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Abstract 
Iron(III) oxide particles (α-Fe2O3) were obtained from ferrous chloride 

(FeCl3·6H2O) precursor using ammonium hydroxide as a precipitating agent and particles 

were calcined at 700 °C for 4 h. Morphological and structural properties of the obtained 

particles were determined using Scanning Electron Microscopy (SEM), BET/BJH 

analysis, X-ray diffraction (XRD) and Fourier Transform Infra-Red (FT-IR). The image 

analysis software, Image-Pro Plus 4.0, was used to determine the distribution of the 

diameter of the obtained particles. Hematite based particles were used as an adsorbent for 

BPA removal. Adsorption equilibrium was established after 75 min with 14.8% BPA 

removal efficiency. 
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Introduction 
Iron(III) oxide (Fe2O3) has four crystallographic phases, explicitly hematite (α-

Fe2O3), β-Fe2O3, maghemite (γ-Fe2O3) and ε-Fe2O3 [1], which represents one of the main 

focuses of modern material science. The most stable iron oxide, α-Fe2O3, is widespread 

and it is found in aquatic systems, lands, and sediments. Hematite has diverse applications 

in catalysis, pigments, biomedical materials, lithium batteries, electromagnetic devices, 

adsorbents [2,3]. The synthesis of hematite particles has increased in recent decades due 

to its unique electrical, optical and magnetic properties [4,5]. There are different 

techniques for the synthesis of hematite, and one of them is the co-precipitation method 

[6]. 
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Bisphenol A (BPA) is widely used in the production of polycarbonates, epoxy 

resins, plasticizers, retardants [7], dental materials, dental gaskets, food linings, and 

drinking containers, as well as many other products [8]. The main problem of BPA lies 

in its physical-chemical properties such as low solubility and high hydrophobicity, which 

lead to its low biodegradability and accumulate in living organisms [9]. BPA at low 

concentrations can cause infertility and breast cancer, so wastewater containing BPA 

must be adequately treated before discharge into the environment [10] Therefore, the 

development of a fast and effective method for removing BPA is of great importance. 

Today, among many techniques in wastewater treatment,  adsorption, with relatively high 

capacity and low cost, is the most widely used [11]. Various nanomaterials such as 

magnetite nanoparticle can be used as adsorbents for the removal of toxic pollutants [12]. 

Literature shows the use of various conventional and non-conventional adsorbents for 

BPA removal from water. It is evident that the modified adsorbents and composite 

materials show promising results for BPA removal from water [13]. 

This paper aims to synthesize α-Fe2O3 particles by precipitation method for 

Bisphenol A removal. 

Experimental procedure 

Materials 

Iron(III) chloride (FeCl3·6 H2O) was purchased in the crystallized state from the 

Clariant company. Sigma Aldrich supplied ammonium hydroxide (NH4OH) and 

Bisphenol A. Deionized water was used in all experiments.  

Preparation of fine α-Fe2O3 particles 

Pure α-Fe2O3 particles were synthesized by chemical precipitation method [14]. 

According to this procedure, the aqueous solution was prepared by dissolving 5 g of 

iron(III) chloride hexahydrate (FeCl3·6H2O) in 100 mL of deoxygenated distilled water 

under magnetic stirring for 30 min 50 mL of 2M aqueous solution  of NH4OH,  used as 

the precipitating agent,  was  gradually added dropwise to maintain a pH value of 11. The 

resulting precipitations were collected and centrifuged at 6000 rpm and then washed with 

distilled water and ethanol several times and finally dried in air. The produced powder 

was calcined at 700 °C for 4 h in order to obtain α-Fe2O3 particles.  

Characterization methods 

The morphology of α-Fe2O3 particles was examined using the FESEM, MIRA 3 

TESCAN electron microscope operated at 20 kV. The image analysis tool (Image-Pro 

Plus 4.0, Media Cybernetics) was used to obtain the particles diameter distribution. 

Textural properties of α-Fe2O3 particles (specific surface area and porosity 

characteristics) were determined by the Brunauer-Emmett-Teller (BET) method using a 

Micromeritics ASAP2020 surface area and porosity analyzer. 

