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Abstract 
A thermoplastic pultrusion process was examined using commercial fiber roving 

of PET/E glass, to determine the optimum pulling speed and optimal zonal 

temperatures. Finite element analysis predicted heat transfer through the commingled 

fibers and air in the pultrusion die. The cross-section of obtained rods was examined, 

and image analysis was carried out to obtain information about the degree of fiber 

impregnation, number of voids and uniformity of fiber distribution. Optimizing the 

temperature field for the pultrusion of poly (ethylene terephthalate) is of significant 

importance. The pulling speed has the same importance. These two parameters are 

closely related as evidenced by the analysis of images. 

 

Keywords: poly (ethylene terephthalate) – PET; pultrusion; finite element 
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Introduction 
Pultrusion is a manufacturing process widely used for continuous production of 

fiber-reinforced composites [1]. In recent years, the pultrusion process experienced a 

remarkable growth within the composite industry, due to its cost-effectiveness, 

automation, and high quality of products. Nowadays, the process is widely used to 

manufacture wind turbine blades, window profiles, door panels, and reinforcing bars for 

concrete [2, 3]. A lot of numerical simulations have been done in the last twenty years 
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because a practical set up of pultrusion process is not possible without a numerical 

analysis of the technological process [4].  

Pultrusion of thermoplastic fibers combined with glass fibers gains importance 

due to the simplicity and absence of toxic polymerization products during production 

that occur in thermo-reactive polymers pultrusion. Products of thermoplastic pultrusion 

can be reshaped when reheated. The product obtained in this process can be recycled 

after use. 

One of the main parameters in the pultrusion process is temperature regime 

controlled using the zonal temperatures. Until the optimal temperature ranges achieved, 

effects of low and high temperatures can be studied. Due to the high temperature in one 

zone PET degrades, crystallizes and changes color which causes a decrease in 

mechanical properties. If the temperature in a zone is low, PET will not be able to 

impregnate E-glass fiber fully. Another critical parameter is the pulling speed. Pulling 

speed determine the time of passing through pultrusion die. If the speed is higher than 

optimal, the fibers will not be able to be impregnated to the focal pultruded rod, and if it 

is lower that can lead to overheating of the pultruded rod. Pulling speed dictates the 

production volume in commercial production. In addition, it is of great importance to 

achieve the most significant possible pulling speed producing a quality product. 

With the cross-section analyzing, it is possible to determine which model of 

impregnation is most represented in observed samples. There are two models: quadratic 

and hexagonal, where difference density of packaging is achieved. Model of packaging 

may suggest the efficiency of fiber impregnation [5]. Longitudinal section is closely 

related to the cross-section showing the void status in the composite [6]. Both sections 

can be examined using optical microscopy. 

In a thermo-reactive pultrusion process pulling speed is mainly associated with 

the reaction speed [7]. Considering that there is no chemical reaction in a thermoplastic 

pultrusion process, impregnation of fibers is related only to the temperature of the 

polymer and the time that is available for the polymer to flow and impregnate glass 

fibers. This phenomenon is examined at centerline temperature. 

A numerical procedure is developed in order to calculate the temperature field in 

the process. The model is capable of providing accurate and reliable parameters that can 

be used in the real process [8]. In this paper, heat transfer from the heater to the 

commingled fiber will be considered.  

It is essential not to exceed degradation temperature for poly (ethylene 

terephthalate) which is at 270-285 °C when hydrolytic reactions are induced [9]. The 

melting temperature of PET is higher than 250 °C, and preferably 260 °C. So, the zone 

temperature must be between those temperatures. It can be slightly higher at the end to 

induce better heat transfer and to enable higher pulling speed. PET doesn’t allow great 

temperature variations in pultrusion process because there is the thin boundary between 

melting and degradation temperature.  

