UNIVERZITET U BEOGRADU TEHNOLOŠKO-METALURŠKI FAKULTET

Jelena M. Vuksanović

ODREĐIVANJE RAVNOTEŽNIH I TERMODINAMIČKIH PARAMETARA NOVE GENERACIJE ZELENIH RASTVARAČA U CILJU INDUSTRIJSKE PRIMENE

Doktorska disertacija

Beograd, 2016

UNIVERSITY OF BELGRADE

FACULTY OF TECHNOLOGY AND METALLURGY

Jelena M. Vuksanović

DETERMINATION OF EQUILIBRIUM AND THERMODYNAMIC PARAMETERS OF THE NEW GENERATION OF GREEN SOLVENTS TOWARD INDUSTRIAL APPLICATION

Doctoral Dissertation

Belgrade, 2016

Mentor:

Dr Ivona Radović, vanredni profesor, Tehnološko-metalurški fakultet, Univerzitet u Beogradu

Članovi komisije:

Dr Mirjana Kijevčanin, redovni profesor, Tehnološko-metalurški fakultet, Univerzitet u Beogradu

Dr Zoran Višak, docent, School of Engineering and Applied Sciences, Univerzitet Aston

Dr Emila Živković, vanredni profesor, Tehnološko-metalurški fakultet, Univerzitet u Beogradu

Dr Vuk Spasojević, naučni saradnik, Institut za nuklearne nauke Vinča, Univerzitet u Beogradu

Datum odbrane: _____

Određivanje ravnotežnih i termodinamičkih parametara nove generacije zelenih rastvarača u cilju industrijske primene

Rezime

Industrijski razvoj tokom prošlog veka doprineo je stvaranju problema zagađenja i trošenju fosilnih zaliha prouzrokovanom neefikasnim procesima koji zahtevaju veliki utrošak energije i hemikalija. Održivi procesi u budućnosti trebaju biti orijentisani ka upotrebi manje toksičnih i manje isparljivih supstanci u cilju smanjenja zagađenja vode, vazduha i tla. Rastvarači su osnov svakog industrijskog procesa i predstavljaju jedan od većih izvora zagađenja, s obzirom da su trenutno u upotrebi toksični i isparljivi rastvarači. Stoga je neophodan dizajn alternativnih ekoloških rastvarača i nalaženje njihove primene u postojećim procesima. U ovoj doktorskoj disertaciji ispitivana je potencijalna industrijska primena zelenih rastvarača za tretman toksičnih hemikalija i za separaciju azeotropa. Izvršena je termodinamička i fazna karakterizacija četiri tipa zelenih rastvarača: polimeri, jonske tečnosti, eutektičke smeše i dvofazni vodeni sistemi. Eksperimentalno su određivana termodinamička svojstva čistih komponenata i njihovih smeša u temperaturnom opsegu T = (288.15 K)– 333.15 K) i na atmosferskom pritisku. Eksperimentalno su merene gustine ρ_{i} viskoznosti η i indeksi refrakcije n_D polimera u smeši sa industrijski važnim jedinjenjima kao što su: aromati, alkoholi i estri. Pomenuti termodinamički parametri su eksperimentalno izmereni i za netoksične smeše polimera sa jonskim tečnostima, smeša rastvarača velikog potencijala za industrijsku primenu. Na isti način okarakterisane su i binarne eutektičke smeše na bazi holin hlorida i jedna ternarna eutektička smeša, sa vodom kao trećom komponentnom, u temperaturnom opsegu T = (298.15 K – 363.15 K). Iz eksperimentalnih podataka izračunate su dopunske molarne zapremine $V^{\rm E}$, devijacije viskoznosti $\Delta \eta$ i devijacije indeksa refrakcije Δn_D koje su fitovane Redlich-Kister polinomom. Izračunate veličine su analizirane u pogledu specifičnih molekulskih interakcija i geometrijskog pakovanja između komponenata smeše, uzimajući u obzir i uticaj temperature. Fourier-ova transformaciona infracrvena (FT-IR) spektroskopija binarnih smeša polimera sa estrima i odgovarajućih čistih komponenata izvedena je na 298.15 K u cilju tumačenja molekulske strukture i mogućih intra- i inter-molekulskih interakcija u rastvorima. Za smeše polietilen glikol diakrilata i alkohola eksperimentalni podaci su korelisani u funkciji od polietilen glikol diakrilat molskog udela i temperature. Indeksi refrakcije binarnih smeša predskazivani su različitim pravilima mešanja (Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton i Oster) i rezultati su upoređivani sa eksperimentalnim podacima. Viskoznost je modelovana pomoću dva tipa modela: modeli doprinosa grupa UNIFAC-VISCO i ASOG-VISCO i korelativni Teja-Rice i McAllister modeli. Eksperimentalne vrednosti viskoznosti su korišćene u određivanju novih interakcionih parametara različitih funkcionalnih grupa zarad njihove primene u UNIFAC-VISCO i ASOG-VISCO modelima. Dopunska molarna zapremina je modelovana Peng-Robinson-Stryjek-Vera kubnom jednačinom stanja (PRSV CEOS) primenom van der Waals jedan fluid i TCBT pravila mešanja.

Ispitivano je i fazno ponašanje dvokomponentnih i trokomponentnih smeša. Na osnovu merenja konstruisani su odgovarajući fazni dijagrami koji označavaju homogene i heterogene oblasti ispitivanih rastvora. Fazno ponašanje smeša čvrstog polimera sa aromatima i alkoholima ispitivano je eksperimentalnim određivanjem ravnoteže čvrsto-tečno u temperaturnom opsegu T = (298.15 K - 330.14 K) i na atmosferskom pritisku. Izvršeno je i eksperimentalno merenje ravnoteže tečno-tečno dvokomponentnih i trokomponentnih smeša. Analizirana je dvokomponentna smeša polimer + jonska tečnost u temperaturnom opsegu T = (298.1 K - 414.6 K) i trokomponentne smeše dva tipa: polimer + so + voda i eutektik + alkohol + alkan ili eutektik + alkohol + aromat na 298.15 K. Eksperimentalna određivanja ravnotežnih parametara tečnosti su vršena takođe na atmosferskom pritisku. NRTL i UNIQUAC modeli su uspešno primenjeni za korelisanje eksperimentalnih ravnotežnih podataka za obe ispitivane ternarne smeše. Dodatno, ispitivan je uticaj dodatka glicerola ili vode na smanjenje viskoznosti eutektičkih smeša eksperimentalnim određivanjem termodinamičkih parametara smeša eutektik + voda/glicerol u temperaturnom opsegu T = (298.15 K - 363.15 K). Rezultati ukazuju da dodatak malih količina vode ili glicerola kao treće komponente značajno smanjuju viskoznost eutektika. Takođe za pojedine eutektike je praćen i uticaj dodatka vode na ekstrakcionu efikasnost.

Na osnovu dobijenih rezultata ustanovljeno je da se čvrst poletilen glikol može primeniti u održivom tretmanu benzena, toluena i piridina, velikih zagađivača vodenih tokova. Izvršena je i detaljna termodinamička karakterizacija različitih tipova dvokomponentnih sistema na bazi polimera i alkohola (etanol, 1-propanol i 1butanol)/ili estara (dimetil adipat i dimetil ftalat). Kao smeše rastvarača nove generacije, od velikog značaja za održivi razvoj, u ovoj tezi predložene su i analizirane tri smeše tipa polimer + jonska tečnost. Oba tipa zelenih rastvarača su jedinjenja kompleksne strukture i kompleksne moći rastvaranja, čija je glavna prednost podesivost svojstava za industrijsku primenu. Sve ovo predstavlja značajan doprinos proširenju termodinamičke baze podataka čime je omogućeno korišćenje analiziranih smeša rastvarača u praksi, u različitim industrijskim procesima. U oblasti zelenih separacija, tj. ekstrakcije tečno-tečno, analizirana su dva tipa zelenih rastvarača: eutektičke smeše i dvofazni rastvarači. Rezultati ukazuju da su eutektičke smeše separacioni agensi izuzetne selektivnosti prema polarnim jedinjenjima i da se mogu primeniti u separaciji azeotropa tipa alkan + alkohol i aromat + alkohol. U oblasti dvofaznih rastvarača definisan je novi sistem zasnovan na polimeru koji do sada nije predlagan u literaturi, polietilen glikol diakrilat. Nekoliko dvofaznih sistema polimer + so + voda detaljno su analizirani i preliminarna istraživanja ukazuju na njihove veliki potencijal u izolovanju aminokiselina.

Ključne reči: gustina, viskoznost, indeks refrakcije, brzina zvuka, ekstrakciona selektivnost i koeficijent distribucije, zeleni rastvarači, eutektičke smeše, jonske tečnosti, dvofazni vodeni rastvori, modelovanje

Naučna oblast: Tehnološko inženjerstvo *Uža naučna oblast:* Hemijsko inženjerstvo

UDK broj: 536.7:632.981.3:338.45

Determination of equilibrium and thermodynamic parameters of the new generation of green solvents toward industrial applications

Summary

Industrial development during the last century has contibuted to pollution problem and depletion of fossil stocks due to unefficient processes which require more energy and chemicals. Sustainable processes in the future have to be oriented to less toxic and less volatile substances in order to reduce air, water and ground pollution. Solvents are basis for each industrial process and represent huge pollution source since toxic and volatile ones are in use currently. Therefore design of alternative ecological solvents and finding their application in exsisting processes is necessary. This thesis is dealing with potential industrial application of green solvents for treatment of toxic chemicals and azeotrope breaking. Thermodynamic properties of pure components and their mixtures were experimentally determined in wide temperature range T = (288.15 K - 333.15 K) and at atmospheric pressure. Densities ρ , viscosities η and refractive indices n_D were experimentally measured for polymers in the mixture with industrially important compounds like: aromatics, alcohols, esters. Same thermodynamic parameters were also experimentally determined also for nontoxic mixtures of polymers and ionic liquids, solvent mixtures of huge potential for industrial application. Choline chloride based binary eutectic mixtures and one ternary mixture with water as a third component were characterized in the same way in temperature range T = (298.15 K - 363.15 K). From experimental data excess molar volumes $V^{\rm E}$, viscosity deviations $\Delta \eta$ and deviations in refractive index Δn_D were calculated and fitted with Redlich-Kister polinomial equation. Calculated properties were analyzed in terms of specific molecular interactions and geometrical effects between mixture's components, taking into account temperature influence. Fourier transform infrared (FT-IR) spektroscopy of polymer + esters binary mixtures and corresponding pure components was performed at 298.15 K for the purpose of interpretation of molecular structure and possible intra- and inter-molecular

interactions in solutions. For polyethylene glycol diacrylate + alcohol mixtures experimental data were correlated versus polyethylene glycol diacrylate mole fraction and temperature. Refractive indices of binary mixtures were predicted with various mixing rules (Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton and Oster) and the results were compared with experimental data. Viscosity modeling was performed by two types of models: group contribution models UNIFAC-VISCO and ASOG-VISCO and correlative Teja-Rice and McAllister models. Experimental viscosity values were used for determination of new binary interaction parameters of various functional groups in order to be used in UNIFAC-VISCO and ASOG-VISCO models. Excess molar volume was modeled using Peng-Robinson-Stryjek-Vera cubic equation of state (PRSV CEOS) applying van der Waals one fluid and TCBT mixing rules.

Phase behaviour of two-component and three-component systems was also investigated. Based on the experiments corresponding phase diagrams were constructed denoting homogenous and heterogenous parts of investigated solutions. Phase behaviour of mixtures of solid polymer with aromatics and alcohols was investigated via experimental determination of solid-liquid phase equilibria in temperature range T = (298.15 K - 330.14 K) and at atmospheric pressure. Experimental measurements of liquid-liquid phase equilibria of two-component and three-component mixtures are also performed. Binary polymer + ionic liquid mixture was analysed in temperature range T = (298.1 K - 414.6 K) and also two types of ternary mixtures: polymer + salt + water and eutectic + alcohol + alkane or eutectic + alcohol + aromate at 298.15 K. Experimental determination of phase parameters was performed also at atmospheric pressure. NRTL and UNIQUAC models were succesfully applied for corelation of experimental equilibrium data for both investigated ternary mixtures containing eutectics. Additionally, influence of glicerol or water addition on viscosity decrease of eutectic mixtures is also investigated through experimental determination of thermodynamic parameters of eutectic + water/glycerol mixtures in temperature range T = (298.15 K – 363.15 K). Results indicate that addition of small quantities of water or glycerol as a third component significantly decreases viscosity

of eutectics. Also, influence of water addition on extraction efficiency of eutectics is also investigated.