X-ray diffraction (XRD) patterns were recorded on an Ital Structure APD2000 X-

ray diffractometer in a Bragg–Brentano geometry using CuKα radiation (λ = 1.5418 Å) 

and step-scan mode (range: 20−90° 2θ, step-time: 0.5 s, step-width: 0.02°). The 

PowderCell program [W. Kraus, G. Nolze, PowderCell for Windows, V.2.4, Federal 

Institute for Materials Research and Testing, Berlin, Germany, 2000.] was used for 

approximate phase analysis. 
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The structural analysis of calcined particles was performed by single-beam 

Fourier-Transfer Infrared Spectroscopy (FTIR) using a Nicolet iS10 spectrometer 

(Thermo Scientific) in the attenuated total reflectance (ATR) mode with a single bounce 

45 °F Golden Gate ATR accessory with a diamond crystal, and DTGS detector. FTIR 

spectra were obtained at 4 cm-1 resolution with ATR correction. The FTIR spectrometer 

was equipped with OMNIC software and the spectra were recorded in the wavelength 

range from 2.5 μm to 20 μm (i.e., 4000 –500 cm-1). 

The concentrations of the bisphenol A were determined using UV-Vis 

spectroscopy (Shimadzu UV-1800 spectrophotometer). 

A laboratory pH meter, InoLab Cond 730 precision conductivity meter (WTW 

GmbH), with an accuracy of ± 0.01 pH units, was used for the pH measurements. The pH 

values at the point of zero charges (pHPZC) were measured using the pH drift method, 

before and after BPA adsorption [15]. 

Adsorption measurements 

Batch adsorption experiments of BPA were applied in order to evaluate the 

performance of the α-Fe2O3 adsorbents. A suspension of the adsorbent material (m/V= 

200 mg/L), was mixed on a magnetic stirrer containing an aqueous solution of BPA (C0 

= 20 mg/L) at pH 6. The mixture was stirred in the dark for 75 min to reach adsorption 

equilibrium. The concentration of BPA was measured by withdrawing quantitative 

aliquots (1.0 ml) from the mixture at regular time intervals according to the peak at 276 

nm by UV-Vis spectroscopy. 

The mean value from three determinations was used for processing the 

experimental data. The percentage of adsorbed BPA was calculated using Equation (1):  

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) = (
𝐶𝑖−𝐶𝑓

𝐶𝑖
) ∙ 100%            (1) 

where Ci and Cf are the initial equilibrium and final concentrations of BPA in the 

solution in mg/L, respectively. The adsorption capacity of BPA was determined 

according to the mass balance equation, Equation (2): 

𝑞𝑒 = (
𝐶𝑖−𝐶𝑓

𝑚
) ∙ 𝑉 (2) 

where qe is the adsorption capacity in mg/g adsorbent, V is the volume of solution 

in L, and m is the mass of the adsorbent in g. 

Results and discussion 

The microstructure of α-Fe2O3 particles 

The SEM micrograph of α-Fe2O3 particles and their mean diameter (Dmean, nm) 

distribution are shown in Figure 1. Determined textural characteristics are presented in 

Table 1. 
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Fig. 1. α-Fe2O3 particles: a) SEM microphotograph, and b) mean diameter distribution. 

Table 1. Textural characteristics of α-Fe2O3 particles. 

Parameter/Sample α-Fe2O3 

Specific surface area, SBET (m2/g) 2.788 

Total pore volume, Vtotal (cm3/g) 0.009 

Mesopore volume, Vmeso (cm3/g) 0.009 

Mean mesopore diameter, Dmean (nm) 13.708 

pHPZC 5.1 

Figure 1a shows the spherical shape of particles whose diameter distribution is 

fairly uniform. The mean diameter distribution is best described by Laplace distribution 

with the location parameter a = 282.9 nm and scale parameter b = 52.9 nm, Figure 1b. 