Experiment 

Materials 

The primary material used in this paper is TWINTEX® RPET70N184 (2690 tex) 

from Fiber Glass Industries, Inc., USA. It is a roving made of comingled E-glass and 
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thermoplastic polyester (PET) filaments. This is ready to use the product, and it is used 

in the pultrusion process without any other preparation. Table 1 shows the mark 

meaning and the product specification. 

Table 1. Product reference and mark meaning for TWINTEX® RPET70N184  

(2690 tex). 

Mark Meaning 

R Roving 

PET Polyester resin 

70 Glass content in weight % 

N Natural color 

184 Yield in linear yards per pound (269tex) 

Thermoplastic pultrusion process 

PET is a thermoplastic resin that can be remelted and shaped without any 

chemical reaction. PET fibers are melting in a pultrusion die and impregnate the E-glass 

fiber. The better impregnation is achieved, the better mechanical properties of the 

composite are obtained. The pultrusion die has three temperature zones. Fiber mixture is 

heated by furnace whose temperature regime is formed depending on the type of 

thermoplastic polymers. For PET, the first zone is used to preheat the polymer, in the 

range of 523-533 K, in the second zone to melt the polymer at the temperature of 533-

543 K, in the third zone to form the shape of the composite at a temperature of 533-548 

K. The fibers from the different sources of the windings are guided and pulled into the 

pultrusion die, Fig. 1a. Zone temperatures are being set on the digital panel and easy to 

follow, Fig. 1b. 

 

Fig. 1. a) Fiber from the windings on the stand guided to the pultrusion entrance, and 

b) the pultrusion zones. 

It can be seen that every zone has its gauge that enables precise measurements of 

temperatures and a quick response to maintain the same. The line for thermoplastic 

pultrusion is a pilot plant machine serving in product development in Department of 

Special and Structural Materials of Faculty of Technology and Metallurgy, University 

of Belgrade. In this paper, the focus will be just on one part of the pultrusion process, 

and that is the pultrusion furnace, the temperature regime in it and the correlation of the 

pulling speed to the quality of the composite obtained. Three samples were tested for 
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every set of processing parameters, and the representative ones are presented in the 

paper. 

Image analysis for determining parameters resulting in the impregnation process 

The software Image-Pro Plus 4.0, Media Cybernetics, allows measuring the 

degree of impregnation and determining the volume fraction of the glass fibers. The 

density of packaging and the type of fibers impregnation will be determined by cross-

section examination [5]. Two different samples will be observed in order to determine 

efficiency in impregnation according to the temperature regime set and the pulling 

speed.  

Finite element method in the thermoplastic pultrusion process 

Finite element method (FEM) is a numerical method used to simulate the heat 

transfer in the pultrusion die. This method gives an insight into the temperatures of the 

composite in centerline and on the surface. Both of these temperatures are important to 

set the optimal parameters of the process. The temperature in centerline is an indicator 

of fibers heating performance. The temperature on the surface is controlled not to 

exceed the temperature of polymer degradation.  

The three-dimensional model is developed consisting of steel pultrusion die and a 

mixture of fiber and air passing the die. The material properties passing the material die 

are lumped Twintex and air properties [7, 8, 10-12]. There is a considerable content of 

air in the middle of a die that must be considered [13]. Having in mind the diameters of 

pultrusion inlet (Ø15) and pultrusion nozzle (Ø8 mm) calculated air content in 

pultrusion die 72 vol.%. Material properties are presented in Table 2. 

Table 2. Material properties used in the numerical simulation. 

Material 

Density, 

ρ  

(kg / 

m3) 

Coefficient of linear 

thermal expansion, α 

(m/mK) 

Conductivity, 

κ (W / mK) 

Specific 

heat, 

Cp  

(J / kgK) 

Twintex RPET 1950 8 e-06 0.900 1240 

Air (on 523K) 675 - 0.042 1034 

Lumped (Vf  = 78%) 1032 8 e-06 0.282 1092 

Steel die 7850 1.3 e-05 40.00 460 

 

The coefficient of linear thermal expansion of air is not considered because the 

pultrusion die is not entirely closed, so the air pressure is being reduced to atmospheric 

pressure. Different pulling speeds are tested: 10, 20, 50 and 100 cm/min, so as 

temperatures set: T1= 523/533 K, T2= 533/543 K, and T3=538/548 K. 