According to the results solid polyethylene glicol is established as a green medium for sustainable industrial treatment of benzene, toluene and pyridine, water pollutants. Also, detail thermodynamic characterization for various types of two-component systems based on polymer and alcohol (ethanol, 1-propanol and 1-butanol)/or esters (dimethyl adipate and dimethyl phthalate) is performed. As a new generation solvent mixture, with huge importance for sustainable development, this thesis proposes three mixtures of polymer + ionic liquid type. Both green solvents are compounds of complex structure and complex solvent power, which main adventage is tunability, important property for industrial application. All this represents a significant contribution to the expansion of the thermodynamic database which enables the use of the analyzed solvent mixtures in practice, in various industrial processes. In the field of green separations, i.e. liquid-liquid extraction, two types of green solvents are analysed: eutectic mixtures and biphasic solvents. Results indicate that eutectic mixtures are separating agents of high selectivity towards polar compounds and can be applied in azeotrope separations, azeotropes of type alkane + alcohol and aromate + alcohol. In the field of biphasic solvents new system is proposed based on polymer not yet analysed in the literature, polyethylen glycol diacrylate. Several biphasic systems polymer + salt + water are analysed in detail and preliminar investigations, not part of this thesis, indicate their huge potential in separation of aminoacids.

Keywords: density, viscosity, refractive index, sound velocity, extraction selectivity and distribution coefficient, green solvents, eutectic mixtures, ionic liquids, aqueous biphasic systems, modeling

Scientific area: Technological engineering *Special scientific topic:* Chemical engineering *UDC number:* 536.7:632.981.3:338.45

Sadržaj

1. Uv	od	1
1.1	Definicija problema	1
1.2	Polazne hipoteze	5
1.3	Struktura teze	8
2 To	oriiska ospova	12
2. 70	011jske 05110ve	15
2.1	Zeleni rastvarači	13
2.1	.1 Polimeri	13
2.1	.2 Jonske tečnosti	17
2.1	.3 Eutektičke smeše	21
2.1	.4 Dvofazni vodeni sistemi (ABS)	25
2.2	Potencijalna primena ekstrakcije tečno-tečno kao energetski i ekološki efikasnog	
separ	acionog procesa	26
2.3	Termodinamička svojstva čistih komponenata i smeša	29
2 Ek	snarimantalni dag	21
J. LK	sperimentarin aeo	51
3.1	Korišćene hemikalije	31
3.2	Postupak pripreme uzoraka	33
3.2 3.3	Postupak pripreme uzoraka Aparatura i procedura	33 34
3.2 3.3 3.3	Postupak pripreme uzoraka Aparatura i procedura .1 Eskperimentalno merenje gustine	 33 34 34
3.2 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura .1 Eskperimentalno merenje gustine. .2 Eskperimentalno merenje indeksa refrakcije	 33 34 34 34
3.2 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura .1 Eskperimentalno merenje gustine. .2 Eskperimentalno merenje indeksa refrakcije .3 Eskperimentalno merenje viskoznosti.	33 34 34 35
3.2 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura .1 Eskperimentalno merenje gustine. .2 Eskperimentalno merenje indeksa refrakcije .3 Eskperimentalno merenje viskoznosti .4 Fourier-ova transformaciona infracrvena sprektroskopija	33 34 34 35 35
3.2 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura 1 Eskperimentalno merenje gustine 2 Eskperimentalno merenje indeksa refrakcije 3 Eskperimentalno merenje viskoznosti 4 Fourier-ova transformaciona infracrvena sprektroskopija 5 Diferencijalna skenirajuća kalorimetrija (DSC)	33 34 34 35 35 35
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura 1 Eskperimentalno merenje gustine. 2 Eskperimentalno merenje indeksa refrakcije	33 34 34 35 35 35 36
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura 1 Eskperimentalno merenje gustine 2 Eskperimentalno merenje indeksa refrakcije 3 Eskperimentalno merenje viskoznosti 4 Fourier-ova transformaciona infracrvena sprektroskopija 5 Diferencijalna skenirajuća kalorimetrija (DSC) 6 Nuklearna magnetna rezonanca (NMR) 7 Karl-Fisher titraciona metoda	33 34 34 35 35 35 36 36
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura 1 Eskperimentalno merenje gustine. 2 Eskperimentalno merenje indeksa refrakcije	33 34 34 35 35 35 36 36 36
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura 1 Eskperimentalno merenje gustine 2 Eskperimentalno merenje indeksa refrakcije 3 Eskperimentalno merenje viskoznosti 4 Fourier-ova transformaciona infracrvena sprektroskopija 5 Diferencijalna skenirajuća kalorimetrija (DSC) 6 Nuklearna magnetna rezonanca (NMR) 7 Karl-Fisher titraciona metoda 8 Eksperimentalna merenja pH i provodljivosti 9 Eksperimentalna merenja ravnoteže čvrsto-tečno (SLE)	33 34 34 35 35 35 36 36 36 36 36 36
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura 1 Eskperimentalno merenje gustine. 2 Eskperimentalno merenje indeksa refrakcije	33 34 34 35 35 36 36 36 36 38
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura. 1 Eskperimentalno merenje gustine. 2 Eskperimentalno merenje indeksa refrakcije	33 34 34 35 35 35 36 36 36 36 36 36 38 40
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura 1 Eskperimentalno merenje gustine. 2 Eskperimentalno merenje indeksa refrakcije 3 Eskperimentalno merenje viskoznosti 4 Fourier-ova transformaciona infracrvena sprektroskopija 5 Diferencijalna skenirajuća kalorimetrija (DSC) 6 Nuklearna magnetna rezonanca (NMR) 7 Karl-Fisher titraciona metoda 8 Eksperimentalna merenja pH i provodljivosti 9 Eksperimentalna merenja ravnoteže čvrsto-tečno (SLE) 10 Eksperimentalna merenja ravnoteže tečno-tečno (LLE)	33 34 34 35 35 36
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura. 1 Eskperimentalno merenje gustine. 2 Eskperimentalno merenje indeksa refrakcije . 3 Eskperimentalno merenje viskoznosti. 4 Fourier-ova transformaciona infracrvena sprektroskopija. 5 Diferencijalna skenirajuća kalorimetrija (DSC) . 6 Nuklearna magnetna rezonanca (NMR) . 7 Karl-Fisher titraciona metoda . 8 Eksperimentalna merenja pH i provodljivosti. 9 Eksperimentalna merenja ravnoteže čvrsto-tečno (SLE) . 10 Eksperimentalna merenja ravnoteže tečno-tečno (LLE) . 0 Modelovanje dopunske molarne zapremine . Modelovanje indeksa refrakcije.	33 34 34 35 35 36
3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3	Postupak pripreme uzoraka. Aparatura i procedura. 1 Eskperimentalno merenje gustine. 2 Eskperimentalno merenje indeksa refrakcije 3 Eskperimentalno merenje viskoznosti. 4 Fourier-ova transformaciona infracrvena sprektroskopija 5 Diferencijalna skenirajuća kalorimetrija (DSC) 6 Nuklearna magnetna rezonanca (NMR) 7 Karl-Fisher titraciona metoda 8 Eksperimentalna merenja pH i provodljivosti. 9 Eksperimentalna merenja ravnoteže čvrsto-tečno (SLE) 10 Eksperimentalna merenja ravnoteže tečno-tečno (LLE) 0 Modelovanje dopunske molarne zapremine Modelovanje indeksa refrakcije. Modelovanje dinamičke viskoznosti	33 34 34 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 40 42 44

5.	Rezu	ıltati i diskusija
ļ	5.1	Tretman toksičnih hemikalija u otpadnim tokovima primenom zelenih rastvarača 50
	5.1.1	Tretman aromata polimerima PEG 200 i PEG 400 – ispitivanje potencijala
	5.1.2	Tretman aromata i alkohola polimerom PEG 2050-ispitivanje potencijala
	5.1.3	Ispitivanje potencijala dvofaznih rastvarača u tretmanu zagađenih voda
!	5.2	Analiza smeša rastvarača u cilju industrijske primene
	5.2.1	PEGDA + alkoholi kao smeše rastvarača-termodinamička analiza
	5.2.2	PEG + estri kao smeše rastvarača-termodinamička analiza
	5.2.3	PEG + jonske tečnosti kao smeše rastvarača-termodinamička analiza
ļ	5.3	Separacija azeotropa
	5.3.1	Eutektičke smeše kao zeleni rastvarači za separaciju azeotropnih sistema metanol + heptan/
	tolue	n 92
	5.3.2	Eutektičke smeše kao zeleni rastvarači za separaciju azeotropnih sistema heksan/ heptan +
	etano	ol: Uticaj dodavanja vode na separaciju azeotropa103
6.	Zakl	jučci 112
7.	Refe	erence 120
PR	ILOG -	- Tabele

1.Uvod

1.1 Definicija problema

Industrijski razvoj je snažan zamah dobio sredinom 20tog veka uzrokujući dva velika problema: trošenje ograničenih fosilnih sirovina i stvaranje velike količine opasnog otpada koji uništava prirodu. Neophodna je održiva alternativa za postojeće procese koja će osigurati dugoročnu produktivnost sa visokom efikasnošću, uz poštovanje svih 12 principa "Zelene" hemije koje su definisali Paul Anastas i John Warner¹.

Rešenje problema zagađenja je jedno od pitanja najvišeg prioriteta. Takođe, dizajn inovativnih održivih procesa visoke efikasnosti je od podjednakog značaja za društvo.

Mnoge štetne hemikalije se koriste u procesu proizvodnje u raznim industrijskim granama. Među njima su i **rastvarači**, koji predstavljaju osnovu svakog industrijskog procesa. Do danas, u upotrebi su toksični i isparljivi organski rastvarači. Neki od njih su kancerogeni i izuzetno toksični, stoga su uspostavljene brojne legislative koje procenjuju toksičnost hemikalija i strogo kontrolišu njihovu upotrebu i nivo dozvoljenih štetnih emisija. Stvaranje ozona u troposferi nije poželjno jer štetno utiče na ljude i biljke, za razliku od ozona u stratosferi koji nas štiti od UV zračenja. Glavni zagađivači koji su u 2013. godini doprinosili potencijalu formiranja ozona u troposferi

su bili azotovi oksidi NOx gasovi i NMVOC (*Non-Methane Volatile Organic Compounds*), tj. industrijski organski rastvarači, sa 56.1 % i 32.4 % udelom, redom (*Eurostat Database*). Evropska agencija za životnu sredinu, EEA (*European Environment Agency*), analizirala je sektore koji najviše doprinose emisijama ovih štetnih hemikalija, što je prikazano na Slici 1.1. Sa slike je jasno da NMVOC emisijama u najvećoj meri doprinosi upotreba toksičnih rastvarača. Statistika je pokazala da je sektor upotrebe rastvarača povećao emisije NMVOC sa 35.8 % u 2009. na 43.1 % u 2011. godini. Zaključuje se da su potrebne oštre mere u sektoru primene rastvarača da bi se ovakav trend promenio.

VOC Solvents Emissions Directive (Direktiva 1999/13/EC) je glavni instrument za smanjenje industrijskih emisija isparljivih organskih jedinjenja (VOC-*Volatile Organic Compounds*) u Evropskoj Uniji. Još neke legislative koje kontrolišu upotrebu VOC mogu se naći na sajtu Evropske komisije (<u>http://ec.europa.eu</u>). Sa primenama legislativa, emisije NMVOC su poslednjih godina opale za 57 % u poređenju sa 1990. godinom.

Održivi procesi u budućnosti treba da budu orijentisani ka upotrebi manje toksičnih i manje isparljivih supstanci u cilju smanjenja zagađenja vazduha, vode i tla. Koncept **Zelene hemije** se pojavio kao odgovor na pitanje rešenja problema zagađenja. 12 principa zelene hemije razvili su Paul Anastas i John Warner¹ (Tabela 1.1).

Takođe, još jedan od prioriteta zelene hemije je dizajn energetski efikasnih procesa, po mogućstvu na uslovima sobne temperature i atmosferskog pritiska. Energetska efikasnost mnogih procesa danas je na nezavidnom nivou, naročito u zemljama u razvoju. Dva rešenja za ovaj problem se nameću. Jedno je poboljšanje efikasnosti kroz modifikaciju postojećeg procesa. Drugo rešenje jeste **dizajn inovativnih procesa** kroz implementaciju novih tehnologija visoke produktivnosti i upotrebu neškodljivih hemikalija.

Slika 1.1 – Doprinos različitih sektora emisijama NMVOC za 2011. godinu. Statistika Evropske agencije za životnu sredinu

Dobijanje proizvoda visoke čistoće je jedan od ključnih faktora uspešnog procesa. Ovde krucijalnu ulogu igraju **separacioni procesi**. Separacioni procesi koji se odigravaju na višim temperaturama i pritiscima, osim što su ekonomski neisplativiji, ispuštaju i veliku količinu emisija štetnih gasova u atmosferu. Ostali separacioni procesi koji se zasnivaju na hemijskoj strukturi ili veličini molekula su nedovoljno ispitani. Ovde je neophodan spoj industrije i akademije u cilju definisanja novih efikasnijih separacionih procesa, po mogućstvu da se odigravaju na ambijentalnim uslovima.