The location parameter indicates the value of Dmean with the highest probability. The scale 

parameter shows the size of a distribution spreading which is up to 18.7%. The range of 

distribution is between 25.67 – 523.19 nm. Obtained results indicate the size of the 

particles that correspond to the ‵fine particles′ with a fraction in nanodomain. Textural 
characteristics of α-Fe2O3 suggest low porosity of particles when compared to most of 

the adsorbents used for BPA removal [13]. A mesoporosity can provide good 

adsorption of BPA to the surface of α-Fe2O3. 

The structural characterization of particles 

The composition of Fe2O3 observed by X-ray diffraction (XRD) for identifying the 

crystalline structure, and Fourier Transform Infra-Red (FTIR) spectroscopy, is presented 

in Figure 2. 

Obtained XRD diffractogram, Figure 2a, was analyzed and the sample was 

identified as a stable α-Fe2O3 (hematite) form (ICSD 161294 card). The mean crystallite 

size of α-Fe2O3 phase was estimated from the most intense diffraction peaks by the 

PowderCell software. The unit cell parameters of α-Fe2O3 are a = 5.0282 and c = 13.7250 

Å. The mean crystallite size of α-Fe2O3 phase is 34.4 nm, Figure 2a.  



N. Tomić et al. - Bisphenol a removal from Aqueous Solution Using Fine … 287 

 

 

Fig. 2. a) XRD patterns of α-Fe2O3 phase and b) Spectra FTIR of α-Fe2O3 particles 

synthesized by precipitation method.  

XRD diffractogram shows clear and intense peaks corresponding to a 

rhombohedral crystalline structure of the well-crystallized α-Fe2O3 sample. The FTIR 

spectrum (Figure 2b) shows the absorption at 3420 cm–1 that is assigned to stretching 

vibrations of hydroxyl groups [16]. The sharp absorption peaks at 480 and 565 cm-1 can 

be attributed to the Fe–O band vibrations of the calcined hematite synthesized by the 

precipitation method, Figure 2b [17,18].   

Adsorption study 

The removal efficiency, followed by UV-Vis spectroscopy, versus adsorption time 

is presented in Figure 3. The highest increase in removal efficiency is noticed between 25 

and 30 min of adsorption. Adsorption equilibrium is established after 75 min with 14.8% 

removal efficiency. α- Fe2O3 particles used as adsorbent showed adsorption capacity at 

equilibrium for BPA removal qe = 14.8 mg/g.  

 

Fig. 3 The efficiency of BPA removal versus adsorption time. 
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Comparison of adsorption performance of α-Fe2O3 particles was difficult to 

perform due to the insufficient literature data for application of hematite for BPA removal 

in adsorption experiments. Available data for adsorption capacities of adsorbents used for 

BPA removal were summarized in Table 2. The adsorption capacity of α-Fe2O3 particles 

at low dosage may indicate competitive adsorption properties suggesting the potential use 

of α-Fe2O3 particles as an economic and effective mineral adsorbent for BPA removal. 

Table 2. Comparative results of different adsorption studies for BPA removal. 

Adsorbent Dosage Capacity Ref. 

Fe(III)/Cr(III) hydroxide-untreated 10000 mg/L 3.47 mg/g [19] 

Fe(III)/Cr(III) hydroxide-pretreated 10000 mg/L 3.67 mg/g [18] 

P-phenylenediamine-modified 

magnetic graphene oxide   
250 mg/L 155.0 mg/g [20] 

Iron-oxide/activated carbon (PAC)  

(Hematite/PAC, Magnetite/ PAC, 

Ferrihydrite/PAC) 

1000 mg/L ~0.60 mg/g [21] 

Goethite/PAC  167 mg/L 1.00 mg/g [22] 

Goethite 167 mg/L 1.00 mg/g [21] 

Fe3O4@polyaniline core-shell 

nanoparticles 
3200 mg/L 9.13 mg/g [23] 

α-Fe2O3 200 mg/L 14.8 mg/g this paper 

Conclusions 
The iron(III) oxide particles were prepared by a co-precipitation method and 

calcination at 700 °C. The obtained particles were identified as a stable α-Fe2O3 

(hematite) phase by X-ray diffraction. In addition to the variety of investigated adsorbents 

in literature, there is a lack of knowledge of the adsorption properties of α-Fe2O3 particles 

for BPA removal. This study aimed to examine the effects of BPA removal from aqueous 

solution by α-Fe2O3 nanoparticles. Particle size was characterized by image analysis of 

SEM micrographs. Mean diameter was best described by its median value – 282.9 nm. 