Both of parts are meshed using C3D8T finite elements in Abaqus 6.10. CAE- An 

8-node thermally coupled brick, trilinear displacement, and temperature elements. The 

interaction between the fibers and PET matrix was modeled as “Surface to surface” 

contact with finite sliding. There were three interactions according to the three 

temperature zones. Simulation is performed in a coupled temperature-displacement step. 

Seven boundary conditions are applied: the first and second are prescribed as an X 

(U1=UR2=UR3) and Y symmetry (U2=UR1=UR3), and the third is encastre - a 

displacement /rotation limit (U1=U2=U3=UR1=UR2=UR3=0) for the fixed lateral 
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surface of the die. The fourth boundary condition is a velocity set in m/s units. The 

following three boundary conditions are zone temperatures in a coupled temperature-

displacement step. Predefined field is set for an ambient temperature of 293 K. Fig. 2 

shows the assembly and mesh used in the numerical simulation. Length of the 

pultrusion die is 1.15 m. 

 

Fig. 2. Part assembly used in FEM. 

Results and discussion    

Finite element model of thermoplastic pultrusion 

Three-dimensional finite element model gives as colorful insight into the heat 

transfer from the surface to the centerline of the composite. First tested temperature set 

is T1= 523 K, T2= 533 K, T3= 538 K with three pulling speeds: v1= 10 cm/min, v2= 25 

cm/min, v3= 50 cm/min, and v4= 100 cm/min. For another analysis pulling speeds 

remain the same but zone temperatures were increased by 10 °C. In the first test, full 

melting of PET is achieved at speeds 10 and 25 cm/min, Fig. 3 a, b. For pulling speed of 

50 cm/min, one part of the center composite is not fully melted where the impregnation 

couldn’t be completed, Fig. 3c. High-temperature gradient can be seen for pulling speed 

of 100 cm/min, which suggests that this speed cannot be a good choice. 

 

Fig. 3. Nodal temperature of the PET/E glass composite exiting the pultrusion die under 

temperature set (T1= 523 K, T2= 533 K, T3= 538 K) with pulling speed: a) 10 cm/min, 

b) 25 cm/min, c) 50 cm/min, and d) 100 cm/min. 
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To achieve higher production volume, there was an option to increase the speed 

of drawing and zonal temperature which has also been an option in numerical analysis 

Fig. 4. There is again a high thermal gradient for speed 100 cm/min. Another important 

issue that needs to be taken into consideration is that the surface temperature does not 

exceed the degradation temperature of PET. 

 

Fig. 4. Nodal temperature of the PET/E glass composite exiting the pultrusion die under 

temperature set (T1= 533 K, T2= 543 K, T3= 548 K) with pulling speed: a) 10 cm/min, 

b) 25 cm/min, c) 50 cm/min, and d) 100 cm/min. 

In order to have a better insight into the thermal state, the diagrams obtained in 

numerical analysis are taken into considerations. 

 

Fig. 5. The temperature of the composite: a) centerline and b) surface under 

temperatures (T1= 523 K, T2= 533 K, T3= 538 K). 
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The diagram shows that speed of 10 and 25 cm/min achieved zone above melting 

and under degradation point, Fig. 5a. Speeds higher than 25 cm/min significantly shift 

the graph down. It could be concluded that the surface of the composite quickly 

equalizes with zone temperatures on exit, Fig. 5b.  

Riskier is to increase speed and zone temperatures. In a case of increasing zone 

temperatures just in 10 K, low speeds lead center of the composite to enter the 

degradation zone, Fig. 6a. The use of high speed (50 and 100 cm/min) ensures enough 

time to achieve the melting point. 