1. Prevencija	Bolje je sprečiti stvaranje otpada nego sanirati posledice
	nagomilanog otpada.
2. Ekonomija atoma	Maksimalno iskorišćenje polaznih sirovina sinteze u
	kreiranju proizvoda.
3. Kreiranje manje	Dizajn hemijskih sinteza uz korišćenje i proizvodnju
toksičnih hemijskih	supstanci koje poseduju malu ili potpunu netoksičnost za
sinteza	ljudsko zdravlje i prirodnu okolinu.
4. Kreiranje bezbednih	Hemijski proizvodi se kreiraju u cilju postizanja njihove
hemikalija	željene funkcije uz minimizovanje njihove toksičnosti.
5. Bezbedni rastvarači i	Upotreba pomoćnih sredstava (npr. rastvarača,
pomoćna sredstva	separacionih agenasa, itd.) treba da se svede na minimum
	i da bude bezbedna u slučaju da njihova upotreba ne
	može da se izbegne.
6. Energetska efikasnost	Razmatranje ekološkog i ekonomskog uticaja energetskih
	zahteva hemijskih procesa i njihovo svođenje na
	minimum. Gde god je moguće, poželjni su procesi na
	sobnoj temperaturi i pritisku.
7. Upotreba obnovljih	Sirovina treba da bude obnovljiva, pre nego potrošna, gde
sirovina	god je to tehnički i ekonomski izvodljivo.
8. Smanjenje količine	Nepotrebna derivatizacija, privremena modifikacija
derivata	fizičkih/hemijskih procesa, itd. moraju se minimizovati ili
	izbeći ako je moguće, zato što takvi koraci zahtevaju
	dodatne reagense i generišu otpad.
9. Kataliza	Kataliticki reagensi (visoke selektivnosti) superiorniji su
10 Kroiranio za	Ou steliloilleti ijskii agellasa. Homijski projzvodi troba da so krojraju na takav način da
rozarodnju	na kraju svog veka trajanja mogu da se razlože na
Tazgraunju	neškodlijve proizvode i na taj način sprečava se nijhovo
	prisustvo u prirodi.
11. Analiza u realnom	Analitičke metode treba dalje razvijati da bi mogle da se
vremenu u cilju	primene za kontrolu i monitoring u realnom vremenu,
sprečavanja zagađenja	tokom samog procesa pre nastajanja opasnih hemikalija.
12. Sigurnija hemija u cilju	Odabir supstanci za hemijski proces treba biti takav da
sprečavanja nesreća	omogući minimalnu mogućnost za nastajanjem hemijskih
	nesreća, uključujući njihovo ispuštanje u okolinu,
	eksplozije i požare.

Tabela 1.1 - 12 principa zelene hemije prema Paul Anastas i John Warner¹

1.2 Polazne hipoteze

Imajući u vidu navedene probleme vezane za upotrebu toksičnih rastvarača jedan od najvažnijih ciljeva istraživača i industrije jeste pronalaženje rešenja problema zagađenja kao jednog od ključnih faktora održivog razvoja. Troškovi sirovina na ulazu u proces, odlaganja i tretmana otpada mogu se značajno smanjiti primenom koncepta Zelene hemije. Najvažnije je planiranje prevencije zagađenja. Veliki izvor zagađenja u industriji dolazi iz sektora upotrebe rastvarača. Takođe, zagađenje nastaje i kroz neefikasnost procesa, što podrazumeva trošenje prekomerne količine toksičnih rastvarača. U tom kontekstu, cilj ove teze bilo je ispitivanje alternativnih rastvarača, tzv. zelenih rastvarača i njihove potencijalne primene. Izvršena je detaljna termodinamička analiza svakog od predloženih alternativnih rastvarača pojedinačno. Analiza njihovih smeša sa drugim supstancama je takođe detaljno izvedena kroz određivanje termodinamičnih karakteristika definisanih smeša, a sve to u cilju pronalaženja primene predloženih zelenih rastvarača u procesima koji bi mogli da sadrže definisane smeše. Razmatrana je i problematika prečišćavanja i separacije pojedinih komponenata. Zeleni rastvarači su ovde posmatrani kao separacioni agensi i kroz termodinamičku analizu ravnotežnih podataka definisanih smeša procenjena je efikasnost predloženih rastvarača. Cilj je pronalaženje rastvarača velike selektivnosti koje bi doprinelo poboljšanju efikasnosti separacionog procesa i dizajnu ekološki prihvatljive separacije kroz upotrebu manje količine netoksičnih rastvarača.

Alternativni rastvarači

Alternativni zeleni rastvarači predloženi u ovoj doktorskoj disertaciji mogu se svrstati u četiri klase jedinjenja:

<u>Polimeri</u>

Polietilen glikoli (PEG) srednje molekulske mase 200, 400 i 2050. PEG nalazi široku primenu kao rastvarač i dobro je poznat aditiv hrani, što ukazuje na njegovu potpunu netoksičnost.

Polietilen glikol diakrilat (PEGDA) srednje molekulske mase 700. Ovaj polimer je široko poznat kao biokompatibilni i neimunogeni materijal sa širokom primenom u biološkim i biomedicinskim aplikacijama. To takođe potvrđuje njegovu potpunu netoksičnost.

Jonske tečnosti (IL-Ionic Liquids)

Jonske tečnosti su odabrane zbog svojih dobro poznatih poželjnih karakteristika kao što su niska isparljivost (praktično su neispraljive), jonska (polarna) priroda i podesivost hemijskih karakteristika odabirom odgovarajućih katjona i anjona. Podesivost svojstava je izuzetno značajan faktor za njihovu primenu, s obzirom da podešavanjem njihove hemijske strukture može da se utiče na rastvaranje polarnih i nepolarnih jedinjenja. Za analizu su odabrane sledeće jonske tečnosti:

1-Etil-3-metilimidazolijum bis{(trifluorometil)sulfonil}amid ([C2mim][NTf2]) 1-Etil-3-metilimidazolijum trifluorometansulfonat ([C2mim][OTf]) Triheksiltetradecil fosfonijum trifluorometansulfonat ([P6,6,6,14][OTf])

Eutektičke smeše (DES-Deep Eutectic Solvents)

Ono što čini ove smeše privlačnim jeste lakoća njihove pripreme, niska cena, niska isparljivost i toksičnost, biodegradabilnost-u većini slučajeva. Konačno, karakteristike DESova mogu se lako podešavati odabirom odgovarajućeg molarnog odnosa i prirode konstituenata ovih smeša. Ta mogućnost kreiranja željenih karakteristika krajnje smeše je jedan od najznačajnih aspekata pri razmatranju eutektika kao potencijalnih industrijskih rastvarača. Još jedna karakteristika koja ih pre svega čini zelenim rastvaračima jeste obnovljivost. Mnogi konstituenti eutektičkih smeša mogu se dobiti

iz prirodnih izvora. Ovo je oblast u začetku koja nosi veliki potencijal. Nalaženje novih konstituenata DESova kao i njihove dalje primene u industriji nosi veliki potencijal koji prati ekološki i ekonomski povoljan uticaj. U ovom istraživanju birani su konstituenti obnovljive prirode: holin hlorid, dl-jabučna kiselina, 1,2-propandiol i voda. To su smeše sledećeg sastava:

holin hlorid + dl-jabučna kiselina u molarnom odnosu 1:1 (DES1) holin hlorid + 1,2-propandiol u molarnom odnosu 1:3 (DES2) holin hlorid + 1,2-propandiol + voda u molarnom odnosu 1:1:2 (PCH)

Glavni razlog odabira navedenih zelenih rastvarača jeste njihova neškodljiva priroda i veliki potencijal za industrijsku primenu. Detaljna teorijska osnova ovih rastvarača kasnije će biti data.

Dvofazni vodeni rastvori (ABS-Aqueous Biphasic Systems)

Još jedan tip zelenih rastvarača su takozvani dvofazni vodeni rastvori, poznati u literaturi kao ABS, koji su pogodni za uklanjanje zagađivača iz otpadnih voda ili vodenih rastvora korišćenjem ekološki benignih separacionih tehnologija. Dvofazne sisteme mogu da grade polimeri, jonske tečnosti, neorganske i organske soli (koje predstavljaju takozvane agense za isoljavanje). Ovi konstituenti u različitim kombinacijama mogu da formiraju dvofazne rastvarače. U ovoj doktorskoj disertaciji je testiran novi polimer PEGDA za primenu u ovakvim procesima separacije, koji do sada nije ispitivan. Različite neorganske i jedna organska so korišćene su kao agensi za isoljavanje. Svaka so je nagradila dvofazni sistem sa PEGDA. Sledeći ternarni sistemi su ispitivani:

PEGDA + K₃PO₄/Na₃C₆H₅O₇/K₂CO₃/MnSO₄/Li₂SO₄/ZnSO₄ + voda.

Glavna prednost ABSova je što je potrebna relativno mala količina rastvarača (u ovom slučaju PEGDA) i agensa za isoljavanje pri uklanjanju zagađivača iz vodenih rastvora.

1.3 Struktura teze

Polazeći od cilja, struktura ove doktorske disertacije je podeljena u tri dela koja analiziraju tri potencijalne primene predloženih zelenih rastvarača.

Prvi deo disertacije nosi naziv **Tretman toksičnih hemikalija u otpadnim tokovima primenom zelenih rastvarača**. Zeleni rastvarači, razmatrani u ovom delu su polimeri: *PEG 200, PEG 400, PEG 2050 i PEGDA 700*.

Toksične supstance koje su odabrane su:

benzen, toluen, o-ksilen, tetrahidrofuran (THF), piridin, nikotin, 1-heksanol, 1-oktanol i 1-dekanol.

Većina ovih supstanci predstavlja velike industrijske zagađivače. Svi oni na kraju završe u otpadnim industrijskim tokovima u vodi, vazduhu ili tlu.

Benzen je jedna od najbitnijih petrohemijskih supstanci, koja se obično koristi kao intermedijar u procesuiranju drugih supstanci. Veliki udeo benzena se koristi u proizvodnji tri hemikalije: cikloheksana², kumena³ i etilbenzena⁴. Izloženost benzenu izaziva brojne medicinske probleme, stoga je ova supstanca postala jedna od najstrože regulisanih supstanci u svetu^{5,6,7}.

Toluen je providna, u vodi nerastvorna tečnost, koja ima široku industrijsku primenu kao sirovina i kao rastvarač za boje, gume, lepkove, lakove, kao i za neke neorganske hemikalije. Mnogo je manje toksičan od benzena tako da je dobra zamena benzenu, kao industrijski rastvarač. Izlaganje toluenu može izazvati neurobihevioralne poremećaje⁸ i genetska oštećenja⁹. Brojni radovi se bave njegovim uklanjanjem iz industrijskih otpadnih voda¹⁰, tretiranjem para toluena^{11,12} i uklanjanjem toluena iz vazduha¹³.

O-ksilen je toksičan rastvarač koji ima široku primenu, npr. u industriji gume i kože. Komercijalni ksilen je obično smeša sve tri forme izomera (o-, m- i p-ksilena).

Tetrahidrofuran je toksičan rastvarač¹⁴ koji se zbog svoje velike rastvorne moći koristi u proizvodnju plastike, u farmaceutskoj industriji i polazna je sirovina u proizvodnji brojnih hemikalija.

Piridin i nikotin su toksične hemikalije važne sa praktičnog (ekonomskog) aspekta. Piridin se obično koristi u organskim sintezama; rastvarač je široke primene i osnovni gradivni blok i reagens¹⁵. Nikotin je (nažalost) širom sveta poznat kao glavni sastojak duvana, ali igra i sve veću ulogu u farmakologiji—kao potencijalni lek protiv nekih neurodegenerativnih bolesti^{16,17}.

Alkoholi *1-heksanol, 1-oktanol i 1-dekanol* su široko korišćeni rastvarači ali u većoj ili manjoj meri pokazuju toksičnost.

Da bi toksični rastvarači u otpadnim tokovima mogli da se tretiraju predloženim polimerima, poželjno je da budu i rastvorni u tim polimerima. Stoga je preliminarno testirana rastvorljivost odabranih hemikalija sa odgovarajućim polimerima. Određene smeše su bile potpuno mešljive, dok su neke ispoljavale delimičnu mešljivost. U potpuno mešljivim smešama polimera i konvencionalnih rastvarača izvršena je detaljna termodinamička analiza smeša. Određivani su sledeći termodinamički parametri: gustina, viskoznost i indeks refrakcije. Da bi se polimeri uspešno primenili poznavanje ovih veličina je neophodno za dizajn svakog industrijskog procesa. Pomoću ovih veličina tumače se molekulske interakcije u smešama što pomaže fundamentalnom razumevanju teorije tečnog stanja.

