.15 01000 12751 -0.0873 3.77 -3.492 1075.15 01000 12731 -0.0837 3.57 -3.18 -3.18 <t< td=""><td>0.1995</td><td>1.2852</td><td>-0.6254</td><td>8 953</td><td>-9 124</td><td>567 14</td></t<>	0.1995	1.2852	-0.6254	8 953	-9 124	567 14
T-23.15k0.00001.301-0.07285.2-6.913398.310.10001.2722-0.072985.2-6.913398.310.10001.2722-0.074973.2-1.040391.480.8991.083-0.056973.12-0.65991.480.10001.0217-0.07973.12-0.69391.480.10001.0217-0.07967.35-4.9797.560.10001.2773-0.07967.35-4.9797.560.30021.2731-0.07961.34-5.1992.190.00001.0717-0.062745.5-4.9797.160.30021.2731-0.07745.5-3.9241.150.00001.071-0.08677.977-8.492171.770.00001.0217-0.08677.977-8.492171.870.30021.2741-0.01623.977-8.492171.870.30021.2741-0.01637.977-8.492171.870.30021.2741-0.01637.977-8.492171.870.30021.2741-0.01637.977-8.492171.870.30021.2741-0.01877.18-5.1617.6530.30021.2741-0.01877.18-5.1617.6530.30021.2741-0.0193.58-3.150162.330.10001.2774-0.0193.58-1.4117.6680.10001.2755-0.47412	1.0000	1.0261	0.023 1	5.324	5.121	507.11
0.00001.30110.0020.231395.310.10001.2012-0.072965.32-1.1317.74.110.20001.0131-0.07387.052-1.13210.51,140.20001.0121-0.07387.012-1.02310.51,140.20001.0231-0.07387.012-1.02310.51,140.00001.2821-0.07348.010-0.0735-0.098406.050.10001.2821-0.07345.61,11-0.7577.73,380.00001.2821-0.07345.61,11-0.7577.73,380.00001.2821-0.08274.55-3.39242,1150.00001.2821-0.08274.55-3.39242,1150.00001.2823-0.03294.55-3.39242,1150.10001.2821-0.08274.55-3.39242,1150.10001.2931-0.03844.53-0.3927.180.00001.2934-0.7943.76-2.265408.250.00001.2934-0.7913.61-2.161408.250.00001.2934-0.7913.63-3.1651962.330.00001.2934-0.7913.64-2.161408.260.10001.2934-0.7913.64-2.161408.260.10001.2934-0.7913.64-2.161408.260.10001.2934-0.7913.64-2.161408.260.10001.2935-0.79242.235<			<i>T</i> = 293	.15 K		
0.1000 1.2912 -0.0729 65.32 -6.913 393.31 0.1000 1.2023 -0.0343 7.062 -1.191 754.11 0.3002 1.2023 -0.6308 7.185 1.555 1075.14 0.0000 1.2971 -0.6206 7.63 -4.698 561.64 0.0000 1.2972 -0.0784 67.55 -4.698 400.05 0.1000 1.2872 -0.0784 67.55 -4.698 400.05 0.1000 1.2872 -0.0793 65.11 -5.198 58.19 0.0000 1.2931 -0.6670 6.42 -5.198 58.19 0.0000 1.2932 -0.0827 54.55 -4.392 42.15 0.1000 1.2932 -0.0826 3.74 -2.482 1075.15 0.3020 1.2734 -0.6887 3.756 -4.030 98.05 0.3002 1.2734 -0.6988 4.441 -2.826 408.75 0.4000 1.2734 -0.7117	0.0000	1.3031		102.0		
0.1985 1.2982 -0.6383 70.62 -1.5.05 1075.14 0.0000 1.2017 -0.6508 7.35 -1.5.05 1075.14 0.0000 1.2017 -0.6508 7.35 -0.503 50.144 0.0000 1.2273 -0.0784 67.55 -4.908 406.05 0.1000 1.2273 -0.0794 67.55 -4.908 406.05 0.3002 1.2613 -0.0612 65.90 -11.28 1009.45 0.3002 1.2613 -0.0612 65.90 -11.28 1009.45 0.3002 1.2013 -0.0827 37.27 -8.482 107.15 0.3002 1.2631 -0.0827 37.27 -8.482 107.15 0.3002 1.2573 -0.0827 37.27 -8.482 107.15 0.3002 1.2573 -0.0828 45.50 -3.392 47.15 0.3002 1.2573 -0.0828 45.50 -3.392 47.15 0.3002 1.2713 -0.0828 45.50 -3.392 47.15 0.3002 1.2674 -0.016<	0.1000	1.2912	-0.0729	85.32	-6.913	398.31
1.302 1.45.2 -1.6538 7.45.2 -1.619 10.7.14 1.0000 1.0237 -0.6206 29.15 4.407 -0.639 56.14 0.1000 1.2872 -0.0784 67.55 -4.088 406.05 0.1000 1.2872 -0.0784 67.55 -1.018 109.45 0.3002 1.2613 -0.6179 4.590 -1.128 109.45 0.3002 1.2612 -0.6789 4.07 -5.188 582.19 0.0000 1.2852 -0.0827 54.55 -3.392 42.1.15 0.1000 1.2852 -0.0827 52.65 -4.020 192.13 0.0000 1.2931 -0.0886 74.41 -2.826 408.75 0.0000 1.2913 -0.0898 44.41 -2.826 408.75 0.0000 1.2913 -0.0898 44.41 -2.826 408.75 0.0000 1.2973 -0.0816 37.16 -5.161 756.53 0.3002 1.2674	0.1995	1.2792	-0.3643	70.62	-11.91	754.11
10000 10101 T = 298.15K 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0013 0.00	0.3002	1.2652	-0.6388	57.65	-15.05	10/5.14
DATE T = 288.15 K Solid 0.0000 1.291 67.55 -4.008 406.05 0.1000 1.2872 -0.07794 67.55 -4.008 406.05 0.1000 1.2872 -0.07794 67.55 -4.008 406.05 0.3002 1.2613 -0.0612 45.90 -11.28 1009.45 0.0000 1.231 -0.08877 67.37 7.73.66 0.1000 1.2332 -0.0887 7.27 -8.492 107.17 0.1000 1.2374 -0.08667 7.27 -8.492 1075.15 0.2000 1.2911 -0.0748 5.256 -4.030 95.06 0.1000 1.2911 -0.0748 7.27 -8.492 1075.15 0.0000 1.2911 -0.0748 7.27 -8.492 1075.15 0.1000 1.2911 -0.0748 7.27 -8.492 1075.15 0.1000 1.274 -0.0116 7.16 -5.161 75.63 0.1000 <td< td=""><td>1 0000</td><td>1.0885</td><td>-0.0500</td><td>4 407</td><td>-0.805</td><td>501.40</td></td<>	1 0000	1.0885	-0.0500	4 407	-0.805	501.40
0.00001.2991	1.0000	1.0217	<i>T</i> = 298	.15 K		
0.10001.2872-0.079467.55-4.080406.650.19951.2613-0.067965.11-8.75775.360.30021.2613-0.067961.84-5.19892.190.00001.0174-0.078964.027.277.860.00001.2332-0.082764.55-3.332421.150.00001.2332-0.082754.55-4.33052.050.00001.2374-0.0866737.27-8.4921075.150.30021.2574-0.08887.27-8.4921075.150.00001.2371-2.381-0.039844.14-2.28.2648.750.10001.2773-0.098844.14-2.28.2648.750.10001.2774-0.098844.14-2.42.66498.750.10001.2774-0.098343.58-3.18619.370.00001.2774-0.09732.377-5.2654.0300.00001.2774-0.09732.377-5.21819.370.00001.2774-0.09732.377-5.21819.370.00001.2774-0.09732.377-5.21819.370.00001.2774-0.09732.377-5.21819.370.00001.2774-0.09733.237-5.21819.370.00001.274-0.09733.237-5.21819.370.00001.274-0.09733.237-5.21819.370.00001.274-0.09733	0.0000	1.2991		80.10		
0.1995 1.2753 -0.3793 56.11 -8.757 757.36 0.3002 1.2613 -0.6709 6.184 -5.198 582.19 0.3002 1.2613 -0.06709 6.184 -5.198 582.19 0.000 1.074 -730.315 K - <	0.1000	1.2872	-0.0784	67.55	-4.908	406.05
0.3002 1.2613 -0.0612 45.90 -11.28 1068.45 0.8999 1.042 -0.079 5.373 - - 0.0000 1.2951 -0.0827 6.45 - 3.373 - 2.130 2.115 - 1.50 - 1.51 - 0.000 1.2951 - 0.002 - 3.307 - 2.302 4.215 1.55 0.000 1.0100 1.0100 - 0.000 1.2911 - - 0.000 1.2911 - - 2.302 - 4.067.5 5.256 - 4.080 5.95.5 1.000 1.000 1.2734 - 0.000 4.33 - 5.256 - 4.067.5 5.161 7.55.5 3.030 2.399.76 1.000.300 1.000.300 - 0.2731 3.051 - 5.95.6 - 4.067.5 5.95.6 - 4.067.5 5.95.6 - 0.000 1.023 - 0.75.6 1.052.36 - 0.100 1.023.2 - 2.780 - 0.101.2 1.023.2 - 0.101.2 <td>0.1995</td> <td>1.2753</td> <td>-0.3793</td> <td>56.11</td> <td>-8.757</td> <td>757.36</td>	0.1995	1.2753	-0.3793	56.11	-8.757	757.36
D2899 1.0842 -0.8769 6.184 198 582.19 0.0000 1.074 - 3.737 - - - - - - - - - - - - - - 3.737 - - 3.737 - - 3.736 - - 3.736 - - 3.736 - - - - 3.736 - - 3.736 - - 3.736 - - 3.736 - - 3.736 - - 3.736 - - 3.736 - 0.4000 1.0716 - 1.016 7.116 - 1.016 - 1.016 - 1.016 - 1.016 - 1.016 - 1.016 - 1.016 3.016 - - 1.023 1.023 - 0.023 2.028 - 2.023 1.023 1.016 0.016 0.016 0.016 0.016	0.3002	1.2613	-0.6612	45.90	-11.28	1069.45
L0000 L0174 T = 303.15 K 0.1000 1.2832 -0.0827 54.55 -3.392 421.15 0.1000 1.2832 -0.0827 54.55 -6.338 771.87 0.3002 1.2574 -0.6867 37.27 -8.402 1075.15 0.3000 1.030 2.256 -4.030 592.05 1.0000 1.2911 52.18 - - 0.0000 1.2911 37.16 -5.161 756.53 0.3002 1.2674 -0.010 37.16 -5.161 756.53 0.3002 1.2674 -0.017 4.338 -3.186 1962.33 0.3002 1.2674 -0.017 4.338 -3.186 1962.33 0.3002 1.2872 - 47.63 35.56 -2.161 408.89 0.1000 1.2754 -0.0473 35.56 -2.161 408.89 0.1900 1.2872 - - 47.65 - 0.1000 1.2754 -0.0473<	0.8999	1.0842	-0.6769	6.184	-5.198	582.19
0.0000 1.2951 0.1000 1.2352 -0.0875 64.02 0.1000 1.2312 -0.0858 45.50 -6.3382 71.87 0.3002 1.2713 -0.0858 45.50 -6.338 77.187 0.3000 1.0301 -0.7045 5.256 -4.030 592.05 0.0000 1.2311 -	1.0000	1.0174	T - 303	3./3/		
0.1000 1.2832 -0.0827 54.55 -3.392 42.115 0.1995 1.2714 -0.6867 37.27 -8.492 1075.15 0.3000 1.030 -0.6867 37.27 -8.492 1075.15 0.0000 1.2911 -52.18 - <t< td=""><td>0.0000</td><td>1 2951</td><td>1 - 505</td><td>64 02</td><td></td><td></td></t<>	0.0000	1 2951	1 - 505	64 02		
0.1995 1.2713 -0.3958 45.50 -6.388 771.87 0.3002 1.2874 -0.6667 5.236 -4.030 592.05 0.0000 1.030 -7.7308.15K 52.18 - - 0.0000 1.2733 -0.0898 44.41 -2.826 408.75 0.1000 1.2733 -0.0898 44.41 -2.826 408.75 0.1000 1.2733 -0.011 30.61 -6.736 1062.33 0.3002 1.2534 -0.7101 30.61 -6.736 1062.33 0.3002 1.2872 -0.731 2.370 -2.161 408.89 0.1000 1.2872 -0.4274 30.70 -4.013 1052.96 0.3002 1.2485 -0.7392 3.939 -2.511 752.86 0.3002 1.2475 -0.4974 30.70 -4.013 1052.96 0.3002 1.2714 -0.019 3.02 -2.511 756.1 0.1000 1.2714 -0.019 3.0	0.1000	1.2832	-0.0827	54.55	-3.392	421.15
0.0001.2574-0.66673.727-8.4921075.150.0001.2011	0.1995	1.2713	-0.3958	45.50	-6.388	771.87
0.899 1.0801 -0.7045 5.256 -4.030 592.05 0.0000 1.2911	0.3002	1.2574	-0.6867	37.27	-8.492	1075.15
1.000 1.030 T^2 308.15 K 0.0000 1.2911 52.18 0.0000 1.2793 -0.0898 44.41 -2.826 408.75 0.1995 1.2674 -0.0110 30.61 -6.736 1052.33 0.3002 1.2534 -0.7101 30.61 -6.736 1052.33 0.4999 1.0760 -0.7317 4.538 -3.186 599.76 0.0000 1.2872 -2.780 -	0.8999	1.0801	-0.7045	5.256	-4.030	592.05
T = 308.15 K 0.0000 1.2911 52.18 0.0000 1.2793 -0.0898 44.41 -2.826 408.75 0.0000 1.2534 -0.0116 37.16 -5.161 756.33 0.0000 1.2534 -0.07101 30.61 -6.736 1062.33 0.0000 1.2672	1.0000	1.0130		3.197		
0.0000 1.2311 0.0898 44.41 -2.826 408.75 0.1905 1.2674 -0.0116 37.16 -5.161 756.33 0.3992 1.2674 -0.0110 3.061 -6.736 1962.33 0.8999 1.0760 -0.7317 4.538 -3.186 599.76 1.0000 1.2872 -780 - - - - - 752.86 - 2.161 498.89 -	0.0000	1 2011	<i>T</i> = 308	.15 K		
0.100 1.2793 -0.0393 47-41 -2.800 490.13 0.1995 1.2574 -0.7101 30.61 -6.736 1002.233 0.000 1.2334 -0.7101 30.61 -6.736 1002.233 1.0000 1.2872 2.780 2.780 2.780 0.0000 1.2872 42.76 2.780 2.780 2.780 2.780 2.780 2.780 2.780 2.780 2.780 2.780 2.780 2.780 2.780 2.780 2.781 2.785 2.785 2.751 2.785 2.785 2.785 2.785 2.785 2.785 2.7851 2.7851 2.7851	0.0000	1.2911	0.0808	52.18	2 026	409 75
n 3002 1 2334 - 0.7101 3061 - 6.736 1052.33 0.8999 1.0760 - 0.7317 4.338 - 3.186 599.76 0.0000 1.0987 - 2.780 - - - 0.0000 1.2872 -	0.1995	1.2795	-0.0358	37.16	-2.820	756 53
0.8999 1.0760 −.0.7317 4.538 −.3.186 599.76 1.0000 1.0087 <i>T</i> = 313.15 K <i>T</i> = 323.15 K <td>0.3002</td> <td>1.2534</td> <td>-0.7101</td> <td>30.61</td> <td>-6.736</td> <td>1062.33</td>	0.3002	1.2534	-0.7101	30.61	-6.736	1062.33