 

Fig. 6. The temperature of the composite: a) centerline and b) surface under 

temperatures set (T1= 533 K, T2= 543 K, T3= 548 K). 

Looking at the surface temperatures, all the speeds enter the degradation zone, 

Fig. 6b. So, an increase in the temperature leads to the problem of polymer degradation 

that must be avoided.  

Determining the impregnation degree 

Glass weight content of Twintex is 70%, so the volume content is 55%. This 

value will be referent value for determining the degree of impregnation and void 

content. The cross sections were captured on an optical microscope. Two samples were 

obtained on two different pulling speeds. According to the FEM analysis, Sample 1, 

produced at pulling speed of 25 cm/min, was determined like optimum speed to obtain 

full impregnation. Sample 2 is produced at pulling speed of 50 cm/min and will be used 

for comparative purposes, Fig. 7. 
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Fig. 7. Cross section of a) Sample 1 with complete impregnation of E glass with  

PET/ (25 cm/min, T1=523 K, T2=533 K and T3=538 K) and b) Sample 2 with partly 

impregnation (50 cm/min, T1=523 K, T2=533 K and T3=538 K). 

The pictures show clear differences in the type and degree of impregnation. Fig. 

7a shows mostly the hexagonal type of impregnation, while Fig. 7b shows mixed types 

of impregnation – hexagonal and quadratic. When the pultrusion process parameters are 

optimal, the polymer is wetting all the glass fibers making a homogenous composite 

with the dense packaging of fibers as can be seen in Fig. 7a. If the pulling speed is 

higher PET doesn’t have enough time to melt and impregnate the glass fiber. 

The differences can be also seen on longitudinal section. Fig. 8a is showing 

complete impregnation of glass fibers with PET along the entire section without visible 

voids (Sample 1). Fig. 8b suggests the existence of voids at the intersection of 

insufficiently heated composites (Sample 2) and the content is presented in Table 3. 

 

Fig. 8. Longitudinal section of PET/E glass composites: a) Sample 1 with complete 

impregnation of E glass with PET/ (25 cm/min, T1=523 K, T2=533 K and T3=538 K) 

and b) Sample 2 with partly impregnation (50 cm/min, T1=523 K, T2=533 K and 

T3=538 K). 
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Analyzing the optical microscopy images, results describing the consequence of 

pultrusion parameters are obtained, Table 3. Analysis of Fig. 8a gives information about 

very dense packaging indicating a good set of parameters and good impregnation 

achieved. 

Table 3. Image analysis results of the composite cross-section (Fig. 7). 

 
Type of 

impregnation 

Packaging 

density, % 

Glass fiber 

content, vol. 

% 

Void content, 

vol. % 

Sample 1 Hexagonal 67.10 (±1.27) 54.82 
no visible 

voids 

Sample 2 
Mixed hexagonal 

and quadratic 
44.98 (±9.03) 46.70 8.27 

 

In order to examine effects of pultrusion parameters, it was chosen to increase 

zone temperatures. When the temperature is higher than melting temperature and close 

to degradation temperature, the surface of the composite start to degrade and change 

color. The zone temperatures were increased just 10 ⁰C, the pulling speed was 25 

cm/min, and the effect was more than evident. 

Conclusion 
Studies in this paper show that the developed 3D model closely simulates heat 

transfer and this procedure is stable, reliable and gives results comparable to 

experiments. Different models were developed to simulate temperature effect and effect 

of pulling speed to find optimum ratio of those two parameters. It was found that the 

optimum speed is 25 cm/min and zone temperatures T1= 523 K, T2= 533 K, T3= 538 K, 

and those parameters obtained from numerical analysis help us to obtain a sample with 

full impregnation without polymer degradation. This model can be used for other 

pultrusion materials, temperature ranges and pulling speed. 
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