U nekim slučajevima smeše polimera i organskih rastvarača nisu bile mešljive u celom koncentracionom opsegu. U tom slučaju okarakterisano je fazno ponašanje smeša i određen je koncentracioni i temperaturni opseg u kome su ove smeše mešljive – tj. određene su homogene i heterogene oblasti rastvora. Ovi podaci ukazuju na uslove temperature i molskih udela komponenata pri kojima je moguća primena polimera kao rastvarača u tretmanu tih hemikalija na atmosferskom pritisku.

Sve ovo predstavlja solidnu bazu za dizajn procesa uklanjanja toksičnih konvencionalnih rastvarača ili drugih zagađivača iz otpadnih industrijskih tokova.

U ovoj oblasti istraživanja termodinamički su okarakterisani i *dvofazni vodeni sistemi*. Određeni su parametri fazne ravnoteže sistema PEGDA + so + voda, tj. binodalna kriva i ravnotežni sastavi koji leže na binodalnoj krivoj. Određene su i ravnotežne linije i dužine ravnotežnih (*tie-line*) linija i uspešno je proverena konzistentnost ravnotežnih podataka. Ispitivani sistemi su:

PEGDA + K₃PO₄/ Na₃C₆H₅O₇/ K₂CO₃/ MnSO₄/ Li₂SO₄/ ZnSO₄ + voda.

Dobijeni rezlutati ukazuju na homogene i heterogene oblasti u ispitivanim ternarnim sistemima. Termodinamička fazna karakterizacija predstavlja izuzetno važnu bazu za dizajn separacionog procesa primenom dvofaznih rastvarača, gde je cilj ukloniti zagađivače iz vodenih rastvora dodatkom polimera i soli u udelima koji odgovaraju heterogenim oblastima definisanim u ovom radu.

Drugi deo disertacije nosi naziv *Analiza smeša rastvarača u cilju industrijske primene.* U izvesnim situacijama kada rastvorna moć ili druga svojstva rastvarača nisu zadovoljavajuća, mešanje dva ili više rastvarača može doprineti željenim svojstvima rezultujuće smeše usled njihovog sinergetskog dejstva. Vrlo često se u industriji koriste binarne smeše rastvarača. Teoretsko objašnjenje efekata izazvanih mešanjem organskih supstanci je detaljno prikazano u literaturi^{18,19}.

Zeleni rastvarači odabrani za ovu analizu su: *PEG 200, PEG 400, PEGDA 700,* [*C*₂*mim*][*NTf*₂], [*C*₂*mim*][*OTf*], [*P*_{6,6,6,14}][*OTf*].

Definisane su sledeće smeše rastvarača:

PEGDA + etanol/ 1-propanol/ 1-butanol PEG 200/ PEG 400 + dimetil adipat/ dimetil ftalat PEG 400 + [P_{6,6,6,14}][OTf] PEG 200 + [C₂mim][NTf₂]/ [C₂mim][OTf]

Ispitivani alkoholi sa kratkim lancima *etanol, 1-propanol, 1-butanol* potpuno su mešljivi sa vodom i koriste se kao rastvarači u različitim oblastima industrije. U ovom konkretnom slučaju, njihova primena u farmaceutskoj industriji je od velike važnosti zato što smeše PEGDA i alkohola mogu potencijalno da se primenjuju u farmaceutskoj industriji za kontrolisano otpuštanje lekova. Takođe, nalaze primenu i za uklanjanje CO₂ iz vazduha kao i u biohemijskim aplikacijama²⁰.

Estri, *dimetil adipat (DMA) i dimetil ftalat (DMF)*, su neisparljivi i nisko toksični rastvarači. Dimetil adipat se koristi kao ulje za menjače, mast, za preradu metala i za biodegradabilne hidraulične fluide²¹. Dimetil ftalat ima brojne primene, uključujući čvrsto raketno gorivo, plastiku i sredstva za zaštitu od insekata.

Poslednja dva sistema tipa *polimer + jonska tečnost* predstavljaju izuzetno atraktivne smeše rastvarača čija je mogućnost menjanja svojstava u skladu sa primenom njihov najveći potencijal, pored pozitivnog ekološkog aspekta.

U cilju primene ispitivanih smeša termodinamika rastvora mora da bude poznata. U slučaju delimično mešljivih smeša fazno ponašanje je izuzetno važno za postavljanje odgovarajućih procesnih parametara u konkretnom slučaju njihove primene u industriji.

Treći deo doktorata nosi naziv *Separacija azeotropa*.

S obzirom da mnoga jedinjenja formiraju azeotrope, separacija azeotropa u industrijskim procesima je tema od velikog značaja. U petrohemijskim procesima

alkoholi koji se dodaju kao oksigenati benzinu izazivaju formiranje alkan/alkohol azeotropa²².

Azeotropi tipa aromat/alkohol javljaju se npr. u farmaceutskoj industriji²³. Prema tome, postoji zahtev za novim ekstrakcionim rastvaračima visoke selektivnosti i visokih vrednosti distribucionog koeficijenta, a da pritom odgovaraju definiciji zelenih rastvarača ustanovljenoj među principima Zelene hemije.

Za analizu su odabrani alternativni rastvarači iz grupe eutektičkih smeša: *DES1, DES2, PCH.*

Analizirani azeotropi i primenjeni rastvarači u ispitivanju potencijala primene ekstrakcije tečno-tečno su:

Heptan + metanol + DES1 Toluen + metanol + DES1 Heksan + etanol + DES2 Heptan + etanol + DES2 Heksan + etanol + PCH Heptan + etanol + PCH

Ovo su azeotropi koji se javljaju u petrohemijskim i farmaceutskim procesima gde i postoji realan problem njihove separacije. Na razdvajanje ovakvih smeša mogu se primeniti ekstraktivna i azeotropna destilacija (zahtevaju visoke temperature i pritiske) i ekstrakcija tečno-tečno. Kod ovog tipa ekstrakcije utrošak energije je manji jer se odvija na atmosferskim uslovima. Ključni faktor je odabir odgovarajućeg rastvarača. Danas se koriste konvencionalni rastvarači kao što su sulfolan, tetraetilen glikol, *N*-metil pirolidon. Organski rastvarači su toksični, isparljivi ili zapaljivi. Potrebno ih je zameniti ekološkim alternativnim rastvaračima koji će pokazivati visoku selektivnost ka jednoj od komponenata. Stoga je u ovom radu ispitivana selektivnost predloženih eutektičkih smeša i rezultati će kasnije biti diskutovani.

2. Teorijske osnove

2.1 Zeleni rastvarači

2.1.1 Polimeri

Polietilen glikol

Polietilen glikol (PEG) je polietar koji ima brojne primene od industrijske proizvodnje do medicine. PEG je takođe poznat i kao polietilen oksid (PEO) ili polioksietilen (POE), zavisno od svoje molarne mase.

Struktura PEGa (prikazana na slici iznad) se obično označava kao $H-(O-CH_2-CH_2)_n-OH$, gde dužina lanca tj. molekulska masa zavisi od broja *n.* PEG niže molekulske mase je tečan, dok je PEG molekulske mase preko 1000 u čvrstom stanju.

Svojstva

Ako se posmatra kao rastvarač, tečni PEG pokazuje neke izuzetne osobine: ima veliku polarnost^{24,25} i, s obzirom da ujedno može biti i davalac i primalac protona, ima dobru sposobnost građenja vodoničnih veza²⁶. Kvantna mehanička izračunavanja²⁷ i infracrvene (IR) spektroskopske studije²⁸ ukazuju da PEG kao rastvarač ima veoma specifičnu sposobnost da menja svoju konformaciju iz polarne u nepolarnu zavisno od hemijskog okruženja i temperature. To ga čini prilagodljivim rastvaračem koji dobro rastvara i nepolarna jedinjenja. Polarna konformacija ima najnižu energiju ali i nisku statičku težinu, dok je manje polarna ili nepolarna konformacija okarakterisana višom energijom ali i višom statičkom težinom. Na niskoj temperaturi, polarno stanje je dominantno dok sa porastom temperature nepolarno stanje postaje dominantnije²⁹. U polarnim organskim rastvaračima ili vodi molekuli PEGa imaju spiralnu, polarnu strukturu sa -C-C- vezama koje poseduju kosu konformaciju ("gauche" konformacija), -O-C- vezama koje poseduju trans konformaciju i vodoničnim vezama između molekula rastvarača i atoma kiseonika u PEG lancu³⁰. Nepolarna konformacija PEGa postaje favorizovana u gasovitoj fazi, nepolarnoj ili slabo polarnoj tako da se polarna spiralna PEG struktura raspada i transformiše u spiralnu konformaciju³⁰. PEGovi veće molekulske mase (bar do M=1500) su izuzetno polarni (dipolni momenat za PEG 1500, i u polarnim i u nepolarnim rastvaračima, je između 6.53 D i 8.51 D²⁵). Ove vrednosti su daleko veće u poređenju sa tečnim PEG 200 (3.06 D-3.94 D) ili PEG 400 (3.70 D-4.96 D)²⁵. U ovom trenutku je zgodno istaći moguće poreklo ove izuzetno velike polarnosti PEGa. Dipolni moment, kao vektorska veličina, predstavlja sumu vektora svake jedinice monomera (etilen oksida)²⁵. Rezultujuća polarnost je izuzetno osetljiva na broj mogućih polarnih konformacija koji je veliki zbog napred pomenute proširene fleksibilnosti lanca polimera PEGa^{30,31,32} – polarnost raste sa povećanjem lanca. S druge strane, poznato je da polarni i amfifilni PEG lanac utiče na strukturu polarnog rastvarača i oblik njegovih molekula – ovde se možemo pozvati na primere vode²⁶ i piridina¹⁷. I ovaj fenomen dodatno favorizuje rastvorljivost.

Struktura PEGa, naročito onog sa dužim lancem, je veoma kompleksna i ponekad zavisi od polarne prirode rastvarača ^{33,30}. Potvrđeno je da i intra- i inter-molekulske vodonične veze postoje u PEGu – ove veze se fomiraju između hidroksilnih grupa sa krajeva lanca PEGa i atoma kiseonika prisutnih u lancu PEGa ^{17,34}. Tendencija njihovog formiranja je podržana dužinom lanca, s obzirom da je broj atoma kiseonika u etilenoksid monomernim jedinicama veći što je lanac duži^{17,33}. Prema tome, intra-molekulske veze formiraju sređenu "*trans-gauche-trans*" strukturu – formiranjem heličnog oblika lanca – što je prilično uobičajeno za ovaj polimer³¹. S druge strane, inter-molekulske vodonične veze podstiču asocijaciju PEG molekula³⁴.

Polietilen glikol PEG je ekološki prihvatljiv polimer (neisparljiv i biodegradabilan) koji pokazuje nisku toksičnost prema ljudima i životinjama³⁵. Može čak i da se koristi kao aditiv hrani^{36,37}.

Primena

PEG i/ili njegovi vodeni rastvori danas nalaze primenu u održivim ekstrakcionim tehnologijama tečne faze³⁸, kao i u biotehnološkim i biomedicinskim primenama³⁹. Tečni PEG, koji je praktično neisparljiv, koristi se kao alternativni rastvarač u katalizi³⁵ i organskoj sintezi⁴⁰, i na taj način zamenjuje toksične industrijske rastvarače. Zbog svojih pogodnih osobina, PEG se koristi kao zamena za isparljive organske rastvarače u različitim procesima kao što su hemijske reakcije ^{41,42,43,44}. PEG je našao i široku primenu u prehrambenoj, farmaceutskoj, kozmetičkoj, membranskoj i hemijskoj industriji kao rastvarač, nosač, sredstvo za održavanje vlažnosti, mazivo, vezujuće sredstvo i sredstvo za kuplovanje^{45,46}. Zbog svojih povoljnih osobina može da se koristi i za prečišćavanje otpadnog vazduha i izduvnih gasova industrijskih proizvodnih postrojenja – na primer, u procesu odsumporavanja dimnih gasova⁴⁷.

Polietilen glikol diakrilat

Polietilen glikol diakrilat (PEGDA) je biodegradabilni i biokompatibilni polimer molekulske formule (C_3H_3O)-(C_2H_4O)_n-($C_3H_3O_2$), gde dužina lanca tj. molekulska masa zavisi od broja *n*. Molekulska struktura ovog polimera prikazana je na slici ispod.

Svojstva

PEGDA srednje molekulske mase 700 je srednje viskozna bistra tečnost niske isparljivosti sa dobrom fleksibilnošću i elongacijom, disperzibilnošću u vodi, dobrom reaktivnošću i pokazuje malu iritantnost za kožu. Tačka topljenja je 12-17 °C.