1.0000 1.0087 $T = 313.15 \ K$ 0.0000 1.2872 42.76 0.1000 1.2754 -0.0963 36.56 -2.161 408.89 0.1095 1.2635 -0.4274 30.70 -4.011 752.86 0.3002 1.2495 -0.7333 25.37 -5.283 1052.96 0.3002 1.2495 -0.7333 25.37 -5.283 1052.96 1.0000 1.0044 - 24.9 - 24.9 - 0.0000 1.2833 -3.150 756.81 - 0.403.94 - 0.1000 1.2756 -0.0437 25.83 -3.150 756.81 - 0.3002 1.2456 -0.7584 21.47 -4.132 1062.30 - 0.3002 1.2456 -0.7876 3.503 -2.009 63.499 1.0000 1.0070 -0.7876 2.585 -1.349 409.98 0.3002 1.2418 -0.04598 21.90 -2.501 757.61 <td>0.8999</td> <td>1.0760</td> <td>-0.7317</td> <td>4.538</td> <td>-3.186</td> <td>599.76</td>	0.8999	1.0760	-0.7317	4.538	-3.186	599.76
0.0000 1.2872 4.7.6 4.7.6 0.1000 1.2754 -0.0063 36.56 -2.161 408.89 0.1995 1.2635 -0.4274 30.70 -4.011 752.86 0.3002 1.2495 -0.733 25.37 -5.283 1052.36 0.8999 1.0720 -0.7592 329.9 -2.551 585.84 1.0000 1.0044 -2.445 - 56.66 - 0.0000 1.2833 -3.150 756.81 0.062.30 1317.61 0.3002 1.2456 -0.4437 2.5.83 -3.150 756.81 0.3002 1.2456 -0.0758 21.47 -4.633 1317.61 0.3002 1.2456 -0.0767 2.583 -3.494 49.98 0.3002 1.2675 -0.1076 2.585 -1.349 409.98 0.1000 1.2675 -0.4598 21.90 -2.501 757.61 0.3002 1.2418 -0.731 18.28 -3.292 1062.	1.0000	1.0087		2.780		
0.0000 1.2872 -0.0963 3656 -2.161 408.89 0.1000 1.2754 -0.0963 3656 -2.161 408.89 0.03002 1.2495 -0.0733 25.37 -5.283 1052.96 0.8999 1.0720 -0.7592 3299 -2.551 585.84 1.0000 1.2813 - - - - 0.0000 1.2833 - -1.50 - - 0.0000 1.2833 - -3.150 756.81 - 0.3002 1.2456 -0.4437 2.533 -3.150 756.81 0.3002 1.2456 -0.0437 2.533 -2.099 634.99 0.1000 1.0679 -0.7584 2.147 -4.603 1317.61 0.8999 1.0679 -0.0786 2.159 -2.501 757.61 0.0000 1.2675 -0.1176 2.585 -1.349 409.98 0.1995 1.2612 3.117 -1.621 650.57 </td <td></td> <td></td> <td><i>T</i> = 313</td> <td>.15 K</td> <td></td> <td></td>			<i>T</i> = 313	.15 K		
0.1000 1.2/34 -0.0963 36.26 -2.161 408.839 0.1995 1.2635 -0.4274 30.70 -4.011 752.86 0.3002 1.2495 -0.7333 25.37 -5.283 1052.96 0.8999 1.0720 -0.7592 3.929 -2.551 58.84 1.0000 1.0044 2.445 - - - 0.0000 1.2714 -0.1019 30.60 -1.712 408.94 0.1995 1.2566 -0.437 25.83 -3.150 756.81 0.3002 1.2456 -0.7584 21.47 -4.132 1062.30 0.3996 1.2292 -0.9972 3.503 -2.009 634.99 1.0000 1.2675 -0.0766 25.85 -1.349 409.98 0.1900 1.2675 -0.04598 21.90 -2.501 757.61 0.3002 1.2418 -0.7831 18.28 -3.292 1062.50 0.3096 1.2257 -0.4598 21.90 </td <td>0.0000</td> <td>1.2872</td> <td>0.0000</td> <td>42.76</td> <td>2.4.64</td> <td>100.00</td>	0.0000	1.2872	0.0000	42.76	2.4.64	100.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1000	1.2/54	-0.0963	36.56	-2.161	408.89
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1995	1.2055	-0.4274	25.37	-4.011	1052.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.8999	1.0720	-0.7592	3.929	-2.551	585.84
T = 318.15 K 0.0000 1.2833 35.66 0.1000 1.2714 -0.1019 30.60 -1.712 408.94 0.1995 1.2596 -0.4437 25.83 -3.150 756.81 0.3002 1.2456 -0.7584 21.47 -4.132 1062.30 0.3996 1.2292 -0.9972 17.67 -4.603 1317.61 0.8999 1.0679 -0.7876 3.503 -2.009 634.99 0.0000 1.2794 -0.1076 2555 -1.349 409.98 0.1995 1.2557 -0.4598 21.90 -2.501 757.61 0.3002 1.2418 -0.7831 18.28 -3.292 1062.50 0.3096 1.2253 -1.0271 15.11 -3.6711 1317.76 0.3996 1.2575 -0.4598 21.90 -2.501 757.61 0.3096 1.2253 -1.0271 15.11 -3.6711 1317.76 0.3996 1.2575 -0.8162	1.0000	1.0044		2.445		
0.0000 1.2833 35.66 0.1000 1.2714 -0.019 30.60 -1.712 408.94 0.1095 1.2596 -0.4437 25.83 -3.150 756.81 0.3002 1.2456 -0.7584 21.47 -4.132 1062.30 0.3996 1.2292 -0.972 17.67 -4.603 1317.61 0.8999 1.0679 -0.7876 3.503 -2.009 634.99 1.0000 1.0000 -0.0766 25.85 -1.349 409.98 0.1000 1.2675 -0.4598 21.90 -2.501 757.61 0.3002 1.2418 -0.7831 18.28 -3.292 1062.50 0.3996 1.2653 -1.0271 15.11 -3.671 1317.76 0.3996 1.2637 -0.6162 3.117 -1.621 650.57 0.3002 1.2754 -0.7473 18.82 -1.941 766.08 0.3996 1.2617 -0.9564 424.50 10.959.57 1.361			<i>T</i> = 318	.15 K		
0.1000 1.2714 -0.1019 30.60 -1.712 408.94 0.1995 1.2596 -0.4437 25.83 -3.150 756.81 0.3002 1.2456 -0.7584 21.47 -4.132 1062.30 0.3996 1.2292 -0.9972 17.67 -4.603 1317.61 0.8999 1.0609 -0.7876 3.503 -2.009 634.99 1.0000 1.0000 -0.7876 3.503 -2.009 634.99 0.1000 1.2675 -0.1076 25.85 -1.349 409.98 0.1000 1.2675 -0.1076 25.85 -1.349 409.98 0.1302 1.2517 -0.4598 21.90 -2.501 757.61 0.3002 1.2418 -0.7831 18.28 -3.292 1062.50 0.3996 1.2253 -1.0271 15.11 -3.671 1317.76 0.8999 1.0638 -0.8162 3.117 -1.621 650.57 0.1000 1.2637 -0.1132 22.17 -0.9564 424.50 0.1995 1.2518 -0.	0.0000	1.2833		35.66		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1000	1.2714	-0.1019	30.60	-1.712	408.94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1995	1.2596	-0.4437	25.83	-3.150	756.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3002	1,2450	-0.7584	21.47	-4.132	1002.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.8999	1.0679	-0.7876	3 503	-2.009	634 99
T = 323.15 K 0.0000 1.2794 30.1 0.1000 1.2675 -0.1076 25.85 -1.349 409.98 0.1995 1.2557 -0.4598 21.90 -2.501 757.61 0.3002 1.2418 -0.7831 18.28 -3.292 1062.50 0.3996 1.2253 -1.0271 15.11 -3.671 1317.76 0.8999 1.0638 -0.8162 1.17 -1.621 650.57 1.0000 0.9957 - 1.927 - - 0.0000 1.2755 - 25.0 -	1.0000	1.0000	0	2.159	21000	00 100
0.0000 1.2794 30.01 0.1000 1.2675 -0.1076 25.85 -1.349 409.98 0.1995 1.2557 -0.4598 21.90 -2.501 757.61 0.3002 1.2418 -0.7831 18.28 -3.292 1062.50 0.3996 1.2253 -1.0271 15.11 -3.671 1317.76 0.8999 1.0638 -0.8162 3.117 -1.621 650.57 1.0000 0.9957 -0.8162 3.117 -1.621 650.57 1.0000 0.9957 -0.8162 3.117 -1.621 650.57 1.0000 1.2755 - - - - - 0.1000 1.2637 -0.1132 22.17 -0.9564 424.50 0.1995 1.2518 -0.4763 18.82 -1.941 766.08 0.3002 1.2379 -0.8086 15.71 -2.655 1059.57 0.3096 1.2214 -1.0583 13.02 -2.987 1308.66 0.8999 1.0597 -0.8455 2.755 -1.361 621.56<			T = 323	.15 K		
0.1000 1.2675 -0.1076 25.85 -1.349 409.98 0.1995 1.2577 -0.4598 21.90 -2.501 757.61 0.3002 1.2418 -0.7831 18.28 -3.292 1062.50 0.3996 1.2253 -1.0271 15.11 -3.671 1317.76 0.8999 1.0638 -0.8162 3.117 -1.621 650.57 1.0000 0.9957 -0.1132 25.50 - - 0.1000 1.2637 -0.1132 22.17 -0.9564 424.50 0.1995 1.2518 -0.4763 18.82 -1.941 766.08 0.3002 1.2379 -0.8086 15.71 -2.655 1059.57 0.3096 1.2214 -1.0583 13.02 -2.987 1308.66 0.3096 1.2214 -1.0583 13.02 -2.987 1308.66 0.8999 1.0597 -0.8455 2.755 -1.361 621.56 1.0000 0.9914 -1.378 - - - 0.0000 1.2717 -0.1177 19.0	0.0000	1.2794		30.01		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1000	1.2675	-0.1076	25.85	-1.349	409.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1995	1.2557	-0.4598	21.90	-2.501	757.61
0.55501.225 -1.0271 1.011 -3.071 $1.517.76$ 0.89991.0638 -0.8162 3.117 -1.621 650.57 1.00000.9957 1.927 1.927 $F = 328.15 \text{ K}$ $F = 328.15 \text{ K}$ 0.00001.2637 -0.1132 22.17 -0.9564 424.50 0.19951.2518 -0.4763 18.82 -1.941 766.08 0.30021.2379 -0.8086 15.71 -2.655 1059.57 0.39961.2214 -1.0583 13.02 -2.987 1308.66 0.89991.0597 -0.8455 2.755 -1.361 621.56 1.00000.9914 1.738 1.738 $T = 333.15 \text{ K}$ $T = 333.15 \text{ K}$ $T = 333.15 \text{ K}$ 0.00001.2717 -0.4918 16.23 -1.699 747.98 0.30021.2340 -0.8335 13.63 -2.241 1048.13	0.3002	1.241ð 1.2253	-0.7831 -1.0271	18.28 15.11	-3.292 -3.671	1002.50
1,0000 $1,000$	0.8999	1.0638	-0.8162	3 117	-1 621	650 57
T = 328.15 K 0.0000 1.2755 25.50 0.1000 1.2637 -0.1132 22.17 -0.9564 424.50 0.1995 1.2518 -0.4763 18.82 -1.941 766.08 0.3002 1.2379 -0.8086 15.71 -2.655 1059.57 0.3996 1.2214 -1.0583 13.02 -2.987 1308.66 0.8999 1.0597 -0.8455 2.755 -1.361 621.56 1.000 0.9914 1.738 1.78 76.08 1.71 0.0000 1.2717 22.00 747.98 409.04 0.1995 1.2480 -0.4918 16.23 -1.699 747.98 0.1995 1.2480 -0.4918 16.23 -1.699 747.98 0.3002 1.2340 -0.8335 13.63 -2.241 1048.13	1.0000	0.9957	0.0102	1.927	11021	000107
0.0000 1.2755 25.50 0.1000 1.2637 -0.1132 22.17 -0.9564 424.50 0.1995 1.2518 -0.4763 18.82 -1.941 766.08 0.3002 1.2379 -0.8086 15.71 -2.655 1059.57 0.3996 1.2214 -1.0583 13.02 -2.987 1308.66 0.8999 1.0597 -0.8455 2.755 -1.361 621.56 1.0000 0.9914 1.738 1.738 1.738 1.738 0.0000 1.2717 22.00 2.00 1.0117 1.001 1.2598 -0.1177 19.07 -0.8863 409.04 0.1995 1.2480 -0.4918 16.23 -1.699 747.98 0.3002 1.2340 -0.8335 13.63 -2.241 1048.13			<i>T</i> = 328	.15 K		
	0.0000	1.2755		25.50		
	0.1000	1.2637	-0.1132	22.17	-0.9564	424.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1995	1.2518	-0.4763	18.82	-1.941	766.08
0.3990 1.2214 -1.0583 13.02 -2.987 1308.66 0.8999 1.0597 -0.8455 2.755 -1.361 621.56 1.0000 0.9914 1.738 1.738 1.738 T=333.15 K 0.0000 1.2717 22.00 1.0100 1.2598 -0.1177 19.07 -0.8863 409.04 0.1995 1.2480 -0.4918 16.23 -1.699 747.98 0.3002 1.2340 -0.8335 13.63 -2.241 1048.13	0.3002	1.2379	-0.8086	15.71	-2.655	1059.57
0.0555 1.057 -0.0455 2.753 -1.561 621.56 1.0000 0.9914 1.738 T=333.15 K 0.0000 1.2717 22.00 0.1000 1.2598 -0.1177 19.07 -0.8863 409.04 0.1995 1.2480 -0.4918 16.23 -1.699 747.98 0.3002 1.2340 -0.8335 13.63 -2.241 1048.13	0.3990	1.2214	-1.0383	13.02	-2.98/	1308.00
T = 333.15 K0.00001.27170.10001.2598-0.117719.07-0.8863409.040.19951.2480-0.491816.23-1.699747.980.30021.2340-0.833513.63-2.2411048.13	1 0000	0.9914	-0.0433	2.755	100.1-	021.30
0.0000 1.2717 22.00 0.1000 1.2598 -0.1177 19.07 -0.8863 409.04 0.1995 1.2480 -0.4918 16.23 -1.699 747.98 0.3002 1.2340 -0.8335 13.63 -2.241 1048.13	1.0000	0.3314	<i>T</i> = 333	.15 K		
0.10001.2598-0.117719.07-0.8863409.040.19951.2480-0.491816.23-1.699747.980.30021.2340-0.833513.63-2.2411048.13	0.0000	1.2717		22.00		
0.1995 1.2480 -0.4918 16.23 -1.699 747.98 0.3002 1.2340 -0.8335 13.63 -2.241 1048.13	0.1000	1.2598	-0.1177	19.07	-0.8863	409.04
0.3002 1.2340 -0.8335 13.63 -2.241 1048.13	0.1995	1.2480	-0.4918	16.23	-1.699	747.98
	0.3002	1.2340	-0.8335	13.63	-2.241	1048.13