Textural characteristics of α-Fe2O3 showed low porosity of particles having a specific 

surface area – 2.788 m2/g. Furthermore, adsorption capacity at equilibrium for BPA 

removal was qe = 14.8 mg/g which may indicate competitive use of α-Fe2O3 particles as 

an economical and effective mineral adsorbent for BPA removal. 

Acknowledgments 
This research has been financed by the Ministry of Education, Science and 

Technological Development of the Republic of Serbia as a part of the project TR34011. 

References 
[1] S. Sakurai, A. Namai, K. Hashimoto, S.I. Ohkoshi: Am Chem Soc, 131 (2009) 

18299–18303. 
[2] J. Shakhpure, H. Vijayanand, S. Basavaraja, V. Hiremath, A. Venkatraman: Bull 

Mater Sci, 28 (2005) 713–718. 
[3] M. Zhu, Y. Wang, D. Meng, X. Qin, G. Diao: Phys Chem C, 116 (2012) 16276–

1628. 
[4] A.P. Alivisatos: Sci New Ser, 271 (1996) 933–937. 



N. Tomić et al. - Bisphenol a removal from Aqueous Solution Using Fine … 289 

 
[5] V.L. Colvin, M.C. Schlamp, A.P. Alivisatos: Nature, 370 (1994) 354–357. 
[6] A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri: Phys E Low-dimens 

Syst Nanostruct, 101 (2018) 212–219.  
[7] J. Xu, L. Wang, Y. F. Zhu: Langmuir, 28 (2012) 8418–8425. 
[8] B.S. Rubin: J Steroid Biochem Mol Biol, 127 (2011) 27–34. 
[9] J. Bohdziewicz, G. Liszczyk: Ecol Chem Eng S, 20 (2013) 371–379. 
[10] C.S. Guo, M. Ge, L. Liu, G.D. Gao, Y.C. Feng, Y.Q. Wang: Sci Technol, 44 (2010) 

419–425. 
[11] G. Bayramoglu, M.Y. Arica, G. Liman, O. Celikbicak, B. Salih: Chemosphere, 150 

(2016) 275–284. 
[12] T. Safabakhsh, H. Pourzamani: Int J Env Health Eng, 5 (2016) 25. 
[13] A. Bhatnagar, I. Anastopoulos: Chemosphere, 168 (2017) 885-902. 
[14] A. Lassoued, M. S. Lassoued, B. Dkhil, S. Ammar, A. Gadri: Physica E Low Dimens 

Syst Nanostruct, 101 (2018) 212–219. 
[15] D. Budimirović, Z. S. Veličković, V. R. Djokić, M. Milosavljević, J. Markovski, S. 

Lević, A.D. Marinković: Chem Eng Res Des, 119 (2017) 75.  
[16] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi: J Am Chem Soc, 130 (2008) 5856–5857. 
[17] H. Liu, P. Li, B. Lu, Y. Wei, Y. Sun: Solid State Chem, 182 (2009) 1767–1771. 
[18] A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar: J Mol Struct, 1148 

(2017) 276–281. 
[19] C. Namasivayam, S. Sumithra: Clean Technol Environ Policy, 9 (2007) 215–223. 
[20] X. Tang, P. Tang, S. Si, L. Liu: J Serb Chem Soc, 82 (2017) 39–50. 
[21] H. S. Park, J. R. Koduru, K.-H. Choo, B. Lee: J Hazard Mater, 286 (2015) 315–324. 
[22] J. R. Koduru, L. P. Lingamdinne, J. Singh, K.-H. Choo: Process Saf Environ, 103 

(2016) 87–96. 
[23] Q. Zhou, Y. Wang, J. Xiao, H. Fan: Synth Met, 212 (2016) 113–122. 
 

 

  Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