Primena

PEGDA, kao polimer rastvoran u vodi, koristi se kao funkcionalni ko-monomer za fleksibilne plastike i kao agens za umrežavanje između molekulskih lanaca polimera²⁰. Takođe, PEGDA je sintetička, hidrofilna sirovina za proizvodnju hidrogelova u prisustvu fotoinicijatora i UV svetlosti. Ovaj polimer je široko poznat kao biokompatibilni i neimunogeni materijal pogodan za različite hemijske manipulacije, sa primenom u inženjerstvu tkiva i regenerativnoj medicini. Jedna od važnih primena polimera PEGDA u biološkim i biomedicinskim aplikacijama moglo bi biti kontrolisao otpuštanje lekova proizvodnjom dobro definisanih mikro- ili nano-kanala unutar polimera što bi omogućilo da otpuštanje lekova kroz te puteve bude bolje definisano i kontrolisano. Procedura proizvodnje PEGDA čestica sa specifičnim, unutrašnjim kanalima za otpuštanje lekova je opisana detaljno u literaturi⁴⁸.

2.1.2 Jonske tečnosti

Jonske tečnosti su se pojavile sa sintezom etilamonijum nitrata ([EtNH₃][NO₃]) 1914. godine. Uprkos značaju ovog otkrića, jonske tečnosti su ostale nezapažene sve do 1951. godine, kada je etilpiridinijum bromid/AlCl₃ jonska tečnost prvi put upotrebljena kao elektrolit za oblaganje aluminijuma⁴⁹. Međutim, glavni nedostatak ove jonske tečnosti je osetljivost na vlagu, s obzirom da proizvodi HCl u kontaktu sa vodom. Kasnije, 90tih godina, otkrivene su nove jonske tečnosti koje su stabilne u vodi i pokazale su potencijal kao zeleni rastvarači. Jonske tečnosti su od tada privukle ogromnu pažnju i kao materijali i kao reakcioni rastvarači, i to ne samo u polju nauke već i u industriji, sa sve većim brojem naučnih publikacija i patenata (>100000 i >2000, redom)⁵⁰.

Svojstva

Nekoliko razloga se može navesti koji jonske tečnosti ističu kao izuzetnu i korisnu klasu jonskih jedinjenja⁵¹: *i*) širok opseg ovih jedinjenja koja postoje u tečnom stanju, što je sa aspekta primene kao rastvarača poželjno; ii) beskonačan broj kombinacija katjona i anjona kao konstituenata koji, sami po sebi, mogu biti vrlo raznolike strukture i kompleksnosti⁵²; *iii*) praktično su neisparljive u širokom opsegu temperatura^{53,54,55}, što ih čini ekološki održivim – neznatno atmosfersko zagađenje; prema tome, jonske tečnosti su obećavajuća zamena za postojeće isparljive i generalno toksične organske rastvarače; *iv*) jonska priroda (polarnost) i dobra baznost i kiselost vodonične veze^{56,57} rezultuju dobrom sposobnošću građenja vodoničnih veza^{58,59,60,61,62,63,64}; v) raznolikost i raznovrsnost rastvorne moći posedujući jonski deo (polaran) ali istovremeno i nepolarne domene (alifatični lanci), prvenstveno u katjonima⁶⁵, jonske tečnosti mogu da rastvore i polarna i nepolarna jedinjenja^{66,67,68,60,62}; vi) mogućnost dizajniranja i podešavanja njihovih rastvornih svojstava⁶⁹ ili odabirom anjona⁷⁰ ili menjanjem dužine lanca alifatičnog nepolarnog domena⁶⁵ sve to u cilju dizajniranja odgovarajuće jonske tečnosti koja će se uspešno primeniti u određenoj specifičnoj aplikaciji.

Odabrane jonske tečnosti imaju sledeće hemijske strukture:

1-Etil-3-metilimidazolijum trifluorometansulfonat ([C2mim][OTf])

1-Etil-3-metilimidazolijum bis{(trifluorometil) sulfonil}amid ([C2mim][NTf2])

Triheksiltetradecil fosfonijum trifluorometansulfonat ([P6,6,6,14][OTf])

[C₂mim][OTf] jonska tečnost pokazuje potpunu mešljivost sa vodom^{67,70} dok je s druge strane *[C₂mim][NTf₂]* jonska tečnost hidrofobna i pokazuje ograničenu rastvorljivost u vodi^{62,71}. Dva specifična svojstva [NTf₂]⁻ anjona koja ograničavaju njegovu sposobnost intereagovanja, uključujući vodonično vezivanje (primanje protona od okolnih donora), su: delokalizacija negativnog naelektrisanja i sterne smetnje (zbog masivne strukture anjona)^{72,73,74}. Specifične interakcije između susednih atoma sumpora i azota u anjonu delokalizuju negativno naelektrisanje uglavnom duž S-N-S polovine, dok samo mali deo naelektrisanja ostaje delokalizovano na atomu kiseonika vezanog za atom sumpora⁷⁵. Na ovaj način, atomi kiseonika i -CF₃ grupe štite negativno naelektrisanje i ometaju Kolumbove interakcije sa katjonom⁷³. Sposobnost sulfonatnih kiseonika da prime protone se takođe smanjuje⁷⁴ što se odražava na mnogo manju baznost anjona vodonične veze. Fosfonijum jonska tečnost *[P_{6,6,6,14}][OTf]* pokazuje mnogo slabiju rastvorljivost sa čvrstim i tečnim jedinjenjima zbog duplo manje kiselosti vodonične veze u poređenju sa imidazolijum jonskim tečnostima. Međutim, uticaj katjona na rastvorljivost je daleko manji od uticaja anjona. Kao što je već napred navedeno [OTf]⁻ anjon pospešuje rastvorljivost u odnosu na [NTf₂]⁻ anjon, tako da [OTf]⁻ anjon i kod fosfonijum jonske tečnosti pospešuje rastvorljivost. Sve tri jonske tečnosti su tečne na sobnoj temperaturi. U Tabelama 2.1 i 2.2 su date osnovne karakteristike ispitivanih jonskih tečnosti.

Tabela 2.1 – Kiselost vodonične veze (α), baznost vodonične veze (β) i dipolarnost / polarizabilnost (π^*) za ispitivane jonske tečnosti i PEG 200

Jonska tečnost	Kiselost	Baznost	Dipolarnost /	Literatura
	vodonične veze	vodonične veze	polarizabilnost (π^*)	
	(α)	(β)		
[C ₂ mim][NTf ₂]	0.705	0.233	0.980	76
[C ₂ mim][OTf] ^a	0.625	0.625		
$[P_{6,6,6,14}][OTf]$	0.37	0.27	0.83	77
PEG 200	0.63	0.46	0.98	26
PEG 400	0.65	0.31	1.08	26

^a β vrednost zavisi samo od anjona, dok α zavisi u najvećoj meri od katjona. Vrednosti za [C₂mim][OTf] usvojene su kao za [C₄mim][OTf], jer je anjon isti a katjon se razlikuje samo za jednu –CH₂ grupu, koja ne menja značajno α vrednost.

Tabela 2.2 – Kritična temperatura (T_c), kritični pritisak (P_c) i faktor acentričnosti (ω) za ispitivane čiste jonske tečnosti

Jonska tečnost	<i>T</i> _c / K	P_c / MPa	ω	Lit.
[C ₂ mim][OTf]	985.2	3.26	0.2891	78
[C ₂ mim][NTf ₂]	1244.9	3.58	0.1818	78
PEG 200	726.6	2.43	1.1467	79

Primena

Jonske tečnosti su ispitivane u širokoj oblasti primene⁵²: za separaciju azeotropa^{80,81}, rastvaranje celuloze⁸², za oblaganje aluminijuma tankim slojem nekog drugog metala⁸³, u separacijama, gde su pojedini primeri navedeni kasnije za jonske tečnosti ispitivane u ovom radu.

Neke od jonskih tečnosti su i industrijski komerijalizovane. Od svih industrijskih giganata, BASF je najdalje otišao u primeni tehnologije koja koristi jonske tečnosti. Trenutno verovatno najuspešniji primer industrijskog procesa koji koristi ovu tehnologiju je BASIL[™] (*Biphasic Acid Scavenging utilising Ionic Liquids*)⁸⁴. Ovaj komercijalni proces je prvi put javno najavljen i implementiran u BASF-u u gradu Ludwigshafen, Nemačka, 2002. godine. U mnogim organskim sintezama kao nusproizvod nastaju kiseline koje se moraju ukloniti iz reakcione smeše da ne bi razložile primarni proizvod reakcije. BASIL[™] proces je rešio taj problem uvođenjem 1-alkilimidazola u reakcionu smešu, koji reaguje sa kiselinom i gradi alkilimidazolijum jonsku tečnost koja se lako uklanja separacijom tečno-tečno. Time je zamenjena upotreba trietilamina koji je reagovanjem sa kiselinom stvarao trietilamonijum hlorid, gustu pastu kojom se teško rukovalo. Novi Basil[™] proces koristi manji reaktor i ima povećan prinos u odnosu na originalan proces.

1-Etil-3-metilimidazolijum trifluorometansulfonat ([C2mim][OTf])

Ova jonska tečnost je stabilna u vazduhu i vodi. Ispitivana je njena potencijalna primena kao medijuma za elektrooksidativnu polimerizaciju pojedinih jedinjenja i njena primena je uspešno doprinela kontroli morfološke strukture filma formiranog na anodi, pri čemu ubrzava reakciju polimerizacije, elektrohemijski kapacitet i elektrokonduktivnost^{85,86}. Ispitivan je i potencijal [C₂mim][OTf] jonske tečnosti kao ekstraktivnog agensa u ekstraktivnoj destilaciji za razdvajanje smeša azeotropa^{87,88,89}, rastvorljivost u CO₂⁹⁰, kao elektrolita za Li punjive baterije⁹¹ i rastvarača za tečnu ekstrakciju⁹².

1-Etil-3-metilimidazolijum bis{(trifluorometil) sulfonil}amid ([C₂mim][NTf₂])

Ova hemijski stabilna jonska tečnost je ispitivana u literaturi za različite primene. Ispitivana je njena primena kao medijuma za elektrodepoziciju visokokvalitetnih bakarnih filmova sa pozitivnim ekološkim uticajem⁹³, elektrohemijsku oksidaciju polimera⁹⁴, rastvorljivost u CO₂⁹⁵, kao ekstrakcionog rastvarača za separaciju smeša alifatičnih i aromatičnih alkana^{96,97,98}, u razdvajanju gasova primenom membranske separacije⁹⁹.

Triheksiltetradecil fosfonijum trifluorometansulfonat ([P6,6,6,14][OTf])

Fosfonijum jonske tečnosti imaju veću hemijsku i termičku stabilnost od drugih jonskih tečnosti koje sadrže azot. Ispitivana je rastvorljivost fluorisanih jedinjenja u ovoj jonskoj tečnosti ¹⁰⁰ u cilju promovisanja rastvorljivosti ovih jedinjenja u vodi i u molekulima rastvornim u vodi.

2.1.3 Eutektičke smeše

U polju zelene hemije cilj je kreiranje rastvarača niske toksičnosti i isparljivosti koji je jeftin, biodegradabilan i može se dobiti iz obnovljivih prirodnih resursa. Novi zeleni rastvarači sa ovim dopadljivim svojstvima su tzv. eutektički rastvarači, označeni kao DES (*Deep Eutectic Solvent*). Eutektičke smeše se uglavnom formiraju od čvrstih komponenata koje imaju tačku faznog prelaza iznad tačke faznog prelaza smeše. Rad Smith-a i sar.¹⁰¹ daje dobar pregled svih mogućih tipova eutektičkih smeša i njihovih konstituenata. Ubrzo su ispitivanja proširena na smeše holin hlorida sa karboksilnim kiselinama¹⁰², alkoholima¹⁰³, i uree sa šećerima i organskim kiselinama^{104,105}. Glavni princip sinteze DESa je kombinovanje akceptora protona (HBA-*hydrogen bond acceptor*), kao što je npr. pomenuta amonijumova so holin hlorid, sa donorom protona (HBD-*hydrogen bond donor*). To doprinosi smanjenju tačke topljenja eutektičke smeše u odnosu na polazne komponente kroz delokalizaciju naelektrisanja između anjona halogena i H-atoma iz donora¹⁰². Neki

autori objašnjavaju smanjenje tačke mržnjenja kao rezultat formiranja halogeni jon-donor protona supramolekulskih kompleksa koji menjaju slobodnu energiju čvrste faze u poređenju sa energijom tečne faze¹⁰⁶. Ono što čini ove smeše atraktivnim jeste lakoća njihove pripreme: sintetišu se uz jednostavno mešanje i kontinualno zagrevanje njihovih konstituenata. Cena DESa zavisi od cena, uglavnom ne tako skupih, konstituenata koji se mogu dobiti iz prirodnih izvora. Takođe, čistoća DESa zavisi samo od čistoće pojedinačnih komponenti, s obzirom da se sinteza odvija uz 100 % maseni prinos^{107,102,108}, i nema potrebe za naknadnim prečišćavanjem sintetisanog DESa. Konačno, svojstva DESa mogu da se prilagode odabirom odgovarajućeg odnosa parova koji grade vodonične veze i prirode tih konstituenata¹⁰⁹. U ovom istraživanju odabrani su sledeći konstituenti eutektičkih smeša:

Holin hlorid

Holin hlorid je atraktivna hemikalija zbog svoje biodegradabilnosti, niske cene i netoksičnosti. Kao esencijalni nutrijent može se dobiti ekstrakcijom iz biomase i često se smatra delom vitamina B kompleksa¹¹⁰.

dl-Jabučna kiselina

dl-Jabučna kiselina je dikarboksilna kiselina koja predstavlja racemsku smešu jabučne kiseline. S obzirom da se u prirodi može naći samo l-izomer, dl-jabučna kiselina se hemijski sintetiše hidratacijom maleinske ili fumarne kiseline na visokim temperaturama i pritisku¹¹¹. Ima široku primenu u prehrambenoj, farmaceutskoj i kozmetičkoj industriji¹¹².