(continued on next page)

Table 3 (continued)

<i>x</i> ₁	$10^{-3} \cdot \rho/\text{kg} \cdot \text{m}^{-3}$	$10^6 \cdot V^E/m^3 \cdot mol^{-1}$	η/mPa·s	$\Delta\eta/\mathrm{mPa}$ s	$\Delta G^{*E}/kJ\cdot kmol^{-1}$
0.3996	1.2176	-1.0890	11.38	-2.457	1309.04
0.8999	1.0556	-0.8753	2.474	-1.147	615.70
1.0000	0.9870		1.577		
		Aniline (1) + [bm	$nim][NTf_2](2)$		
0.0000	1 1110	T = 288.	.15 K		
0.0000	1.4446	0.2227	78.37	4.700	252.45
0.1000	1.4293	0.2327	66.29 55.97	-4.768	353.45
0.2000	1.4145	-0.0000	JJ.67 46.48	-7.884	080.78
0.4013	1 3764	-0.6623	38.49	-10.56	121923
0.5024	1.3500	-0.8208	31.09	-10.58	1396.12
0.6002	1.3175	-0.8504	24.56	-9.966	1472.62
0.7000	1.2746	-0.7753	18.38	-8.861	1400.77
0.8002	1.2182	-0.6754	13.46	-6.460	1237.97
0.9000	1.1404	-0.4470	8.743	-3.885	731.97
1.0000	1.0261		5.324		
0.0000	1 1200	T = 293.	.15 K		
0.0000	1.4398	0.2457	61.47	2 606	252.70
0.1000	1.4244	0.0022	52.16	-3.606	353./8
0.2000	1.4095	-0.0022	44.10	-5.958	081.18
0.5029	1,3921	-0.3833	30.82	-7.505	1210 77
0.5024	1 3454	-0.8445	24.83	-7 975	1397 00
0.6002	1.3129	-0.8757	19.71	-7.507	1474.42
0.7000	1.2701	-0.8015	14.86	-6.665	1406.48
0.8002	1.2138	-0.7045	10.93	-4.876	1238.59
0.9000	1.1361	-0.4698	7.190	-2.923	741.05
1.0000	1.0217		4.407		
0.0000	4 4959	T = 298.	.15 K		
0.0000	1.4350	0.2500	49.11	2.442	272.25
0.1000	1.4196	0.2569	42.13	-2.442	372.25
0.2000	1.2072	-0.0001	35.90	-4.135	/09.47
0.3029	1.3873	-0.3964	30.13	-5.238	1011.95
0.4015	1.3070	-0.7018	23.12	-5.778	1247.89
0.5024	1,3407	-0.8085	16.28	-5.888	1418.40
0.7000	1.5005	-0.8279	12 40	-4 952	1433.03
0.8002	1 2094	-0.7348	9 2 2 3	-3 579	1275 35
0.9000	1.1317	-0.4922	6.100	-2.174	768.69
1.0000	1.0174		3.737		
		<i>T</i> = 303.	.15 K		
0.0000	1.4302		39.95		
0.1000	1.4147	0.2785	34.28	-2.003	365.85
0.2000	1.3998	0.0091	29.28	-3.321	/02.36
0.3029	1.3820	-0.4079	24.70	-4.120	1252.56
0.4015	1,3024	-0.7244	20.73	-4.477	1/22.20
0.5024	1,000	-0.8904	12.56	-4.307	1432.22
0.0002	1.5057	-0.8566	10.47	_3 755	1461 53
0.8002	1.2050	-0.7662	7.802	-2.739	1292.65
0.9000	1.1274	-0.5160	5.198	-1.674	783.71
1.0000	1.0130		3.197		
		T = 308.	.15 K		
0.0000	1.4254	0.2054	33.22	4 550	074.04
0.1000	1.4098	0.2954	28.63	-1.550	3/1.84
0.2000	1.3950	0.0155	24.55	-2.585	/11.92
0.3029	1.3779	-0.418/	20.//	-5.228	1020.12
0.4015	1.3377	-0.7475 -0.0277	1/.40	-3.325	1203.38 1 <i>444 4</i> 0
0.5024	1 2991	-0.9584	11 58	-3.340	1522.34
0.7000	1.2565	-0.8848	8 919	-2.995	1466 59
0.8002	1.2006	-0.7975	6.706	-2.156	1306.44
0.9000	1.1230	-0.5395	4.497	-1.327	794.50
1.0000	1.0087	-	2.780		
0.0000	1.4200	<i>T</i> = 313.	.15 K		
0.0000	1.4206	0.2127	27.68	1 3 1 0	272.01
0.1000	1.4000	0.0202	23.94	-1.219	3/3.UI 712 75
0.2000	1.3902	0.0202	20.39	-2.040	/12./5
0.5029	1.3732	-0.4510	17.48	-2.333	1019.24
0.4013	1 3260	_0.9509	14./0	-2./9/	1200.15
0.5024	1.3205	_0.9309 _0.9877	9.843	-2.020 -2.691	1457.47
0 7000	1 2520	-0.9141	7 607	-2.001	1451 60
0.8002	1.1962	-0.8302	5.770	-1.717	1297.15
0.9000	1.1187	-0.5634	3.898	-1.071	782.06
1.0000	1.0044		2.445		

Table 3	(continued	D
---------	------------	---

X1	10 ⁻³ · <i>a</i> /kg·m ⁻³	$10^{6} \cdot V^{E} / m^{3} \cdot mol^{-1}$	n/mPa.s	$\Delta n/mPass$	$\Delta G^{*E}/kI\cdot kmol^{-1}$
λ1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Annu s	
0.0000	4.4450	T = 31	18.15 K		
0.0000	1.4159		23.53		
0.1000	1.4002	0.3248	20.44	-0.9529	380.88
0.2000	1.3855	0.0211	17.66	-1.597	/26.79
0.3029	1.3685	-0.4456	15.05	-2.006	1038.46
0.4013	1.3485	-0.7963	12.76	-2.198	1283.48
0.5024	1.3224	-0.9808	10.57	-2.222	1465.42
0.6002	1.2901	-1.0181	8.586	-2.119	1544.55
0.7000	1.2476	-0.9450	6.677	-1.895	1487.62
0.8002	1.1918	-0.8632	5.093	-1.337	1335.76
0.9000	1.1144	-0.5884	3.461	-0.8350	818.79
1.0000	1.0000	т о	2.159		
0.0000	1 4110	I = 32	23.15 K		
0.0000	1.4112	0.2204	20.13	0.7507	286.42
0.1000	1.3955	0.3304	17.56	-0.7507	386.43
0.2000	1.3808	0.0166	15.22	-1.269	/35.11
0.3029	1.3039	-0.4628	13.02	-1.603	1047.91
0.4013	1.3439	-0.8215	11.06	-1./6/	1292.66
0.5024	1.3178	-1.0099	9.193	-1.794	14/3.32
0.6002	1.2856	-1.0488	7.501	-1.706	1555.32
0.7000	1.2431	-0.9756	5.864	-1.525	1240.40
0.8002	1.1874	-0.8968	4.498	-1.067	1349.49
0.9000	1.1101	-0.6132	3.076	-0.6716	830.25
1.0000	0.9957	т о	1.927		
0.0000	1 4005	I = 32	28.15 K		
0.0000	1.4065	0 2205	17.39	0.0004	200.24
0.1000	1.3908	0.3305	15.22	-0.6004	390.34
0.2000	1.3762	0.0068	13.24	-1.019	741.28
0.3029	1.3593	-0.4822	11.36	-1.293	1055.20
0.4013	1.3394	-0.8475	9.679	-1.429	1300.26
0.5024	1.3133	-1.0386	8.076	-1.450	1482.30
0.6002	1.2811	-1.0804	5.609	-1.386	1501.81
0.7000	1.2387	-1.0071	5.194	-1.239	1508.61
0.8002	1.1831	-0.9312	4.002	-0.8625	1356.08
0.9000	1.1058	-0.6387	2.755	-0.5483	834.57
1.0000	0.9914	T 0	1.738		
0.0000	1 4010	I = 3	33.15 K		
0.0000	1.4019	0.2100	15.20	0 5012	201 70
0.1000	1.3862	0.3190	13.34	-0.5013	391.78
0.2000	1.3710	-0.0108	11.63	-0.8460	745.13
0.3029	1.354/	-0.5024	10.01	-1.069	1001.55
0.4013	1.3348	-0.8710	8.557	-1.178	1308.80
0.5024	1.5066	-1.0046	7.139	-1.198	1490.09
0.0002	1.2700	1 0200	J.882 4.620	-1.145	1517.04
0.7000	1,2342	-1.0550	4.039	-1.025	1262.52
0.8002	1.1/0/	-0.9639	5.367	-0.7118	1302.32
1,0000	0.0870	-0.0045	2.477	-0.4623	651.75
1.0000	0.9870		1.577		
		N,N-dimethylaniline	(1) + [bmim][OTf](2)		
		T = 28	38.15 K		
0.0000	1.3070		132.7		
0.1000	1.2788	1.2347	97.56	-22.05	373.97
0.2000	1.2598	0.5850	72.76	-33.73	756.89
0.2998	1.2408	-0.3372	54.03	-39.37	1118.06
0.3970	1.2183	-0.9589	39.34	-41.30	1401.05
0.5045	1.1880	-1.2908	26.08	-40.47	1566.28
0.5996	1.1565	-1.3910	16.87	-37.20	1535.61
0.6997	1.1185	-1.3677	10.05	-30.89	1354.71
0.7994	1.0744	-1.1586	6.003	-21.85	1170.53
0.8945	1.0248	-0.6999	3.271	-12.11	1189.36
1.0000	0.9606		1.536		
0.0000	1 2021	T = 29	93.15 K		
0.0000	1.3031	4.0.000	102.0		0=1.10
0.1000	1.2747	1.2430	75.74	-16.20	371.40
0.2000	1.2558	0.5846	57.09	-24.79	752.93
0.2998	1.2368	-0.3480	42.84	-29.00	1111.74
0.3970	1.2143	-0.9772	31.52	-30.54	1392.45
0.5045	1.1839	-1.3122	21.17	-30.09	1555.54
0.5996	1.1525	-1.4119	13.93	-27.75	1535.08
0.6997	1.1144	-1.3862	8.502	-23.12	1375.87
0.7994	1.0703	-1.1/38	5.207	-16.38	1215.10
0.8945	1.0207	-0.7095	2.905	-9.121	1251.75
1.0000	0.9565		1.415		

(continued on next page)

Table 3 (continued)