Ova dva jedinjenja formiraju DES koji je u ovom radu označen kao DES1, koji je u tečnom stanju čak i ispod 0 °C, održiv i podesive viskoznosti¹¹³.

1,2-propandiol

Smeša 1,2-propandiola i holin hlorida je u ovom radu označena kao DES2. Obe izabrane hemikalije poseduju neškodljivu prirodu što čini ispitivani DES2 atraktivnim potencijalnim industrijskim rastvaračem, i što je najvažnije - obnovljivim. Nedavno, predložen je "zeleni" proces katalitičke konverzije celulozne biomase u 1,2-propandiol sa visokim prinosom¹¹⁴.

Treća ispitivana eutektička smeša, označena sa PCH, nastaje kada se u DES2 smešu doda voda u masenom procentu \sim 14 %.

Primena

Sa otkrićem eutektičkih smeša 2003. godine, pojavile su se brojne studije i radovi koji se bave ovom temom. Istraživanja potencijalne primene DESova su raznovrsna. Skorašnji pregledni radovi detaljno analiziraju nedavna dostignuća iz ove oblasti i predlažu smer budućih istraživanja^{115,108,101,116}. Najveći broj radova publikovan je u periodu između 2009. i 2016. godine. DESovi su ekološki rastvarači sa atraktivnim

svojstvima koja omogućuju njihovu upotrebu kao rastvarača i katalizatora u organskim sintezama^{117,118}, jonotermičkim sintezama gde ujedno imaju ulogu i rastvarača i podloge za formiranje čvrstih materijala ^{119,120,121}, u sintezi polimera kao rastvarači i medijumi za polimerizaciju¹²² gde pokazuju superiorne performanse u poređenju sa regularnim rastvaračima i jonskim tečnostima. Primena DESova za elektrodepoziciju metala je takođe privukla pažnju¹²³. DESovi mogu biti korisni i u pripremi nanomaterijala¹²⁴. Young Hae Choi je testirao brojne smeše formirane od primarnih metabolita kao što su šećeri, alkoholi iz šećera, amino kiseline, organske kiseline i derivati holina^{113,125} i postavio hipotezu da ove tečnosti mogu biti alternativni medijumi za žive organizme umesto vode. Takođe, sa termodinamičke tačke gledišta primena DESova u separacionim procesima je veoma interesantna. Na primer, jedan rad predlaže ekstrakciju glicerola iz biodizela korišćenjem DESa (holin hlorid + glicerol) i predlaže ovaj proces za industrijsku primenu¹¹⁷. Takođe, DES pokazuje zadovoljavajuću selektivnost prema aromatičnim ugljovodonicima¹²⁶⁻¹²⁸ i alkoholima¹²⁹ u separaciji azeotropnih smeša primenom separacione metode ekstrakcije tečno-tečno.

Zavisno od konstituenata i svojstava DESova, različita imena za ovakve smeše se koriste u literaturi. Na primer, u literaturi se mogu naći oznake kao što su smeše niske temperature faznog prelaza LTTM (L*ow Transition Temperature Mixtures*) koje imaju samo temperaturu staklastog prelaza^{130,109} zatim prirodne eutektičke smeše NADES (*Natural Deep Eutectic Solvents*) sastavljene od primarnih metabolita^{113,131} ili uglavnom korišćen naziv eutektičke smeše DES (*Deep Eutectic Solvents*) – koje poseduju ili tačku staklastog prelaza ili tačku topljenja.

Od ranih 1990tih ispitivanja jonskih tečnosti sintetisanih iz raznih katjona i anjona su sve obimnija. Ipak, ekotoksičnost jonskih tečnosti je diskutovana kao veoma važan nedostatak, prvenstveno zato što su rastvorne u vodi i na taj način nalaze svoj put do prirode¹³². Druga glavna prepreka komercijalizacije mnogih jonskih tečnosti je visoka cena. DESovi predstavljaju novu generaciju jonskih tečnosti kod kojih je ovaj nedostatak prevaziđen s obzirom da su njihovi konstituenti netoksične supstance koje se uglavnom mogu naći u prirodi. Takođe, svojstva DESova mogu se prilagoditi primeni odabirom odgovarajućeg odnosa parova vodoničnih veza i prirode konstituenata¹³³. To važno svojstvo dizajniranja rastvarača prema određenoj potrebi je karakteristično ne samo za jonske tečnosti već i za eutektičke smeše. Uz nisku cenu to ih čini supstancama koje u budućnosti najviše obećavaju.

2.1.4 Dvofazni vodeni sistemi (ABS)

U oblasti separacionih tehnologija u poslednjih nekoliko decenija ispitivana su rastvorna svojstva vodenih rastvora polimera na efekat ekstrakcije i frakcinacije različitih vrsta target molekula. Od naročitog interesa u kontekstu ekološki benignih separacionih tehnologija su sistemi označeni kao ekstrakcija na bazi određivanja tačke zamućenja (CPE-*Cloud-Point Extraction*)¹³⁴, ekstrakcija na bazi micela (ME-*Micellar Extraction*)¹³⁵, dvofazni vodeni sistemi (ABS-Aqueous Biphasic Systems)³⁸ i ekstrakcije uz primenu termoseparacionih polimera (TPS-Thermoseparating Polymer Systems)¹³⁶.

U ovom radu ispitivani su dvofazni sistemi. ABS sisteme mogu da nagrade dve slabo isparljive komponente koje se nalaze u vodenom rastvoru, gde sadržaj vode preovladava. Jedna od tih komponenata mora da bude kosmotropsko jedinjenje a druga kaotropsko. Kosmotrospsko jedinjenje je supstanca manjeg radijusa i visokog naelektrisanja na koju se kače molekuli vode i koja uređuje strukturu vode. Lokalna uređenost postaje veća nego kod same vode. Kaotropsko jedinjenje je supstanca većeg radijusa i manjeg naelektrisanja gde je interakcija sa vodom slaba i narušava se uređenost njene strukture.

ABS mogu da nagrade polimeri, jonske tečnosti, organske i neorganske soli. Različite kombinacije ovih jedinjenja mogu da dovedu do razdvajanja rastvarača u dve faze. Pregledni rad Freire i sar.¹³⁷ daje dobar uvid u svu literaturu vezanu za ABSove koji sadrže jonske tečnosti, kao i u primenu ovih dvofaznih sistema za ekstrakciju biomolekula i drugih vrednih hemikalija. Ovi sistemi mogu predstvaljati i alternativni
pristup za uklanjanje i regeneraciju jonskih tečnosti iz vodenih rastvora. Primena ABSova na bazi polimera takođe ima istu primenu s obzirom da su u pitanju biodegradabilni i netoksični polimeri kao što je PEG ili PPG. U ovom doktoratu ispitivan je PEGDA, čija je hemijska struktura ranije prikazana, sa različitim neorganskim i jednom organskom soli (u ovom slučaju soli su kosmotropska jedinjenja).

Hemijske strukture soli su:

2.2 Potencijalna primena ekstrakcije tečno-tečno kao energetski i ekološki efikasnog separacionog procesa

U oblasti zelene hemija, ova teza bavi se termodinamičkom i faznom karakterizacijom zelenih rastvarača u cilju njihove potencijalne primene u različitim industrijskim procesima, pri čemu je najveći akcenat na separacionim procesima tj. ekstrakciji tečno-tečno. Ovo istraživanje bavi se primenom zelenih rastvarača u separaciji azeotropa LLE procesom. Međutim, njihova potencijalna primena u oblasti separacija je daleko šira. Jedna od danas najaktuelnijih tema jeste povećanje efikasnosti korišćenja prirodnih resursa u cilju dobijanja hemikalija i energije, na primer biomase, koja je nedovoljno iskorišćen prirodni potencijal. Međutim, veliki deo biomase predstavlja vlažnu biomasu, gde vlažnost ide i do 95-98% i gde separacija molekula nikako nije isplativa jer zahteva prethodno sušenje koje je neekonomično. Kao potencijalno rešenje, nametnula se primena ekstrakcije tečno-tečno, gde bi se željeni molekuli ekstrahovali direktno iz biomase, bez prethodnog sušenja. S obzirom da biomasa uvek sadrži veći broj vrednih molekula, najbitniji je odabir pravog rastvarača koji će pokazivati selektivnost prema jednom ili nekoliko ciljanih molekula. Pregled literature u oblasti hemikalija dobijenih iz biomase ukazuje na konstantne napore istraživača u pronalaženju novih ekoloških rastvarača koji poseduju željena svojstva za određenu primenu. U ovom poglavlju napravljen je kratak pregled literature koja koja predstavlja savremene trendove u oblasti ekstarkcije tečno-tečno.

Nedavno se pojavio izvestan broj publikacija koji se bavi separacijama biomolekula iz prorodnih izvora korišćenjem eutektičkih smeša (DES) i jonskih tečnosti (IL) primenom LLE tehnike. Ekstrakcija fenola¹²⁵, flavonoida¹³⁸, flavona i izoflavona¹³⁹, fenolnih kiselina¹⁴⁰, antocijanina¹⁴¹ iz različitih izvora poljoprivredne biomase testirana je primenom eutektičkih rastvarača i svi radovi pokazuju obećavajuće rezultate. U oblasti frakcionacije biomase, postoji veliki prostor za buduća istraživanja koja bi rešavala probleme u procesu frakcionacije lignocelulozne biomase. Kumar i sar.¹⁴² ispitivali su frakcionaciju slame pirinča i ekstrakciju lignina korišćenjem eutektičkih rastvarača. Najnoviji rad¹⁴³ ispituje frakcionaciju kukuruznih klipova sa različitim tipovima DESova uz praćenje uticaja variranja molskih udela komponenata u DESovima na efikasnost delignifikacije. Ekstrakcija lignina je bila prilično uspešna za određene molske odnose konstituenata eutektičkih rastvarača. Alge su takođe veoma atraktivan izvor vrednih molekula, kao što je istaknuto u nekoliko prethodnih publikacija koje se bave eutekticima i ekstrakcijama polisaharida iz crvenih algi¹⁴⁴ ili lipida iz mikroalgi¹⁴⁵.

Jonske tečnosti su mnogo više ispitivane u oblasti ponovne upotrebe biomase s obzirom da je ovaj tip rastvarača poznat duže vreme. Najskorije publikacije bave se ekstrakcijom lipida¹⁴⁶, ekstrakcijom širokog spektra masnih kiselina korišćenjem ILmetanol smeše rastvarača¹⁴⁷, ekstrakcijom astanksantina iz algi¹⁴⁸. Većina studija su iz oblasti frakcionacije lignocelulozne biomase. Neke od njih su: integrisana frakcionacija slame pšenice i fenolnih jedinjenja primenom IL kao ekstrakcionih rastvarača¹⁴⁹, ekstrakcija lignina iz kukuruzne stabljike¹⁵⁰ i drvne biomase¹⁵¹, rastvaranje celuloze iz pulpe¹⁵² gde celuloza može da se transformiše u različite proizvode. Većina studija o tretmanu lignoceluloze dovode do zaključka da IL mogu uspešno da se primene kao ekološki prihvatljiviji rastvarači. Ekstrakcija alkaloida¹⁵³ i flavonoida¹⁵⁴ iz poljoprivrednog otpada je takođe literaturno ispitivana, kao i ekstrakcija panaksozida¹⁵⁵ iz žen šen korena.

Pretraga literature ukazuje na važnost pronalaska najoptimalnijeg načina za separaciju vrednih hemikalija iz biomase, u cilju njihovog direktnog korišćenja ili za dalju transformaciju. Evidentno je da su izvori biomase raznoliki i da je ispitivan samo deo tih izvora sa ova dva tipa rastvarača. Šta više, menadžment otpada je slabo ispitivan u naučnim publikacijama u konceptu poboljšanja efikasnosti resursa primenom IL i DES rastvarača¹⁵⁶, iako je to jedna od najširih oblasti za prevenciju otpada.

Budući da postoji nedostatak informacija o separacionim procesima u oblasti prerade biomase i otpada biomase rad na nalaženju i karakterizaciji novih zelenih rastvarača, naročito DESova i IL, je izuzetno važan kako bi se prevazišle prepreke u procesu frakcionacije biomase.

2.3 Termodinamička svojstva čistih komponenata i smeša

Gustina, indeks refrakcije i *viskoznost* su termodinamička svojstva neophodna za karakterizaciju čistih komponenata i njihovih smeša. Poznavanje gustine je neophodno za inženjerske proračune strujanja i mešanja fluida, kao i prenosa toplote i mase. Indeks refrakcije je važna fizička karakteristika čiste supstance koja u industriji služi za kontrolu procesnih parametara, određivanje koncentracije pri separacijama, a našao je i široku primenu u prehrambenoj industriji, medicini i kontroli kvaliteta. Viskoznost je transportno svojstvo fluida, važno za hidrauličke proračune, transport fluida kroz cevi i porozne površine, kao i u mnogim procesima koji uključuju prenos toplote i mase. Dopunske termodinamičke veličine, izračunate iz ovih osnovnih veličina, daju uvid u neidealno ponašanje smeše i međusobne interakcije i geometrijsko pakovanje između komponenata smeše na molekularnom nivou.

Dopunska molarna zapremina V^E je računata iz podataka za gustinu pomoću sledeće jednačine:

$$V^{\rm E} = \sum_{i=1}^{n} x_i M_i \left[\left(\frac{1}{\rho} \right) - \left(\frac{1}{\rho_i} \right) \right]$$
(2.1)

gde je x_i molski udeo komponente *i* u smeši; M_i njena molarna masa i ρ i ρ_i su izmerene gustine smeše i čiste komponente *i*, redom.

Devijacija viskoznosti $\Delta \eta$ je računata iz viskoznosti smeše η i viskoznosti η_i čiste komponente *i*, prema jednačini:

$$\Delta \eta = \eta - \sum_{i=1}^{n} x_i \eta_i \tag{2.2}$$

Devijacija indeksa refrakcije je računata iz sledeće jednačine:

$$\Delta n_D = n_D - \sum_{i=1}^n x_i n_{Di}$$
 (2.3)

gde su n_D i n_{Di} indeksi refrakcije smeše i čiste komponente *i*, redom. U svim gore navedenim jednačinama *n* označava broj komponenata u smeši.

Dopunska molarna zapremina V^{E} , devijacija viskoznosti $\Delta \eta$ i devijacija indeksa refrakcije Δn_{D} su fitovane Redlich-Kister (RK) jednačinom¹⁵⁷:

$$Y = x_i x_j \sum_{p=0}^{k} A_p \left(2 x_i - 1 \right)^p$$
(2.4)

gde Y predstavlja V^{E} , $\Delta \eta$ ili Δn_{D} smeše, A_{p} su parametri fitovanja, i k+1 je broj parametara, optimizovan pomoću F-testa.

Srednje kvadratno odstupanje (*root mean square deviation*-rmsd) σ , definisano je za sve dopunske veličine sledećom jednačinom, gde je *m* broj eksperimentalnih tačaka:

$$\sigma = \left(\sum_{i=1}^{m} \left(Y_{exp} - Y_{cal}\right)^2 / m\right)^{1/2}$$
(2.5)

Ravnotežni parametri ternarni smeša inert + željena supstanca + rastvarač, *selektivnost S* i *distribucioni koeficijent* β , ukazuju na ekstrakcionu efikasnost rastvarača. β (jednačina (2.6)) ukazuje na raspodelu željene komponente između rafinata i ekstrakta, a *S* (jednačina (2.7)) na afinitet rastvarača prema željenoj supstanci. Poželjne su visoke vrednosti β i *S*.

$$\beta_2 = x_2^{II} / x_2^{I} \tag{2.6}$$

$$S = \frac{\beta_2}{\beta_1} = \frac{x_2^{II} x_1^{I}}{x_2^{I} x_1^{II}}$$
(2.7)

gde su x_1^{I} i x_2^{I} molski udeli rafinata i željene supstance u gornjoj fazi (rafinat), redom, i x_1^{II} i x_2^{II} molski udeli rafinata i željene supstance u donjoj fazi (ekstrakt).

3.Eksperimentalni deo

3.1 Korišćene hemikalije

Osnovne karakteristike svih hemikalija korišćenih u radu prikazane su u Tabeli 3.1. Hemikalije su čuvane u tamnim bocama u inertnoj atmosferi azota i ultrazvučno degazirane pre pripreme uzoraka.

Za određene čiste hemikalije, gde je eksperiment to zahtevao, eksperimentalne vrednosti gustine, viskoznosti i indeksa refrakcije hemikalija su poređene sa literaturnim vrednostima na pojedinim temperaturama. Za sva poređenja, odstupanje od literature je bilo prihvatljivo. Tabela P1 daje prikaz svih poređenja.

Hemikalija	Proizvođač	Čistoća	Metode prečišćavanja/
		(maseni %)	sušenja
PEG 200	Sigma-Aldrich	≥ 99.9	
PEG 2001	Sigma-Aldrich	≥ 99.9	Molekulska sita (3Å)
PEG400	Aldrich		
	Acros Organics	≥ 99.9	
PEG400 ²	Sigma-Aldrich	≥ 99.9	Molekulska sita (3Å)
PEGDA	Aldrich		
PEG 2050	Sigma		
Metanol	Sigma-Aldrich	≥ 99.8	
Etanol	Merck	≥ 99.9	
1-Propanol	Merck	≥ 99.5	
1-Butanol	Merck	≥ 99.5	
1-Heksanol	Merck	≥ 98	Molekulska sita (3Å)
1-Oktanol	Merck	≥ 99	Molekulska sita (3Å)
1-Dekanol	Merck	≥ 99	Molekulska sita (3Å)
Benzen	Aldrich	99.9	
	Sigma	≥ 99.9	Molekulska sita (3Å)
Toluen	Merck	99.5	
	Merck	≥ 99.9	Molekulska sita (3Å)
o-Ksilen	Sigma	≥ 99	Molekulska sita (3Å)
Nikotin	Sigma	≥ 99	Molekulska sita (3Å)
Piridin	Merck	≥ 99.5	Molekulska sita (3Å)
Tetrahidrofuran	Merck	≥ 99.8	Molekulska sita (3Å)
[P6,6,6,14][OTf] ³	IOLITEC	99	
[C ₂ mim][NTf ₂] ⁴	IOLITEC	99	
[C ₂ mim][OTf] ⁵	IOLITEC	99	Primena vakuuma (0.1Pa)
Holin hlorid	Acros Organics	99	na 333.15 K
dl-Jabučna kiselina	Acros Organics	99	
1,2-Propandiol	Acros Organics	99	
Heptan	Sigma-Aldrich	99	
Heksan	Fluka	≥ 99	
K ₃ PO ₄	Sigma-Aldrich	≥ 98	
C6H5Na3O7·2H2O	Sigma-Aldrich	≥ 98	
K ₂ CO ₃	Sigma-Aldrich	≥ 99.99	
MnSO ₄ ·H ₂ O	Sigma-Aldrich	≥ 99.99	
Li ₂ SO ₄ ·H ₂ O	Sigma-Aldrich	≥ 99	
ZnSO4·7H2O	Acros-Organics	≥ 99	

Tabela 3.1 – Čistoće, proizvođači i metode prečišćavanja hemikalija korišćenih u radu

¹Sadržaj vode nakon sušenja je 300 ppm; ²Sadržaj vode nakon sušenja je 400 ppm;
 ³Sadržaj vode nakon sušenja je 50 ppm; ⁴Sadržaj vode nakon sušenja je 90 ppm;
 ⁵Sadržaj vode nakon sušenja je 130 ppm

3.2 Postupak pripreme uzoraka

Postupak pripreme binarnih i ternarnih smeša

Svi rastvori su pripremani korišćenjem automatske vage Mettler Toledo AG 204, preciznosti 1×10⁻⁷ kg, sa tačnošću u određivanju molskog udela 1×10⁻⁴. Rastvori su pripremani gravimetrijski, a detaljan opis pripreme uzoraka i merenja na vagi može se naći u doktorskoj tezi Dr Radović¹⁵⁸.

Sinteza eutektičkih smeša

DES1 je pripremljen mešanjem holin hlorida sa dl-jabučnom kiselinom u molarnom odnosu 1:1. DES1 je sintetisan jednostavno mešanjem dve čvrste komponente u koničnom staklenom Pyrex sudu u kome se nalazi stirer kojim se uzorak unutar suda meša. Zagrevanjem do 80 °C smeša se kontinualno meša oko 45 minuta dok se ne dobije providna tečnost.

DES2 je sintetisan mešanjem holin hlorida sa 1,2-propandiolom u molarnom odnosu 1:3, a PCH mešanjem holin hlorida sa 1,2-propandiolom i vodom u molarnom odnosu 1:1:2 (~ 14 masenih % vode). Milipor voda je korišćena za PCH sintezu. Sinteze rastvarača DES2 i PCH izvedene su jednostavno mešanjem pojedinačnih komponenata u koničnoj staklenoj Pyrex posudi uz zagrevanje do 40 °C i kontinualno mešanje oko 15 minuta, dok se ne dobije providna tečnost.

3.3 Aparatura i procedura

3.3.1 Eskperimentalno merenje gustine

Gustina ρ je merena na digitalnom vibrirajućem gustinomeru (model Anton Paar DMA 5000) sa U-cevi (sa ugrađenom automatskom korekcijom viskoznosti), sa tačnošću proizvođača ± 5×10⁻³ kg·m⁻³ i ponovljivošću ± 1×10⁻³ kg·m⁻³. Temperatura u ćeliji je regulisana do ± 0.001 K pomoću ugrađenog termostata. Opseg merenja gustina na pomenutom aparatu je od 0 do 3×10³ kg·m⁻³ i u opsegu temperature od 273.15 K do 363.15 K.

Gustina ρ je merena i na modelu digitalnog gustinomera Anton Paar DSA 5000 M sa Ucevi (sa ugrađenom automatskom korekcijom viskoznosti), sa ponovljivošću ± 1×10⁻³ kg·m⁻³ za gustinu, ± 0.1 m·s⁻¹ za brzinu zvuka i ± 0.001 K za temperaturu. Opseg merenja gustina na ovom aparatu je od 0 do 3×10³ kg·m⁻³ i brzina zvuka od 1000 do 2000 m·s⁻¹. Sva merenja se vrše u opsegu temperature od 273.15 K do 343.15 K. Za DES2 i PCH na ovom aparatu izmerene su i brzine zvuka *u*. Kalibracija aparature je dnevno izvođena uz pomoć vazduha i Milipor vode.

3.3.2 Eskperimentalno merenje indeksa refrakcije

Indeks refrakcije n_D je meren na automatskom refraktometru (model Anton Paar RXA 156), koji radi na talasnoj dužini 589 nm. Tokom merenja temperatura uzorka je održavana konstantnom pomoću ugrađenog termostata tačnosti ± 0.03 K. Opseg merenja indeksa refrakcije je od 1.32 do 1.56 i u temperaturnom opsegu od 283.15 K do 343.15 K. Kalibracija aparature je izvođena dnevno korišćenjem Milipor vode.

Detaljan opis Anton Paar DMA 5000 i Anton Paar RXA 156 instrumenata, kao i princip po kome funkcioniše merenje gustine i indeksa refrakcije mogu se naći u doktorskoj tezi Dr Radović¹⁵⁸, u kom je eksperimentalna procedura rada na ovim instrumentima i uspostavljena po prvi put. Anton Paar DSA 5000 M funkcioniše po istom principu kao i model DMA 5000.

3.3.3 Eskperimentalno merenje viskoznosti

Viskoznost η je merena na digitalnom Stabinger viskozimetru (model SVM 3000/G2). Ovaj instrument sadrži dve merne ćelije: jedna meri gustinu uzorka, dok druga meri dinamičku viskoznost. Ponovljivost merenja dinamičke viskoznosti i gustine je 0.35 % i ± 0.5 kg·m⁻³, redom. Tokom procedure merena temperatura u ćeliji je regulisana do ± 0.01 K pomoću ugrađenog termostata. Opseg merenja viskoznosti je od 0.2 do 20 000 mPa·s i u temperaturnom intervalu od 288.15 K do 378.15 K. Za čist DES1 viskoznost je merena na reometru Anton Paar Modular Compact Rheometer MCR 102 sa kontrolisanjem temperature pomoću Peltier Temperature Control Device P-PTD200/56/AIR sredstva, usled velike viskoznosti DES1 rastvarača koja prelazi opseg merenja viskozimetra. Detaljan opis aparata SVM 3000/G2, kao i princip merenja viskoznosti može se naći u doktorskoj tezi Dr Spasojević¹⁵⁹.