	40-3 11 -3	1061513 1-1	4.5		+ C*F(111 1-1-1
<i>x</i> ₁	$10^{-3} \cdot \rho/\text{kg} \cdot \text{m}^{-3}$	$10^{\circ} V^{\circ}/m^{\circ} mol^{-1}$	η/mPa·s	$\Delta \eta$ /mPa·s	$\Delta G^{L}/kJ \cdot kmol^{-1}$
		T = 2	298.15 K		
0.0000	1.2991		80.10		
0.1000	1.2706	1.2677	59.89	-12.33	345.14
0.2000	1.2518	0.5928	45.66	-18.68	711.40
0.2998	1.2327	-0.3594	34.75	-21.73	1061.57
0.3970	1.2102	-0.9981	25.94	-22.88	1334.03
0.5045	1.1799	-1.3351	17.76	-22.58	1494.97
0.5996	1.1484	-1.4346	11.92	-20.93	1475.33
0.6997	1.1104	-1.4084	7.419	-17.55	1312.15
0.7994	1.0662	-1.1919	4.615	-12.49	1137.95
0.8945	1.0166	-0.7197	2.627	-6.988	1158.39
1.0000	0.9523		1.302		
		T = 3	03.15 K		
0.0000	1.2951		64.02		
0.0200	1.2879				
0.0501	1.2811				
0.1000	1.2666	1.2844	48.11	-9.634	326.30
0.1402	1.2598				
0.1800	1.2535				
0.2000	1.2477	0.5943	37.00	-14.46	683.13
0.2998	1.2287	-0.3742	28.44	-16.76	1026.62
0.3970	1.2063	-1.0214	21.69	-17.40	1321.35
0.5045	1.1759	-1.3608	14.77	-17.56	1431.55
0.5996	1.1444	-1.4596	10.23	-16.13	1455.06
0.6997	1.1063	-1.4316	6.471	-13.60	1293.11
0.7994	1.0621	-1 2110	4 102	-9 705	1126.87
0.8945	1 0124	-0.7307	2 374	-5 459	1140 52
1 0000	0.9482	5.7507	1 206	-5.55	1170.32
1.0000	0.5-02	T = 2	1.200 808 15 K		
0.0000	1 2911	1-5	52 18		
0.0000	1.2511	1 30/1	30.48	7 590	315 /6
0.1000	1.2025	0.5072	20.60	-7.550	670.06
0.2000	1.2437	0.3973	22.00	-11.28	1010.28
0.2998	1,2248	-0.3901	23.90	-12.97	1019.38
0.3970	1.2023	-1.0467	18.27	-13.64	1291.05
0.5045	1.1/19	-1.3884	12.85	-13.57	1449.64
0.5996	1.1403	-1.4864	8.866	-12.70	1430.13
0.6997	1.1022	-1.4566	5./13	-10.74	12/9.2/
0.7994	1.0580	-1.2315	3.681	-7.684	1117.75
0.8945	1.0083	-0.7427	2.164	-4.346	1122.56
1.0000	0.9441		1.123		
		T = 3	13.15 K		
0.0000	1.2872		42.76		
0.1000	1.2585	1.3186	32.19	-6.397	271.51
0.2000	1.2397	1.3186	25.20	-9.214	615.60
0.2998	1.2208	-0.4045	19.91	-10.35	970.94
0.3970	1.1983	-1.0714	15.46	-10.74	1253.86
0.5045	1.1679	-1.4158	11.04	-10.68	1414.87
0.5996	1.1363	-1.5144	7.692	-10.06	1386.59
0.6997	1.0982	-1.4823	5.032	-8.547	1236.61
0.7994	1.0539	-1.2518	3.302	-6.119	1084.92
0.8945	1.0042	-0.7543	1.988	-3.467	1100.63
1.0000	0.9400		1.056		
		T = 3	18.15 K		
0.0000	1.2833		35.66		
0.1000	1.2545	1.3396	27.14	-5.056	276.02
0.2000	1.2357	0.6011	21.46	-7.271	622.74
0.2998	1.2169	-0.4217	17.10	-8.166	978.24
0.3970	1.1944	-1.0988	13.40	-8.499	1260.67
0.5045	1.1639	-1.4459	9.681	-8.485	1425.37
0.5996	1.1323	-1.5435	6.840	-8.028	1407.21
0.6997	1.0942	-1.5097	4.540	-6.856	1264.87
0.7994	1.0499	-1.2746	3 011	-4.927	1110 59
0.8945	1.0001	-0.7674	1 828	-2.812	1096 77
1.0000	0.9359	3.707 1	0 9805	2.012	1000.77
	0.0000	T = 3	23.15 K		
0.0000	1.2794	1 5	30.01		
0.1000	1.2504	1.3681	22.96	-4.136	266.25
0 2000	1 2318	0.6070	18 30	_5 888	610.47
0.2000	1 2129	_0.4390	14 72	-6 560	966 22
0.2990	1 1005	1 1270	14.72	-0.305	12/0 76
0.5570	1,1505	- 1.12/0	11.05	-0.820	1412.00
0.3043	1,1000	- 1.4/00	8.3UU 6.076	-0.832	1413,99
0.2990	1.1283	-1.5/32	b.U/b	-6.490	1399.12
0.6997	1.0901	-1.5382	4.088	-5.566	1261.94
0.7994	1.0458	-1.2983	2.747	-4.008	1110.92
0.8945	0.9960	-0.7797	1.692	-2.296	1091.35
1.0000	0.9318		0.9197		

Table 3 (continued)

<i>x</i> ₁	$10^{-3} \cdot \rho/\text{kg} \cdot \text{m}^{-3}$	$10^6 \cdot V^E/m^3 \cdot mol^{-1}$	η/mPa·s	$\Delta \eta/mPa \cdot s$	$\Delta G^{*E}/kJ\cdot kmol^{-1}$
		T = 32	28.15 K		
0.0000	1.2755		25.50		
0.1000	1.2464	1.3908	19.60	-3.433	255.31
0.2000	1.2278	0.6106	15.74	-4.831	597.38
0.2998	1.2090	-0.4568	12.77	-5.343	954.65
0.3970	1.1866	-1.1558	10.19	-5.533	1238.96
0.5045	1.1560	-1.5089	7.522	-5.548	1406.02
0 5996	1 1244	-1 6056	5 435	-5 292	1394.28
0.6997	1.0861	-1 5686	3 702	-4 560	1260.48
0.7994	1 0418	_1.3000	2 517	_3 289	1112 62
0.7554	0.0010	0.7926	1 569	1 805	1080.34
1,0000	0.9313	-0.7520	0.8649	-1.855	1080.54
1.0000	0.9277	T - 22	0.8045		
0.0000	1 2717	1 = 55	22.00		
0.0000	1.2/1/	1 4204	22.00	2.077	222.22
0.1000	1,2424	1.4204	10.91	-2.977	232.33
0.2000	1.2238	0.6169	13.64	-4.123	566.87
0.2998	1.2051	-0.4754	11.16	-4.494	925.85
0.3970	1.1827	-1.1864	8.982	-4.610	1214.73
0.5045	1.1521	-1.5420	6.706	-4.609	1386.63
0.5996	1.1204	-1.6379	4.896	-4.405	1378.65
0.6997	1.0821	-1.5993	3.365	-3.815	1242.59
0.7994	1.0377	-1.3481	2.311	-2.757	1094.46
0.8945	0.9878	-0.8064	1.463	-1.591	1046.80
1.0000	0.9235		0.8192		
		N N dimathulaniling	$(1) \pm [lmim][NTf 1 (2)]$		
		$T_{\rm T}$	(1) · [Dinung[191]2] (2) 88 15 K		
0.0000	1 4446	I = ZC	78 37		
0.0000	1.4227	0.2801	78.57 GE 1E	E E 29	F F 7 3 3
0.1000	1,4257	-0.2891	65.15	-5.556	1010.02
0.2000	1.3997	-0.5053	52.22	-10.78	1019.03
0.2993	1.3726	-0./182	40.50	-14.87	1384./1
0.4001	1.3411	-0.9475	30.39	-17.23	1674.77
0.5005	1.3048	-1.2035	21.72	-18.20	1829.72
0.5993	1.2619	-1.2987	15.08	-17.24	1887.68
0.7000	1.2093	-1.3047	9.887	-14.70	1808.45
0.7996	1.1450	-1.1091	6.069	-10.86	1543.05
0.8997	1.0640	-0.6753	3.332	-5.911	992.99
1.0000	0.9606		1.536		
		T = 29	03.15 K		
0.0000	1.4398		61.47		
0.1000	1.4189	-0.2991	51.31	-4.154	547.90
0.2000	1.3949	-0.5177	41.41	-8.043	1005.64
0.2993	1.3679	-0.7326	32.39	-11.11	1369.41
0.4001	1.3364	-0.9649	24.57	-12.87	1661.94
0.5005	1.3001	-1.2221	17.79	-13.62	1822.02
0 5993	1 2573	-1 3203	12.54	-12.94	1889 12
0.7000	1 2048	_1 3265	8 365	_11.07	1821.97
0.7006	1 1406	1 1276	5 249	8 200	1577.00
0.7550	1.0507	-1.1270	2,057	-8.200	1051.00
1,0000	0.0565	-0.0848	2.537	-4.401	1051.90
1.0000	0.5305	T – 20	1.415 Nº 15 K		
0.0000	1.4350	1 - 23	49 11		
0 1000	1 4141	-0 3017	41 27	_3 054	528 65
0.2000	1 3902	_0.5269	33.64	_5,004	972 55
0.2000	1.5502	-0.3209	33.04 36.64	-5.505	372,33
0.4001	1.2017	-0.7470	20.04	-0.100	1520.55
0.4001	1.3317	-0.9843	20.44	-9.030	1008.49
0.5005	1.2955	-1.2428	15.06	-10.12	1/68.26
0.5993	1.2527	-1.3423	10.77	-9.691	1826.60
0.7000	1.2003	-1.3471	/.288	-8.355	1/49.12
0.7996	1.1362	-1.1474	4.642	-6.239	1491.88
0.8997	1.0554	-0.7003	2.673	-3.423	967.00
1.0000	0.9523		1.302		
		T = 30	13.15 K		
0.0000	1.4302		39.95		
0.1000	1.4094	-0.3056	34.05	-2.029	539.73
0.2000	1.3855	-0.5378	27.97	-4.235	977.88
0.2993	1.3585	-0.7649	22.26	-6.099	1319.20
0.4001	1.3271	-1.0050	17.16	-7.286	1582.96
0.5005	1.2909	-1.2656	12.73	-7.829	1730.62
0.5993	1.2482	-1.3673	9.207	-7.525	1786.13
0.7000	1.1958	-1.3700	6,338	-6.492	1716.32
0.7996	1.1318	-1.1680	4,120	-4.851	1473 62
0.8997	1.0512	-0.7152	2.418	-2.674	954.69
1 0000	0.9482	5.7152	1 206	2.071	55 1.65
1.0000	0.0 102		1.200		

(continued on next page)

d)

<i>x</i> ₁	$10^{-3} \cdot \rho/\text{kg} \cdot \text{m}^{-3}$	$10^6 \cdot V^E / m^3 \cdot mol^{-1}$	η/mPa·s	$\Delta \eta/\mathrm{mPa}$ s	$\Delta G^{*E}/kJ\cdot kmol^{-1}$
		<i>T</i> = 3	08.15 K		
0.0000	1.4254		33.22		
0.1000	1.4046	-0.3129	28.31	-1.701	519.16
0.2000	1.3808	-0.5508	23.37	-3.430	948.20
0.2993	1.3538	-0.7821	18.75	-4.862	1287.20
0.4001	1.3224	-1.0260	14.66	-5.725	1559.92
0.5005	1.2863	-1.2894	10.96	-6.195	1702.38
0.5993	1.2437	-1.3926	8.018	-5.968	1758.74
0.7000	1.1913	-1.3971	5.585	-5.169	1688.69
0.7996	1.1274	-1.1896	3.684	-3.872	1450.58
0.8997	1.0469	-0.7278	2.205	-2.138	945.27
1.0000	0.9441		1.123		
10000		T = 3	13.15 K		
0.0000	1.4206		27.68		
0.1000	1.3999	-0.3157	23.60	-1.416	497.42
0.2000	1.3761	-0.5612	19.61	-2.749	917.88
0 2993	1 3492	-0.8014	15.88	-3.830	1255.82
0.4001	1 3178	1 0/00	12.50	4 527	1510 77
0.4001	1,0170	-1.0455	0.429	-4.527	1515.77
0.5005	1.2818	-1.3149	9.438	-4.916	1657.05
0.5993	1.2391	-1.4198	7.005	-4.720	1/21.27
0.7000	1.1869	-1.4219	4.931	-4.113	1645.85
0.7996	1.1231	-1.2123	3.299	-3.092	1409.96
0.8997	1.0427	-0.7434	2.028	-1.699	933.33
1.0000	0.9400		1.056		
		T = 3	18.15 K		
0.0000	1.4159		23.53		
0.1000	1.3951	-0.3141	20.23	-1.054	502.74
0 2000	1 3714	-0.5699	16 90	-2.121	922.46
0 2993	1 3445	_0.8216	13 77	_3.017	1256.82
0.2333	1 2122	10744	10.02	-5.017	1230.82
0.4001	1,5155	-1.0744	10.95	-5.585	1522.95
0.5005	1.2772	-1.3421	8.335	-3.911	1666.47
0.5993	1.2346	-1.4484	6.213	-3.805	1720.22
0.7000	1.1824	-1.4512	4.422	-3.325	1649.37
0.7996	1.1187	-1.2362	3.005	-2.495	1427.60
0.8997	1.0384	-0.7592	1.858	-1.385	936.04
1.0000	0.9359		0.9805		
		<i>T</i> = 32	23.15 K		
0.0000	1.4112		20.13		
0.1000	1.3905	-0.3270	17.37	-0.842	496.18
0.2000	1.3668	-0.5882	14.60	-1.694	912.20
0.2993	1.3399	-0.8422	11.97	-2.415	1244.95
0 4001	1 3087	-1 1008	9 561	-2.885	1508 12
0.5005	1 2727	-1 3697	7 359	_3 158	1652 75
0.5005	1 2202	1 4770	5 5 2 5	2 084	1052.75
0.3993	1.2302	-1.4775	2,000	-3.084	1/07.10
0.7000	1.1780	-1.4768	3.980	-2.705	1037.50
0.7996	1.1144	-1.2600	2.739	-2.031	1421.//
0.8997	1.0342	-0.7756	1.716	-1.131	933.81
1.0000	0.9318		0.9197		
		T = 32	28.15 K		
0.0000	1.4065		17.39		
0.1000	1.3858	-0.3336	15.09	-0.6463	496.20
0.2000	1.3621	-0.6029	12.74	-1.347	907.35
0.2993	1.3354	-0.8638	10.49	-1.953	1234.43
0.4001	1,3042	-1.1286	8.443	-2.334	1498.49
0.5005	1.2682	-1.3985	6.548	-2.571	1642.49
0 5993	1 2257	_1 5090	4 976	_2.571	1702 00
0.3553	1.2237	- 1.5030	4.570	-2.310	1/02.90
0.7000	1.1/30	- 1.3001	3.621	-2.201	1041.43
0./996	1.1100	-1.2852	2.504	-1.672	1412.61
0.8997	1.0299	-0.7924	1.591	-0.9307	933.12
1.0000	0.9277		0.8649		
		T = 33	33.15 K		
0.0000	1.4019		15.20		
0.1000	1.3812	-0.3417	13.19	-0.5719	481.38
0.2000	1.3575	-0.6184	11.19	-1.132	890.89
0.2993	1.3308	-0.8857	9,288	-1.610	1221.22
0.4001	1 2996	-1 1551	7 516	-1 932	1481 48
0.5005	1 2637	1.1331	5 961	2 140	1677.71
0.0000	1,2037	-1.4240	J.004	-2.140	1022.21
0.2993	1.2213	- 1.5403	4.494	-2.089	1684.99
0.7000	1.1692	-1.5362	3.288	-1.846	1615.48
0.7996	1.1057	-1.3107	2.299	-1.403	1390.64
0.8997	1.0257	-0.8084	1.485	-0.7771	927.32
1.0000	0.9235		0.8192		

^a Standard uncertainties *u* are: $u(x_1) = \pm 1 \times 10^{-4}$; u(T) = 0.01 K; u(p) = 0.005 MPa; $u(\rho) = 1$ kg·m⁻³, and relative standard uncertainty $u_r(\eta) = 2.2\%$ with 68% level of confidence.

Table 4

Parameters A_p of Eq. (4) and the corresponding RMSD σ for binary mixtures aniline + [bmim][OTf], aniline + [bmim][NTf₂], N,N-dimethylaniline + [bmim][OTf] and N,N-dimethylaniline + [bmim][NTf₂] at temperature T and at atmospheric pressure (0.1 MPa).

	T/K	A ₀	<i>A</i> ₁	<i>A</i> ₂	<i>A</i> ₃	A_4	σ
			Aniline (1) + [bm	nim][OTf] (2)			
$10^{6} \cdot V^{E}/m^{3} \cdot mol^{-1}$	288.15	-4.0543	-3.4438	-2.6990	-0.6542	4.6855	0.0005
	293.15	-4.1633	-3.4986	-2.8005	-0.8045	4.7230	0.0005
	298.15	-4.2808	-3.5462	-2.9184	-0.9557	4.7625	0.0005
	303.15	-4.4043	-3.5726	-3.0747	-1.1669	4.8750	0.0005
	308.15	-4.5336	-3.6343	-3.1610	-1.2889	4.8614	0.0005
	318.15	-4.0390	-3 7471	-3 3987	-1.42.54	4.8858	0.0005
	323.15	-4.9248	-3.8054	-3.51978	-1.7451	4.9897	0.0005
	328.15	-5.0638	-3.8680	-3.6398	-1.9050	5.0421	0.0005
	333.15	-5.2014	-3.9355	-3.7667	-2.0743	5.1126	0.0005
$\Delta \eta$ /mPa·s	288.15	-88.543	14.086	-24.932	-15.783		0.8035
	293.15	-66.365	8.9851	-15.764	-13.350		0.3716
	298.15	-50.036	7.7725	-9.5124	-15.245		0.3694
	303.15	-38.555	5.4886	-4.1468	-15.452		0.2621
	308.15	-30.130	4.5578	-5.0643	- 10.985		0.1900
	318 15	-23.823	2 4783	-3.1857	-9.4493		0.1439
	323 15	-14 844	2.0073	-2 5636	-6.0688		0.0699
	328.15	-11.985	2.3661	-1.3797	-8.0764		0.0381
	333.15	-9.6898	2.5164	-2.4921	-6.7383		0.0268
$\Delta G^{*E}/kJ\cdot kmol^{-1}$	288.15	5727.55	1236.62	-654.88			8.4515
	293.15	5652.81	1159.85	-541.79			8.0588
	298.15	5612.91	1248.98	-231.22			7.6932
	303.15	5579.37	1208.75	42.53			7.3238
	308.15	5580.75	1347.40	0.68			7.1086
	313.15	5700.06	1347.54	-418.21			17.4500
	323.15	5791 75	1738.61	63 51			13 3994
	328.15	5728.05	1499.85	-35.05			18.6463
	333.15	5750.16	1572.30	-281.40			20.6359
			Aniline (1) + [hm	iml[NTf_1(2)			
$10^{6} \cdot V^{E} / m^{3} \cdot mol^{-1}$	288 15	-32746	-1.8072	3 2 2 8 4	-4 5865		0.0131
	293.15	-3.3693	-1.8543	3.2853	-4.9093		0.0136
	298.15	-3.4665	-1.9029	3.3294	-5.2108		0.0149
	303.15	-3.5767	-1.9149	3.5199	-5.6376		0.0160
	308.15	-3.6894	-1.9690	3.6484	-5.9795		0.0182
	313.15	-3.7942	-1.9678	3.7537	-6.4290		0.0215
	318.15	-3.9137	-2.0095	3.8299	-6.7654		0.0232
	323.15	-4.0301	-2.0518	3.8468	-7.0265		0.0253
	328.15	-4.1447	-2.0859	3.7974	- 7.2624		0.0267
A w/mPa s	333.15	-4.2490	-2.1559	3.0304	-7.3083		0.0276
	200.15	-31 967	4 7498	-6 7242			0.1476
	298.15	-23.557	1.8537	-3.2639			0.1442
	303.15	-18.034	2.3201	-3.6879			0.0987
	308.15	-14.255	1.5303	-2.7278			0.0984
	313.15	-11.345	1.0783	-2.0967			0.0873
	318.15	-8.9272	0.8051	-1.5880			0.0784
	323.15	-7.1915	0.6233	-1.0178			0.0628
	328.15	-5.8313	0.4264	-0.7793			0.0556
$\Delta C^{*E}/kI \ kmol^{-1}$	333.13	-4.8032	0.3001	-0.7522			0.0494
	200.15	5562.91	2713.43	964 18			17 0730
	298.15	5649.67	2752.65	1259.23			20.0153
	303.15	5707.56	2907.29	1224.87			17.1330
	308.15	5744.36	2910.44	1305.61			19.6058
	313.15	5718.76	2838.92	1269.74			21.2901
	318.15	5823.93	2969.81	1458.38			22.1407
	323.15	5860.02	2997.13	1552.07			22.4089
	328.15	5891.19	2999.15	1577.16			22.4089
	333.15	5932.26	3005.31	1530.51			22.3447
6 5 3			N,N-dimethylaniline (1) + [bmim][OTf] (2)			
10 ⁶ • <i>v</i> [£] /m ³ ·mol [−]	288.15	-5.1289	-3.7663	4.5686	-14.7340	13.1024	0.0002
	293.15	-5.2131	-3.7880	4.6294	-14.8872	13.2061	0.0004
	298.15	-5.3073	-3.7884	4.6846	-15.2668	13.5444	0.0002
	303.15	-5.4098	-3.7939	4.7082	-15.5494	13.8445	0.0002
	308.15	-5.5214	-3./914	4./595	- 15.8950	14.1445	0.0005
	312.13	-3.0334 -5.7526	-2.0209	4.0200	-10.1247	14.0014	0.0006
	373 15	-5.7520	-3.8242	4 8314	-16 92 27	15 2925	0.0003
	328.15	-6.0044	-3.8389	4.8712	-17.2720	15.6872	0.0005
	333.15	-6.1374	-3.8355	4.8835	-17.7386	16.2187	0.0006

Table 4 (continued)

	T/K	A ₀	<i>A</i> ₁	<i>A</i> ₂	<i>A</i> ₃	<i>A</i> ₄	σ
$\Delta \eta$ /mPa·s	288.15	-162.22	41.275	-31.598	57.704		0.3107
	293.15	-120.53	28.010	-22.178	44.484		0.2649
	298.15	-90.500	19.011	-18.954	37.285		0.2138
	303.15	-69.504	14.020	-17.621	28.649		0.1725
	308.15	-54.267	8.9613	-13.746	27.486		0.1611
	313.15	-42.742	6.2858	-14.223	27.575		0.1543
	318.15	-33.881	4.2946	-12.072	21.325		0.1007
	323.15	-27.292	2.9124	-10.317	19.052		0.0975
	328.15	-22.210	1.9401	-8.6682	17.221		0.1041
	333.15	-18.436	1.6088	-8.5216	15.025		0.0757
$\Delta G^{*E}/kJ\cdot kmol^{-1}$	288.15	6195.49	1989.33	-570.71			26.9528
	293.15	6163.43	2210.71	-164.92			32.5902
	298.15	5924.80	2055.07	-505.48			26.8703
	303.15	5780.59	2145.93	-456.51			32.9596
	308.15	5748.48	2134.82	-565.65			31.5798
	313.15	5602.05	2218.14	-943.61			37.5740
	318.15	5650.58	2323.18	-794.65			36.2771
	323.15	5609.20	2383.41	-791.50			37.4232
	328.15	5580.40	2455.21	-817.90			38.5494
	333.15	5504.67	2523.02	-1025.49			37.6908
		Ν	I,N-dimethylaniline (1)	+ [bmim][NTf ₂] (2)			
10 ⁶ •V ^E /m ³ ⋅mol [−]	288.15	-4.6472	-3.7438	-1.0962	1.6778		0.0410
	293.15	-4.7234	-3.8096	-1.1454	1.7862		0.0404
	298.15	-4.8037	-3.8246	-1.1765	1.6694		0.0409
	303.15	-4.8955	-3.8455	-1.1966	1.5835		0.0407
	308.15	-5.0026	-3.9030	-1.2022	1.6165		0.0380
	313.15	-5.1046	-3.9282	-1.2012	1.5167		0.0379
	318.15	-5.2366	-3.9573	-1.1186	1.3745		0.0330
	323.15	-5.3282	-3.9900	-1.2302	1.3869		0.0367
	328.15	-5.4476	-4.0259	-1.2452	1.3332		0.0356
	333.15	-5.5678	-4.0741	-1.2668	1.3236		0.0316
$\Delta \eta$ /mPa·s	288.15	-72.785	2.4244	14.472	-7.6696		0.1984
	293.15	-54.446	1.0967	10.2844	-5.1597		0.0489
	298.15	-40.495	-0.5991	7.1285	-2.9692		0.0821
	303.15	-31.312	-1.5597	8.1687	-4.4809		0.0677
	308.15	-24.774	-1.3835	5.4580	-2.4964		0.0984
	313.15	-19.477	-1.5518	3.4406	-0.5881		0.0612
	318.15	-15.642	-1.6416	3.3045	-0.9872		0.0581
	323.15	-12.624	-1.5975	2.6386	-0.5883		0.0438
	328.15	-10.280	-1.28678	2.3834	-1.0626		0.0471
-*F	333.15	-8.4808	-1.3960	1.5564	-0.0256		0.0288
$\Delta G^{L}/kJ\cdot kmol^{-1}$	288.15	7314.83	2671.43	1962.09			21.2393
	293.15	7285.33	2936.64	2281.26			31.9475
	298.15	/064.92	2661.06	1811.14			21.2545
	303.15	6919.69	2527.89	20/9.04			20.5495
	308.15	6808.88	2567.73	1963.82			23.7784
	313.15	6641.17	2538.31	18/0./1			27.2068
	318.15	6665.53	2567.79	1922.90			26.9087
	323.15	6608.37	2585.40	1937.03			27.6569
	328.15	6499.27	2589.87	1985.08			24.8779
	333.13	0400.37	23/0./8	1097.92			28.7549

absolute V^{E} values in the minima regions increase with increasing temperature from 288.15 K to 333.15 K.

Viscosity deviations are plotted vs. x_1 mole fractions along with the values calculated from the RK polynomial (Fig. 4). All the systems exhibit negative $\Delta \eta$ values. Absolute $\Delta \eta$ values decrease with increasing temperature from 288.15 K to 333.15 K for all the investigated completely miscible binary mixtures.

Fig. 5 gives the RK curves representing the calculated values for the excess molar Gibbs energies of activation of viscous flow ΔG^{*E} for three completely miscible systems studied. Due to visibility reasons, the curves are given for five selected isotherms. As the figure shows the ΔG^{*E} values are positive for all the studied fully miscible systems.

4. Discussion

Mixtures studied herein consist of complex polar and hydrogen bonding compounds, thus available to form diverse interactions between like and unlike molecules. The outcome of the interplay between these interactions is strongly linked to the deviation from the ideal behaviour of such mixtures and, thus, to the related excess thermodynamic properties or deviation functions. The latter can be explained and interpreted on the bases of the existing interactions [81–84].

4.1. Analysis of the interactions between unlike and like molecules existing in the studied mixtures

Aniline and *N*,*N*-dimethylaniline are both polar compounds with dipole moments 1.59 D and 1.55 D, respectively [85], thus enabling dipole-dipole or ion-dipole interactions. Considering partially negatively charged nitrogen and partially positive charged hydrogen atoms from the amine group, it is evident that aniline can be both hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) (see hydrogen bond acidity α (HBD ability) and hydrogen bond basicity β (HBA ability) parameters of aniline given

Fig. 3. Experimental values of excess molar volume V^{E} as a function of aniline/*N*,*N*-dimethylaniline mole fraction x_1 for the systems: (a) aniline (1) + [bmim][NTf₂] (2); (b) *N*, *N*-dimethylaniline (1) + [bmim][OTf] (2); (c) *N*,*N*-dimethylaniline (1) + [bmim][NTf₂] (2) at following temperatures: (\diamond) 288.15 K, (\bigcirc) 298.15 K, (\triangle) 308.15 K, (\square) 318.15 K, (∇) 328 K, (--) RK equation.

in Table 5). However, without the available hydrogen atoms, *N*,*N*-dimethylaniline is only a hydrogen bond acceptor (α value is zero, Table 5).Thus, both aniline and *N*,*N*-dimethylaniline can form hydrogen bonds with aniline having more possibilities in this respect.

For the ionic liquids the situation is far more complex, considering their features listed in the introduction. Imidazolium based ILs [C₄mim][OTf] and [C₄mim][NTf₂] both have imidazolium cation which acts as proton donor through the acidic hydrogen atom placed between two nitrogen atoms in the imidazolium ring thus, it can build hydrogen bonds with proton acceptors [15]. This is in agreement with the hydrogen bond acidities of ionic liquids (α) listed in Table 5, in which their cations play the principle role [18,88]. Further on, both studied ionic liquids are also proton acceptors through their anions (the respective hydrogen bond basicities β given in Table 5 are mainly anion controlled [18,88]). Finally, as briefly stated in the introduction, the imidazoliumionic liquids form specific cation and anion interactions with the aromatic arene ring which result in the formation of cage-like structures - liquid clathrates in solutions [21-23]. The specific anion/ arene ring interactions are provided between the oxygen atoms in the anion and the hydrogen in the arene ring. These interactions are stronger and more numerous in the case of [NTf₂]⁻ anion compared to $[OTf]^-$, mainly due to higher number of oxygen atoms [89]. Thus, aromatic compounds exhibit better solubility in the imidazolium ionic liquids having $[NTf_2]^-$ anions [80,89,90].

Interactions between the like-molecules in the studied solutions deserve attention as well. Thus, the shifts in vibration bands of the NH₂-group to shorter wave-lengths [91] as well as the association constant and enthalpy derived from the excess Gibbs energy of mixing indicate aniline self-association. This is achieved mainly via N-H-N hydrogen bonds though dipole-dipole interactions should not be excluded either [92]. However, no selfassociation occurs in N,N-dimethylaniline. Also, in ionic liquids, cation-anion interactions exist, as a result of subtle balance between hydrogen bonds, Coulomb forces and dispersion interactions between alkyl chains [16]. Thus, spectroscopic studies [93,94] show that the overall cation-anion interactions are stronger for the [C_nmim][OTf] than for the [C_nmim][NTF₂] ionic liquids. Another fine balance, this time between ion-solvent and cationanion, brings ion-pairing in ionic liquids [16]. Thus, the detailed analysis of [C₄mim][OTf] on the molecular level [95] reveals that anion pairing occurs through the CF₃ moieties of the two [OTf]⁻ anions. So, two anions are surrounded by a cation cage that is composed of nine [C_nmim]⁺ cations, in average. Analysis of the [C_nmim] [NTf₂] by the infra-red (IR) spectroscopy revealed both association

Fig. 4. Experimental values of viscosity deviation $\Delta\eta$ as a function of aniline/*N*,*N*-dimethylaniline mole fraction x_1 for the systems: (a) aniline (1) + [bmim][NTf_2] (2); (b) *N*,*N*-dimethylaniline (1) + [bmim][OTf_2] (2); (c) *N*,*N*-dimethylaniline (1) + [bmim][NTf_2] (2) at following temperatures: (\Diamond) 288.15 K, (\blacklozenge) 293.15 K, (\bigcirc) 298.15 K, (\diamondsuit) 303.15 K, (\triangle) 308.15 K, (\blacktriangle) 313.15 K, (\square) 313.15 K, (\square) 313.15 K, (\square) 323.15 K, (\bigtriangledown) 328 K, (\bigtriangledown) 338 K, (--) RK equation.

of imidazolium ions in ion pairs or clusters and their dissociation into free ions or smaller clusters [96]. From these two studies one can conclude that the association through ion-pairing may be stronger in the $[C_4mim][OTf]$ than in $[C_4mim][NTf_2]$ due to the dissociation process present only in the latter.

Considering the interactions outlined and discussed above one can analyze the obtained excess molar volumes and deviations in viscosity behaviour for the studied systems.

4.2. Analyses of the excess molar volumes

Negative V^E values (Fig. 3) are mainly the consequence of three groups of attractive interactions between unlike molecules, analysed above: (i) hydrogen bonding between ionic liquid and anilines, (ii) aforementioned specific cation-arene and anion-arene interactions which enabled cage-like structures and (iii) iondipole interactions between ionic liquids and polar molecules of both anilines. These interactions led to more efficient packing in the mixture compared to the pure liquids, eased by the difference in the molecular size existing in all the mixtures (see the molar volume ratios in Table 6).

However, the positive V^E values seen in Fig. 3(a) and (b) are the result of the dominance of the aforementioned interactions existing

between the like molecules in the studied systems - aniline association, cation-anion interactions and ion-pairing in ionic liquids which prevailed over the attractive interactions between unlike molecules. Indeed, the expansion upon mixing is always observed in the mixtures rich with ionic liquids, due to the cation-anion interactions which are coupled with ion - pairing (see above). Much lower positive values of V^E in the ionic liquid rich mixtures of aniline + $[bmim][NTf_2]$ compared to the positive ones in the N,Ndimethylaniline+[bmim][OTf] system (see Fig. 3(a) and (b)) may be addressed to the aforementioned stronger cation-anion interactions in and more stable ion-pairing in the [bmim][OTf] ionic liquid. These distinctions along with the association of aniline (but not *N*, *N*-dimethylaniline) and weaker specific cation/anion interactions with the arene aromatic ring in the case of [bmim][OTf] ionic liquid (see above) were the reasons that stand behind the immiscibility exhibited in the system (aniline +[bmim][OTf]).

4.3. Analysis of viscosity behaviour

Meyer et al. [97] stated that the sign of the excess molar Gibbs energy of activation of viscous flow ΔG^{*E} are generally linked to the excess molar Gibbs energy of mixing, but its sign has the opposite physical significance to the nature of intermolecular interactions:

Fig. 5. RK lines of excess molar Gibbs energy of activation of viscous flow $\triangle G^{*E}$ as a function of aniline/*N*,*N*-dimethylaniline mole fraction x_1 for the systems: (a) aniline (1) + [bmim][NTf_2] (2); (b) *N*,*N*-dimethylaniline (1) + [bmim][OTf] (2); (c) *N*,*N*-dimethylaniline (1) + [bmim][NTf_2] (2) at following temperatures: (--) 288.15 K, (-) 298.15 K, (---) 318.15 K, (---) 318.

Table 5

Dipole moments and hydrogen bond acidity and basicity for the studied solvents and solutes.

Chemical	α	β	μ/D
Aniline	0.264 ^a	0.38 ^b	1.51 ^c
N,N-dimethylaniline	0.00 ^a	0.35 ^b	1.61 ^c
[bmim][OTf]	0.625 ^d	0.464 ^d	-
[bmim][NTf2]	0.617 ^d	0.243 ^d	-

^a Abraham et al. [86].

^b Abraham et al. [87].

^c Fischer [85].

^d Crowhurst et al. [18].

positive values indicate the presence of strong, attractive interactions between unlike molecules while negative values show their absence and the domination of interactions between like molecules. Indeed, this property, as Eq. (4) shows, includes both volumetric and viscosity data thus establishing a more complete resort to the interaction analysis and discussion. However, along with the ΔG^{*E} function, it is also important to consider enthalpy and entropic contributions to ΔG^{*E} , particularly in the case of the systems in which molecules differ by size, such as the present ones and those we studied recently [24]. Namely, if one obtained the value of the ΔG^{*E} via Eq. (4) the other two related excess properties of activation of viscous flow are calculated using the equations:

$$\Delta S^{*E} = -\left[\frac{\partial(\Delta G^{*E})}{\partial T}\right]_{p,x}$$
(7)

$$\Delta G^{*E} + T\Delta S^{*E} = \Delta H^{*E} \tag{8}$$

Thus, Fig. 5 presents excess molar Gibbs energies of activation of viscous flow for five of ten studied isotherms due to visibility reasons. Table 6 presents all three excess molar properties of activation of viscous flow, calculated for three studied systems which exhibited complete miscibility, at the same composition –aniline/N,N-dimethylaniline mole fraction equals 0.6. The positive values of ΔG^{*E} and ΔH^{*E} indicate strong attractive interactions in three

Table 6

Excess molar properties of activation of viscous flow at 298.15 K for mixtures of the same composition ($x_1 = 0.6$): Gibbs energy ($\Delta G^{^{T}E}$), entropy ($\Delta S^{^{T}E}$), enthalpy ($\Delta H^{^{T}E}$) and entropy-related energetic term $T\Delta S^{^{T}E}$.

$\Delta G^{*E}/kJ\cdot kmol^{-1}$	$\Delta S^{*E}/kJ\cdot kmol^{-1}\cdot K^{-1}$	$T\Delta S^{*E}/kJ\cdot kmol^{-1}$	$\Delta H^{*E}/kJ\cdot kmol^{-1}$	Vm_2/Vm_1^a
		Aniline (1) + $[C_4 mim][NTf_2]$ (2)		
1492.17	-2.3305	-694.49	797.68	3.2
1 475 22	2.2617	limethylaniline (1) + $[C_4 mim][OTf]$ (2)	2477 11	17
14/5.32	3.3617	1001.79	2477.11	1.7
1826.6	N,N-a	limethylaniline (1) + $[C_4 mim][NTf_2]$ (2) 1359 71	3186 31	23
1820.0	4.5020	1555.71	5180.51	2.5

^a Molar volume ratio at 298.15 K.

mixtures, particularly in the system *N*,*N*-dimethylaniline + [Bmim] [NTf₂] and are in the agreement with the values of the negative excess molar volumes presented in Fig. 3. Negative excess molar entropies of activation of viscous flow for the system aniline + [Bmim][NTf₂] are mainly the consequence of the difference in the size of the molecules and make an important contribution to the positive value of ΔG^{*E} .

Negative deviations in viscosity presented in Fig. 4 are the result of the aforementioned ion aggregations in ionic liquids but do not reflect the overall existing interactions. Thus, if aniline or *N*,*N*-dimethylaniline are included in interstices of the ion aggregates there will be a fewer surfaces available for friction that may result in the reduction of viscosity [98]. Considering that *N*,*N*-dimethylaniline cannot self-associate it is expected more efficient packing into IL's ion aggregates comparing to aniline which can self-associate through hydrogen bonds (see above). This can explain high values of viscosity deviations for the systems with *N*,*N*-dimethylaniline.

5. Conclusions

In this paper, density ρ and viscosity η values for four binary mixtures {aniline + [bmim][OTf]}, {*N*,*N*-dimethylaniline + [bmim][OTf]}, {aniline + [bmim][NTf₂]} and {*N*,*N*-dimethylaniline + [bmim][NTf₂]}, measured at atmospheric pressure and at temperatures ranging from 288.15 K to 333.15 K with a step of 5 K, are presented. Excess molar volumes V^{E} , deviation functions of viscosity $\Delta \eta$, as well as excess molar Gibbs energies of activation of viscous flow $\Delta G^{*\text{E}}$, calculated from the experimental results and correlated by the Redlich-Kister equation, are discussed on the basis of the molecular interactions between like and unlike molecules existing in the studied mixtures.

Generally highly negative excess molar volumes V^{E} , as well positive excess molar Gibbs energies ΔG^{*E} and excess molar enthalpies of activation of viscous flow ΔH^{*E} indicate the domination of strong, attractive interactions between unlike molecules – Coulomb forces, hydrogen bonding and ion-dipole interactions. These prevail over the association of aniline molecules, ion-pairing and cation-anion interactions existing with the molecules of the pure compounds. However, the difference in size of unlike molecules significantly contributes to positive ΔG^{*E} in the case of the system {aniline + [Bmim][NTf₂]} and has to be taken into account.

This study clearly shows that only the simultaneous analysis of excess molar volumes, excess molar Gibbs free energies, excess molar enthalpies and excess molar entropies of activation of viscous flow can give a thorough description of molecular interactions existing in a mixture, particularly if the component molecules differ in size.

Acknowledgements

The authors gratefully acknowledge the financial support received from the Research Fund of Ministry of Education, Science and Technological Development, Serbia and the Faculty of Technology and Metallurgy, University of Belgrade (project No 172063).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jct.2017.02.007.

References

- D.R. MacFarlane, K.R. Seddon, Ionic liquids-progress on the fundamental issues, Aust. J. Chem. 60 (2007) 3–5, http://dx.doi.org/10.1071/CH06478.
- [2] Y.U. Paulechka, G.J. Kabo, A.V. Blokhin, O.A. Vydrov, J.W. Magee, M. Frenkel, Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state *†*, J. Chem. Eng. Data 48 (2003) 457–462, http://dx.doi.org/10.1021/je025591i.
- [3] L.P.N. Rebelo, J.N. Canongia Lopes, J.M.S.S. Esperança, E. Filipe, On the critical temperature, normal boiling point, and vapour pressure of ionic liquids, J. Phys. Chem. B 109 (2005) 6040–6043, http://dx.doi.org/10.1021/jp050430h.
- [4] L.P.N. Rebelo, J.N.C. Lopes, J.M.S.S. Esperança, H.J.R. Guedes, J. Łachwa, V. Najdanovic-Visak, Z.P. Visak, Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint, Acc. Chem. Res. 40 (2007) 1114–1121, http://dx.doi.org/10.1021/ar7000556.
- [5] Z.P. Visak, M.S. Calado, J.M. Vuksanovic, G.R. Ivanis, A.S.H. Branco, N.D. Grozdanic, M.L. Kijevcanin, S.P. Serbanovic, Solutions of ionic liquids with diverse aliphatic and aromatic solutes – Phase behaviour and potentials for applications: a review article, Arab. J. Chem. (2014), http://dx.doi.org/10.1016/ j.arabic.2014.10.003.
- [6] Z.P. Visak, Some aspects of ionic liquids as diverse and versatile sustainable solvents, J. Solution Chem. 41 (2012) 1673–1695, http://dx.doi.org/10.1007/ s10953-012-9899-z.
- [7] J. Wang, Y. Pei, Y. Zhao, Z. Hu, Recovery of amino acids by imidazolium based ionic liquids from aqueous media, Green Chem. 7 (2005) 196–202, http://dx. doi.org/10.1039/b415842c.
- [8] L.I.N. Tomé, V.R. Catambas, A.R.R. Teles, M.G. Freire, I.M. Marrucho, J.A.P. Coutinho, Tryptophan extraction using hydrophobic ionic liquids, Sep. Purif. Technol. 72 (2010) 167–173, http://dx.doi.org/10.1016/j.seppur.2010.02.002.
- [9] Y. Pei, Z. Li, L. Liu, J. Wang, Partitioning behaviour of amino acids in aqueous two-phase systems formed by imidazolium ionic liquid and dipotassium hydrogen phosphate, J. Chromatogr. A 1231 (2012) 2–7, http://dx.doi.org/ 10.1016/j.chroma.2012.01.087.
- [10] A.P. Carneiro, O. Rodríguez, E.A. Macedo, Solubility of monosaccharides in ionic liquids – experimental data and modeling, Fluid Phase Equilib. 314 (2012) 22– 28, http://dx.doi.org/10.1016/j.fluid.2011.10.011.
- [11] H. Yan, J. Wu, G. Dai, A. Zhong, H. Chen, J. Yang, D. Han, Interaction mechanisms of ionic liquids [Cnmim]Br (n = 4, 6, 8, 10) with bovine serum albumin, J. Lumin. 132 (2012) 622–628, http://dx.doi.org/10.1016/j. jlumin.2011.10.026.
- [12] X. Ni, H. Xing, Q. Yang, J. Wang, B. Su, Z. Bao, Y. Yang, Q. Ren, Selective liquidliquid extraction of natural phenolic compounds using amino acid ionic liquids: a case of α-tocopherol and methyl linoleate separation, Ind. Eng. Chem. Res. 51 (2012) 6480–6488, http://dx.doi.org/10.1021/ie201682h.
- [13] H. Yan, M. Gao, J. Qiao, New ionic liquid modified polymeric microspheres for solid-phase extraction of four Sudan dyes in foodstuff samples, J. Agric. Food Chem. 60 (2012) 6907–6912, http://dx.doi.org/10.1021/jf301224t.
- [14] M.S. Manic, V. Najdanovic-Visak, M.N. da Ponte, Z.P. Visak, Extraction of free fatty acids from soybean oil using ionic liquids or poly(ethyleneglycol)s, AIChE J. 57 (2011) 1344–1355, http://dx.doi.org/10.1002/aic.12349.
- [15] J.M. Crosthwaite, S.N.V.K. Aki, E.J. Maginn, J.F. Brennecke, Liquid phase behaviour of imidazolium-based ionic liquids with alcohols, J. Phys. Chem. B 108 (2004) 5113–5119. http://www.scopus.com/inward/record.url?eid=2-s2. 0-2342558605&partnerID=tZOtx3y1.
- [16] K. Fumino, S. Reimann, R. Ludwig, Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces, Phys. Chem. Chem. Phys. 16 (2014) 21903–21929, http://dx.doi.org/10.1039/c4cp01476f.

- [17] J. Wang, Y. Tian, Y. Zhao, K. Zhuo, A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and N,N-dimethylformamide, Green Chem. 5 (2003) 618, http://dx.doi.org/10.1039/b303735e.
- [18] L. Crowhurst, P.R. Mawdsley, J.M. Perez-arlandis, P.A. Salter, T. Welton, Solvent-solute interactions in ionic liquids, Phys. Chem. Chem. Phys. 5 (2003) 2790–2794, http://dx.doi.org/10.1039/b303095d.
- [19] L. Cammarata, S.G. Kazarian, P.A. Salter, T. Welton, Molecular states of water in room temperature ionic liquids, Phys. Chem. Chem. Phys. 3 (2001) 5192–5200, http://dx.doi.org/10.1039/b106900d.
- [20] U. Domańska, L.M. Casás, Solubility of phosphonium ionic liquid in alcohols, benzene, and alkylbenzenes, J. Phys. Chem. B 111 (2007) 4109–4115, http://dx. doi.org/10.1021/jp070293j.
- [21] J.D. Holbrey, W.M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre, R.D. Rogers, Liquid clathrate formation in ionic liquid-aromatic mixtures, Chem. Commun. 9 (2003) 476–477.
- [22] M. Deetlefs, C. Hardacre, M. Nieuwenhuyzen, O. Sheppard, A.K. Soper, Structure of ionic liquid-benzene mixtures, J. Phys. Chem. B 109 (2005) 1593–1598, http://dx.doi.org/10.1021/jp047742p.
- [23] J. Lachwa, I. Bento, M.T. Duarte, J.N.C. Lopes, L.P.N. Rebelo, Condensed phase behaviour of ionic liquid-benzene mixtures: congruent melting of a [emim] [NTf2].C6H6 inclusion crystal, Chem. Commun. (Camb). (2006) 2445–2447. http://dx.doi.org/10.1039/b602675c.
- [24] M.S. Calado, A.S.H. Branco, J.C.F. Diogo, J.M.N.A. Fareleira, Z.P. Visak, Solubility, volumetric properties and viscosity of the sustainable systems of liquid poly (ethylene glycol) 200 with imidazolium- and phosphonium-based ionic liquids: cation and anion effects, J. Chem. Thermodyn. 80 (2015) 79–91, http://dx.doi.org/10.1016/j.jct.2014.08.018.
- [25] M.S. Calado, G.R. Ivanis, J.M. Vuksanovic, M.L. Kijevcanin, S.P. Serbanovic, Z.P. Visak, "Green Meets Green" Sustainable solutions of imidazolium and phosphonium ionic liquids with poly(ethylene glycol): solubility and phase behaviour, Fluid Phase Equilib. 344 (2013) 6–12, http://dx.doi.org/10.1016/j. fluid.2013.01.019.
- [26] N.D. Grozdanic, V. Najdanovic-Visak, M.L. Kijevcanin, S.P. Serbanovic, M. Nunes da Ponte, Z.P. Visak, Liquid-liquid phase equilibria in nicotine (aqueous) solutions, Fluid Phase Equilib. 310 (2011) 198–206, http://dx.doi.org/10.1016/j.fluid.2011.08.022.
- [27] J.M. Vuksanovic, M.S. Calado, G.R. Ivanis, M.L. Kijevcanin, S.P. Serbanovic, Z.P. Visak, Environmentally friendly solutions of liquid poly(ethylene glycol) and imidazolium based ionic liquids with bistriflamide and triflate anions: Volumetric and viscosity studies, Fluid Phase Equilib. 352 (2013) 100–109, http://dx.doi.org/10.1016/j.fluid.2013.05.013.
- [28] O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem. 40 (1948) 345–348, http:// dx.doi.org/10.1021/ie50458a036.
- [29] I. Alonso, I. Mozo, I.G. De La Fuente, J.A. González, J.C. Cobos, Thermodynamics of ketone+amine mixtures 7. Volumetric and speed of sound data at (293.15, 298.15 and 303.15) K for 2-pentanone+aniline, +N-methylaniline, or +pyridine systems, J. Mol. Liq. 160 (2011) 180–186, http://dx.doi.org/10.1016/ j.molliq.2011.03.015.
- [30] N.G. Tsierkezos, M.M. Palaiologou, I.E. Molinou, Densities and viscosities of 1pentanol binary mixtures at 293.15 K, J. Chem. Eng. Data 45 (2000) 272–275, http://dx.doi.org/10.1021/je9902138.
- [31] H. Migel Katz, P.W. Lobo, S.A. Minano, Solimo, Viscosities, densities, and refractive indices of binary liquid mixtures, Can. J. Chem. (1971) 2605–2609.
- [32] S.J. Kharat, P.S. Nikam, Density and viscosity studies of binary mixtures of aniline+benzene and ternary mixtures of (aniline+benzene+N,Ndimethylformamide) at 298.15, 303.15, 308.15, and 313.15 K, J. Mol. Liq. 131–132 (2007) 81–86, http://dx.doi.org/10.1016/j.molliq.2006.08.053.
- [33] Z.R. Master, N.I. Malek, Molecular interaction study through experimental and theoretical volumetric, acoustic and refractive properties of binary liquid mixtures at several temperatures 1. N,N-dimethylaniline with aryl, and alkyl ethers, J. Mol. Liq. 196 (2014) 120–134, http://dx.doi.org/10.1016/ j.molliq.2014.03.027.
- [34] A. Arce, H. Rodríguez, A. Soto, Purification of ethyl tert-butyl ether from its mixtures with ethanol by using an ionic liquid, Chem. Eng. J. 115 (2006) 219– 223, http://dx.doi.org/10.1016/j.cej.2005.10.010.
- [35] M. Vraneš, N. Zec, A. Tot, S. Papović, S. Dožić, S. Gadžurić, Density, electrical conductivity, viscosity and excess properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide+propylene carbonate binary mixtures, J. Chem. Thermodyn. 68 (2014) 98–108, http://dx.doi.org/10.1016/j. jct.2013.08.034.
- [36] I. Domínguez, E.J. González, R. González, A. Domínguez, Extraction of benzene from aliphatic compounds using commercial ionic liquids as solvents: study of the liquid-liquid equilibrium at T = 298.15 K, J. Chem. Eng. Data 56 (2011) 3376–3383, http://dx.doi.org/10.1021/je200334e.
- [37] J.M. Vuksanović, E.M. Živković, I.R. Radović, B.D. Djordjević, S.P. Šerbanović, M. L. Kijevčanin, Experimental study and modelling of volumetric properties, viscosities and refractive indices of binary liquid mixtures benzene+PEG 200/ PEG 400 and toluene+PEG 200/PEG 400, Fluid Phase Equilib. 345 (2013) 28–44, http://dx.doi.org/10.1016/j.fluid.2013.02.010.
- [38] R.D. Chirico, M. Frenkel, J.W. Magee, V. Diky, C.D. Muzny, A.F. Kazakov, K. Kroenlein, I. Abdulagatov, G.R. Hardin, W.E. Acree, J.F. Brenneke, P.L. Brown, P. T. Cummings, T.W. De Loos, D.G. Friend, A.R.H. Goodwin, L.D. Hansen, W.M. Haynes, N. Koga, A. Mandelis, K.N. Marsh, P.M. Mathias, C. Mccabe, J.P.O. Connell, Improvement of quality in publication of experimental

thermophysical property data: challenges, assessment tools, global implementation, and online support, 2013.

- [39] A.I. Vogel, Physical properties and chemical constitution Part XXII. Some primary secondary and tertiary amines, J. Chem. Soc. (1924) 1825–1833.
- [40] K.M. Sumer, A.R. Thompson, Refraction, dispersion, and densities for methanol solutions of benzene, toluene, aniline, and phenol, J. Chem. Eng. Data 12 (1967) 489–493, http://dx.doi.org/10.1021/je60035a007.
- [41] M. Katz, P.W. Lobo, A. Sancho Minano, H. Solimo, Viscosities, densities, and refractive indices of binary liquid mixtures MIGUEL, Can. J. Chem. 49 (1971) 2605–2609.
- [42] S. Kumar, A. Maken, S. Agarwal, S. Maken, Topological studies of molecular interactions of 1,4-dioxane with formamides or anilines at 308.15 K, J. Mol. Liq. 155 (2010) 115–120, http://dx.doi.org/10.1016/j.molliq.2010.05.023.
- [43] M. Almasi, P. Monjezi, Studies on thermodynamic and transport properties of binary mixtures containing alcohols and aniline, J. Chem. Eng. Data 61 (2016) 2510–2515, http://dx.doi.org/10.1021/acs.jced.6b00210.
- [44] J. Costello, S. Bowden, The temperature variation of orthobaric density difference in liquid-vapour systems. III, Recueil 77 (1958) 36–46.
- [45] J.H. MacNeil, R. Palepu, Viscosities and densities of binary liquid mixtures of 2butoxyethanol with aniline and N-alkylaniline, Thermochim. Acta 149 (1989) 275–286, http://dx.doi.org/10.1016/0040-6031(89)85289-X.
- [46] A.G. Oskoei, N. Safaei, J. Ghasemi, Densities and viscosities for binary and ternary mixtures of 1 4-dioxane + 1-hexanol + N,N-Dimethylaniline from T) (283. 15 to 343. 15) K, J. Chem. Eng. Data 53 (2008) 343–349.
- [47] M.A. Saleh, M. Alauddin, S. Begum, Excess molar volume of 1-propanol + Aniline, +N-methylaniline, +N,N -dimethylaniline, Phys. Chem. Liq. 39 (2001) 453–464. http://dx.doi.org/10.1080/00319100108031676.
- [48] V. Pandiyan, S.L. Oswal, N.I. Malek, P. Vasantharani, Thermodynamic and acoustic properties of binary mixtures of ethers. V. Diisopropyl ether or oxolane with 2- or 3-chloroanilines at 303.15, 313.15 and 323.15 K, Thermochim. Acta 524 (2011) 140–150, http://dx.doi.org/10.1016/j. tca.2011.07.005.
- [49] M.H.S. Radwan, A.A. Hanna, Binary azeotropes containing butyric acids, J. Chem. Eng. Data 21 (1976) 285–289, http://dx.doi.org/10.1021/je60070a032.
- [50] M. Kondaiah, D.S. Kumar, K. Sreekanth, D.K. Rao, Densities and viscosities of binary mixtures of propanoic acid with N,N-dimethylaniline and N,Ndiethylaniline at T = (303.15, 313.15, and 323.15) K, J. Chem. Eng. Data 57 (2012) 352–357, http://dx.doi.org/10.1021/je200862b.
- [51] E. Vercher, F.J. Llopis, V. González-Alfaro, P.J. Miguel, A. Martínez-Andreu, Refractive indices and deviations in refractive indices of trifluoromethanesulfonate-based ionic liquids in water, J. Chem. Eng. Data 56 (2011) 4499–4504, http://dx.doi.org/10.1021/je200479e.
- [52] M.G. Montalbán, C.L. Bolívar, F.G. Díaz Baños, G. Víllora, Effect of temperature, anion, and alkyl chain length on the density and refractive index of 1-alkyl-3methylimidazolium-based ionic liquids, J. Chem. Eng. Data 60 (2015) 1986– 1996, http://dx.doi.org/10.1021/je501091q.
- [53] A.N. Soriano, B.T. Doma, M.H. Li, Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids, J. Chem. Thermodyn. 41 (2009) 301–307, http://dx.doi.org/10.1016/j.jct.2008.08.010.
- [54] H. Tokuda, S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties, J. Phys. Chem. B 110 (2006) 19593–19600, http://dx.doi.org/ 10.1021/jp064159v.
- [55] R.L. Gardas, M.G. Freire, P.J. Caryalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids, J. Chem. Eng. Data 52 (2007) 80–88, http://dx.doi.org/10.1021/je060247x.
- [56] C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, Thermophysical properties of imidazolium-based ionic liquids, J. Chem. Eng. Data 49 (2004) 954–964, http://dx.doi.org/10.1021/je034261a.
- [57] J. Klomfar, M. Součková, J. Pátek, Temperature dependence measurements of the density at 0.1 MPa for 1-alkyl-3-methylimidazolium-based ionic liquids with the trifluoromethanesulfonate and tetrafluoroborate anion, J. Chem. Eng. Data 55 (2010) 4054–4057, http://dx.doi.org/10.1021/je100185e.
- [58] M. Shamsipur, A.A.M. Beigi, M. Teymouri, S.M. Pourmortazavi, M. Irandoust, Physical and electrochemical properties of ionic liquids 1-ethyl-3methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)imide, J. Mol. Liq. 157 (2010) 43–50, http://dx.doi. org/10.1016/j.molliq.2010.08.005.
- [59] B.E. Mbondo Tsamba, S. Sarraute, M. Traïkia, P. Husson, Transport properties and ionic association in pure imidazolium-based ionic liquids as a function of temperature, J. Chem. Eng. Data 59 (2014) 1747–1754, http://dx.doi.org/ 10.1021/je400841s.
- [60] M.L.S. Batista, L.I.N. Tomé, C.M.S.S. Neves, J.R.B. Gomes, J.A.P. Coutinho, Characterization of systems of thiophene and benzene with ionic liquids, J. Mol. Liq. 192 (2014) 26–31, http://dx.doi.org/10.1016/j.molliq.2013.10.014.
- [61] G. Mchale, C. Hardacre, R. Ge, N. Doy, R.W.K. Allen, J.M. Macinnes, M.R. Bown, M.I. Newton, Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis, Ann. Chem. 80 (2008) 5806–5811.
- [62] Y. Hiraga, A. Kato, Y. Sato, R.L. Smith, Densities at pressures up to 200 MPa and atmospheric pressure viscosities of ionic liquids 1-ethyl-3-methylimidazolium methylphosphate, 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium acetate, and 1-butyl-3-methylimidazolium Bis(, J. Chem. Eng. Data 60 (2015) 876–885, http://dx.doi.org/10.1021/je5009679.

- [63] M. Kanakubo, K.R. Harris, Density of 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl)amide and 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl)amide over an extended pressure range up to 250 MPa, J. Chem. Eng. Data 60 (2015) 1408–1418, http://dx.doi.org/ 10.1021/je501118w.
- [64] C.A.N. de Castro, E. Langa, A.L. Morais, M.L.M. Lopes, M.J.V. Lourenço, F.J.V. Santos, M.S.C.S. Santos, J.N.C. Lopes, H.I.M. Veiga, M. Macatrão, J.M.S.S. Esperança, C.S. Marques, L.P.N. Rebelo, C.A.M. Afonso, Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca], Fluid Phase Equilib. 294 (2010) 157–179, http://dx.doi.org/10.1016/j. fluid.2010.03.010.
- [65] J. Jacquemin, P. Husson, V. Mayer, I. Cibulka, L. De Thermodynamique, B.P. Cnrs, High-pressure volumetric properties of imidazolium-based ionic liquids : effect of the anion, J. Chem. Eng. Data 52 (2007) 2204–2211, http://dx.doi.org/ 10.1021/je700224j.
- [66] E. Widowati, M.J. Lee, P-V-T properties of binary mixtures of the ionic liquid 1butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with anisole or acetophenone at elevated pressures, J. Chem. Thermodyn. 63 (2013) 95–101, http://dx.doi.org/10.1016/j.jct.2013.04.008.
- [67] M.R. Currás, P. Husson, A.A.H. Pádua, M.F. Costa Gomes, J. García, Highpressure densities of 2,2,2-trifluoroethanol + ionic liquid mixtures useful for possible applications in absorption cycles, Ind. Eng. Chem. Res. 53 (2014) 10791–10802, http://dx.doi.org/10.1021/ie5008568.
- [68] R. Gomes De Azevedo, J.M.S.S. Esperança, J. Szydlowski, Z.P. Visak, P.F. Pires, H. J.R. Guedes, L.P.N. Rebelo, Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim] [NTf2], J. Chem. Thermodyn. 37 (2005) 888–899, http://dx.doi.org/10.1016/j. jct.2005.04.018.
- [69] R. Hamidova, I. Kul, J. Safarov, A. Shahverdiyev, E. Hassel, Thermophysical properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide at high temperatures and pressures, Braz. J. Chem. Eng. 32 (2015) 303–316, http://dx.doi.org/10.1590/0104-6632.20150321s00003120.
- [70] M. Tariq, A.P. Serro, J.L. Mata, B. Saramago, J.M.S.S. Esperança, J.N.C. Lopes, L.P. N. Rebelo, High-temperature surface tension and density measurements of 1alkyl-3-methylimidazolium bistriflamide ionic liquids, Fluid Phase Equilib. 294 (2010) 131–138, http://dx.doi.org/10.1016/j.fluid.2010.02.020.
- [71] J. Jacquemin, P. Nancarrow, D.W. Rooney, M.F. Costa Gomes, P. Husson, V. Majer, A.a.H. Pádua, C. Hardacre, Prediction of ionic liquid properties. I. Volumetric properties as a function of temperature and pressure at 0.1 MPa, J. Chem. Eng. Data 53 (2008) 716–726, http://dx.doi.org/10.1021/je8002817.
- [72] Q. Zhang, Z. Li, J. Zhang, S. Zhang, L. Zhu, J. Yang, X. Zhang, Y. Deng, Physicochemical properties of nitrile-functionalized ionic liquids, J. Phys. Chem. B 111 (2007) 2864–2872, http://dx.doi.org/10.1021/jp067327s.
- [73] M. Tariq, P.A.S. Forte, M.F.C. Gomes, J.N.C. Lopes, L.P.N. Rebelo, Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion, J. Chem. Thermodyn. 41 (2009) 790–798, http://dx.doi.org/10.1016/j.jct.2009.01.012.
- [74] R.G. Seoane, E.J. González, B. González, 1-Alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ionic liquids as solvents in the separation of azeotropic mixtures, J. Chem. Thermodyn. 53 (2012) 152–157, http://dx.doi. org/10.1016/j.jct.2012.04.026.
- [75] K.R. Harris, M. Kanakubo, L.A. Woolf, Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium BiS (trifluoromethylsulfonyl)imide, J. Chem. Eng. Data 52 (2007) 1080–1085, http://dx.doi.org/10.1021/je700032n.
- [76] M. Atilhan, J. Jacquemin, D. Rooney, M. Khraisheh, S. Aparicio, Viscous behaviour of imidazolium-based ionic liquids, Ind. Eng. Chem. Res. 52 (2013) 16774–16785, http://dx.doi.org/10.1021/ie403065u.
- [77] J. Salgado, T. Regueira, L. Lugo, J. Vijande, J. Fernández, J. García, Density and viscosity of three (2,2,2-trifluoroethanol+1-butyl-3-methylimidazolium) ionic liquid binary systems, J. Chem. Thermodyn. 70 (2014) 101–110, http://dx.doi. org/10.1016/j.jct.2013.10.027.
- [78] K.R. Seddon, A. Stark, M.-J. Torres, Viscosity and density of 1-alkyl-3methylimidazolium ionic liquids, in: Clean Solvents, ACS Symp. Ser., 2002, pp. 34–49. http://dx.doi.org/10.1021/bk-2002-0819.ch004.
- [79] M. Tariq, P.J. Carvalho, J.A.P. Coutinho, I.M. Marrucho, J.N.C. Lopes, L.P.N. Rebelo, Viscosity of (C2–C14) 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)amide ionic liquids in an extended temperature range, Fluid Phase Equilib. 301 (2011) 22–32, http://dx.doi.org/10.1016/j. fluid.2010.10.018.

- [80] M.S. Calado, Z. Petrovski, M.S. Manic, V. Najdanovic-Visak, E.A. Macedo, Z.P. Visak, Liquid-liquid equilibria of imidazolium ionic liquids having bistriflamide or triflate anions with aromatic non-polar and polar compounds, Fluid Phase Equilib. 337 (2013) 67–72, http://dx.doi.org/ 10.1016/j.fluid.2012.10.007.
- [81] S.I. Santos, E. Bogel-Łukasik, R. Bogel-Łukasik, The ionic liquid effect on solubility of aniline, a simple aromatic amine: perspective of solvents' mixture, Fluid Phase Equilib. 325 (2012) 105–110, http://dx.doi.org/10.1016/j. fluid.2012.04.015.
- [82] R. Garriga, F. Sánchez, P. Pérez, M. Gracia, Excess Gibbs energies at seven temperatures and excess enthalpies and volumes at 298.15 K of butanone with 1-propanol or 2-propanol, Fluid Phase Equilib. 124 (1996) 123–134.
- [83] R.B. Tôrres, A.Z. Francesconi, P.L.O. Volpe, Excess molar volumes of binary mixtures of acetonitrile and chloroalkanes at 298.15 K and atmospheric pressure with application of the ERAS-Model, Fluid Phase Equilib. 200 (2002) 1–10, http://dx.doi.org/10.1016/S0378-3812(01)00817-2.
- [84] M. Lj Kijevcanin, B.D. Djordjevic, I.R. Radovic, E.M. Živkovic, A.Ž. Tasic, S.P. Šerbanovic, Modeling of volumetric properties of organic mixtures based on molecular interactions, (n.d.).
- [85] I. Fischer, Dipole moments of some ortho-substituted anilines, Nature 165 (1950) 239, http://dx.doi.org/10.1038/165239a0.
- [86] M.H. Abraham, P.L. Grellier, D.V. Prior, P.P. Duce, J.J. Morris, P.J. Taylor, Hydrogen bonding. Part 7. A scale of solute hydrogen-bond acidity based on log K values for complexation in tetrachloromethane, J. Chem. Soc. Perkin Trans. 2 (1989) 699–711.
- [87] M.H. Abraham, P.L. Grellier, D.V. Prior, J.J. Morris, P.J. Taylor, Hydrogen Bonding. Part 10. A Scale of Solute Hydrogen-bond Basicity using log K Values for Complexation in Tetrachloromethane, J. Chem. Soc. Perkin Trans. 2 (1990) 521–529.
- [88] M.A. Ab Rani, A. Brant, L. Crowhurst, A. Dolan, M. Lui, N.H. Hassan, J.P. Hallett, P.A. Hunt, H. Niedermeyer, J.M. Perez-Arlandis, M. Schrems, T. Welton, R. Wilding, Understanding the polarity of ionic liquids, Phys. Chem. Chem. Phys. 13 (2011) 16831–16840, http://dx.doi.org/10.1039/c1cp21262a.
- [89] M. Blesic, J.N.C. Lopes, A.A.H. Pádua, K. Shimizu, M.F.C. Gomes, L.P.N. Rebelo, Phase equilibria in ionic liquid-aromatic compound mixtures, including benzene fluorination effects, J. Phys. Chem. B 113 (2009) 7631–7636, http:// dx.doi.org/10.1021/jp902178g.
- [90] A.R. Ferreira, M.G. Freire, J.C. Ribeiro, F.M. Lopes, J.G. Crespo, J.A.P. Coutinho, An overview of the liquid–liquid equilibria of (ionic liquid + hydrocarbon) binary systems and their modeling by the conductor-like screening model for real solvents, Ind. Eng. Chem. Res. 50 (2011) 5279–5294, http://dx.doi.org/ 10.1021/ie102471b.
- [91] W. Gordy, Spectroscopic evidence of hydrogen bonds: Aniline and some substituted phenols, J. Chem. Phys. 7 (1939) 167–171.
- [92] H. Kehiaian, K. Sosnkowska-Kehiaian, Thermodynamic properties of some binary mixtures of specifically interacting non-electrolytes: Part 1. – Aniline + toluene, Trans. Faraday Soc. 62 (1966) 838–847.
- [93] A.M. Fernandes, M.A.A. Rocha, M.G. Freire, I.M. Marrucho, J.A.P. Coutinho, L.M. N.B.F. Santos, Evaluation of cation-anion interaction strength in ionic liquids, J. Phys. Chem. B 115 (2011) 4033–4041, http://dx.doi.org/10.1021/jp201084x.
- [94] R. Bini, O. Bortolini, C. Chiappe, D. Pieraccini, T. Siciliano, Development of cation/anion "interaction" scales for ionic liquids through ESI-MS measurements, J. Phys. Chem. B 111 (2007) 598-604, http://dx.doi.org/ 10.1021/jp0663199.
- [95] B. Schwenzer, S.N. Kerisit, M. Vijayakumar, Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization, RSC Adv. 4 (2014) 5457–5464, http://dx.doi. org/10.1039/c3ra46069j.
- [96] A. Yokozeki, D.J. Kasprzak, M.B. Shiflett, Thermal effect on C-H stretching vibrations of the imidazolium ring in ionic liquids, Phys. Chem. Chem. Phys. 9 (2007) 5018–5026, http://dx.doi.org/10.1039/b706497g.
- [97] R.P.M. Mayer, R. Mayer, J. Metzger, Étude comparative entre les enthalpies libres d'excés d'activation du flot visqueux et les enthalpies libres d'excés de solution, in: ÉTUDE Thermodyn. DES MÉLANGES Bin. Chim. Phys., 1971, pp. 406–412.
- [98] M.A. Chowdhury, M.A. Majid, M.A. Saleh, Volumetric and viscometric behaviour of binary systems: (1-hexanol + hydrocarbons), J. Chem. Thermodyn. 33 (2001) 347–360, http://dx.doi.org/10.1006/jcht.2000.0751.

JCT 16-571