3.3.4 Fourier-ova transformaciona infracrvena sprektroskopija

FT-IR spektrofotometar (model Bopsegumem MB-102) korišćen je za snimanje IR spektra pojedinih ispitivanih čistih komponenata i njihovih binarnih smeša, u opsegu 400 do 4000 cm⁻¹, pri rezoluciji od 4 cm⁻¹. Sva spektroskopska merenja su izvedena na 298.15 K.

3.3.5 Diferencijalna skenirajuća kalorimetrija (DSC)

Za ova merenja korišćen je DSC aparat (Setaram, Francuska). Izvedena su tri merenja za svaki uzorak, primenjujući uvek istu brzinu temperaturne promene od 5 °C·min⁻¹: grejanje od 0 °C do 100 °C, hlađenje od 100 °C do 0 °C i opet grejanje od 0 °C do 100 °C. Tačnost kalorimetrije je ± 1% i preciznost ± 0.5 %. Nesigurnost merenja temperature

topljenja je ± 1 K. DSC instrument (Setaram, France) kalibrisan je svaki put sa indijumom kao referentnim uzorkom čistoće 99.9999 molskih %. U određenim eksperimentima korišćen je MicroCal MC-2 senzitivni diferencirajući skenirajući kalorimetar (DSC) uz upotrebu standardnog DA-2 softverskog paketa za prikupljanje podataka i Origin softvera za DSC analizu podataka.

3.3.6 Nuklearna magnetna rezonanca (NMR)

Svi NMR spektri mereni su na instrumentu Bruker AVANCE III 500 sprektrometar (500.26 MHz za ¹H, 125.8 MHz za ¹³C), sa 5mm BBO sondom. Uzorci su rastvarani u dmso-d6 rastvaraču i podaci su dobijeni na 298 K. Hemijska pomeranja (δ) su izražena u ppm u odnosu na signale rastvarača na 2.50 ppm i 39.51 ppm za ¹H i ¹³C, redom. U kvantitativnim ¹³C eksperimentima ("zgig30 pulse sequence") D1 je podešeno na 10s.

3.3.7 Karl-Fisher titraciona metoda

Karl-Fisher titraciona metoda primenjena je za određivanje sadržaja vode u uzorku korišćenjem vodenog standarda 1 % (1mg/g H₂O) nabavljenog od proizvođača Merck.

3.3.8 Eksperimentalna merenja pH i provodljivosti

pH i provodljivost pojedinih uzoraka mereni su na instrumentu Orion Star A215 ph/Conductivity meter, sa pH tačnošću ± 0.002 i relativnom tačnošću za provodljivost od 0.5 %.

3.3.9 Eksperimentalna merenja ravnoteže čvrsto-tečno (SLE)

Čvrsto-tečno (SLE-*Solid-Liquid Equilibria*) temperatura-sastav ravnotežni dijagrami binarnih smeša određeni su na 0.1 MPa i u temperaturnom opsegu. Korišćen je metod

određivanja tačke zamućenja – posmatranje okom zamućenosti koja prethodi faznom razdvajanju. Pritom, korišćena je dinamička tehnika - gde se zamućenost prati pri zagrevanju ili hlađenju rastvora. Uzorci su pravljeni u Pyrex staklenim koničnim sudovima sa stirerom unutar suda (prikazani na slici ispod). Nakon kontinualnog zagrevanja početne heterogene smeše dve komponente (čvrste i tečne) poznatog sastava, uz konstantno mešanje (Heidolph magnetna mešalica - prikazana na slici ispod), temperatura pri kojoj poslednji kristal čvrste supstance nestaje usvojena je kao ravnotežna. Procedura određivanja tačke zamućenja je opisana detaljno u literaturi^{160,59}. Eksperimentalna postavka za merenje ravnotežnih parametara prikazana je na slici ispod.

3.3.10Eksperimentalna merenja ravnoteže tečno-tečno (LLE)

Eksperimentalna merenja u temperaturnom opsegu za binarne smeše

Tečno-tečno ravnotežni (LLE-*Liquid-Liquid Equilibria*) temperatura-sastav fazni dijagrami dobijeni su na 0.1 MPa. Korišćen je vizuelni metod određivanja tačke zamućenja, uz primenu dinamičke tehnike i uzorci su pravljeni u Pyrex staklenim koničnim sudovima sa stirerom unutar suda. Heterogeni rastvori dve tečne komponente poznatog sastava su kontinualno zagrevani, uz konstantno mešanje, počevši od sobne temperature dok ne postanu homogeni. Zatim, homogeni rastvor je kontinualno hlađen i temperatura na kojoj se rastvor ponovo zamuti usvojena je kao tačka zamućenja. Eksperimenti su ponovljani 3-4 puta, gde su u poslednjem ponavljanju izvođeni veoma sporo (brzina temperaturne promene blizu očekivane tačke zamućenja nije bila veća od 5 K·h⁻¹).

Eksperimentalna merenja u temperaturnom opsegu za trokomponentne smeše

Ekperimentalno merenje ravnoteže tečno-tečno (LLE) ternarnih sistema je izvedeno na 298.15 K i 0.1 MPa. Eksperiment ima dve faze: *(i)* određivanje fazne granice, tj. binodalne krive i *(ii)* određivanje koegzistirajućih LLE linija, takozvanih ravnotežnih linija (*tie-lines*).

Binodalne krive su određene pomoću dobro poznatog sintetičkog metoda zamućenja korišćenjem ujedno i titracione tehnike¹⁶¹. Eksperiment počinje pripremom binarnih smeša dve nemešljive komponente (rafinat + rastvarač) u koničnom staklenom Pyrex sudu sa mešanjem. Treća komponenta (ekstrakt) se dodaje titriranjem, uz kontinualno mešanje, dok smeša ne postane homogena (nestanak turbidnosti). Sastav ternarne smeše u momentu kada postane čista i transparentna tečnost pripada binodalnoj krivoj. Primer ravnotežnog dijagrama za trokomponentne smeše prikazan je na Slici 3.1.

Slika 3.1 – Fazni dijagram ravnoteže tečno-tečno trokomponentnih smeša

Za određivanje *ravnotežnih linija*, ternarne smeše A (rafinat) + B (ekstrakt) + C (rastvarač) poznatog sastava napravljene su u oblasti nemešljivosti (oblast ispod binodalne krive). Smeša je energično mešana oko sat vremena i ostavljena da se faze uravnoteže u periodu od 24 sata u termostatskom kupatilu na 298.15 K. U nekim slučajevima razdvajanje faza je vršeno u centrifugi (model Thermo Scientific Heraeus Magafuge 16 Centrifuge) u periodu od 30 min pri 1000 rpm obrtaja/min na sobnoj temperaturi. Kao rezultat, dobijene su dve faze u ravnoteži, gornja faza (rafinat) i donja faza (ekstrakt). Uzorci su uzeti iz obe faze. Sastavi dve faze u ravnoteži određivani su na tri načina: preko indeksa refrakcije, termogravijemtrijski i primenom NMR tehnike.

U svim eksperimentima stakleni sud od 2 L je korišćen kao termostatsko kupatilo. Punjeno je vodom, etilen-glikolom ili silikonskim uljem kao termostatskom tečnošću, zavisno od temperature. Temperatura je beležena pomoću Pt100 termometra, koji ima tačnost ± 0.03 K. Procenjena nesigurnost temperature dobijena iz ponovljenih merenja je manja od ± 0.5 K.

4. Modelovanje

4.1 Modelovanje dopunske molarne zapremine

Modelovanje *V^E* podataka je izvedeno korišćenjem Peng-Robinson-Stryjek-Vera kubne jednačine stanja (**PRSV CEOS**)¹⁶².

$$P = \frac{RT}{V-b} - \frac{a(T)}{(V+ub)(V+wb)}$$

$$\tag{4.1}$$

gde *P*, *T*, *V* i *R* označavaju pritisak, temperaturu, molarnu zapreminu i gasnu konstantu. *u* i *w* se izračunavaju prema izrazima: $u = 1 - \sqrt{2}$ i $w = 1 + \sqrt{2}$.

PRSV CEOS je kombinovana sa sledećim pravilima mešanja: *(i)* van der Waals jedanfluid (vdW1) pravilo mešanja koje zavisi od sastava¹⁶³ i *(ii)* pravilo mešanja koje uključuje dopunsku Gibsovu slobodnu energiju (G^E) razvijeno od strane Twu i sar. (TCBT)¹⁶⁴. Parametri u oba pravila mešanja su korelisani na svakoj temperaturi. Za određivanje parametara *a* i *b* smeše, korišćena su, napred navedena, dva različita tipa pravila mešanja: vdW1 i TCBT.

Energetski parametar *a* vdW1 pravila mešanja je definisan sledećom jednačinom:

$$a = \sum_{i} \sum_{j} x_{i} x_{j} \left(a_{i} a_{j} \right)^{1/2} \left[1 - k_{ij} + l_{ij} \left(x_{i} - x_{j} \right) \right]$$
(4.2)

dok je kovolumen *b* definisan sledećim pravilom kombinovanja:

$$b = \sum_{i} \sum_{j} x_{i} x_{j} (b_{i} b_{j})^{1/2} (1 - m_{ij})$$
(4.3)

gde su k_{ij} , l_{ij} i m_{ij} binarne interakcione konstante, a_i , a_j , b_i i b_j su parametri čistih komponenata, koji se izračunavaju iz PRSV CEOS, a x_i i x_j molski udeli komponenata u smeši.

TCBT pravilo mešanja su razvili Twu i sar. za uslove bez referentnog pritiska i ono povezuje dopunsku Gibbsovu energiju G^E sa dopunskom Gibsovom energijom baziranoj na van der Waals-ovom referentnom fluidu (vdW), G^E_{vdW} ,

na sledeći način:
$$\frac{G^{E}}{RT} - \frac{G^{E}_{vdW}}{RT} + \left(Z - Z_{vdW}\right) = \ln\left\{\left(\frac{V^{*}_{vdW} - 1}{V^{*} - 1}\right)\left(\frac{b_{vdW}}{b}\right)\right\} - \frac{1}{w - u}\left\{\frac{a^{*}}{b^{*}}\ln\left(\frac{V^{*} + w}{V^{*} + u}\right) - \frac{a^{*}_{vdW}}{b^{*}_{vdW}}\ln\left(\frac{V^{*}_{vdW} + w}{V^{*}_{vdW} + u}\right)\right\}$$
(4.4)

gde se G_{vdW}^E izračunava iz PRSV kubne jednačine stanja, a $V^* = V / b = Z / b^*$ označava redukovanu zapreminu tečnosti na pritisku i temperaturi smeše. Odgovarajući faktori kompresibilnosti *Z* i *Z_{vdW}* se izračunavaju iz jednačine (4.1), izražene u *Z* formi. Imajući u vidu da jednačina za V^* nema eksplicitno rešenje, zahteva se iterativni postupak za njeno određivanje. Parametri a_{vdW} i b_{vdW} se određuju iz jednačina (4.2) i (4.3), dok se redukovani parametri a^* , b^* , a^*_{vdW} i b^*_{vdW} izračunavaju iz izraza:

$$a^* = Pa/R^2T^2$$
 $b^* = Pb/RT$ (4.5)

Detaljno objašnjenje o modelima ovde korišćenim može se naći u literaturi^{165,166}. vdW1 pravilo mešanja je korišćeno kao: *vdW1-2* (parametri k_{ij} i m_{ij} se optimizuju a l_{ij}

=0) i *vdW1-3* (parametri k_{ij} , l_{ij} i m_{ij}). Oblici TCBT pravila mešanja su: TCBT-2 (parametri $\Delta G_{12,1}$ i $\Delta G_{21,1}$) i TCBT-3 (parametri $k_{ij,1}$, $\Delta G_{12,1}$ i $\Delta G_{21,1}$).

Navedeni parametri su dobijeni minimizacijom funkcije cilja primenom Marquardt optimizacione tehnike¹⁶⁷:

$$OF = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{V_{exp}^E - V_{cal}^E}{V_{exp}^E} \right)^2 \to min$$
(4.6)

gde indeksi *exp* i *cal* predstavljaju eksperimentalne i izračunate vrednosti dopunske molarne zapremine, *m* je broj eksperimentalnih tačaka.

Sposobnost ovih modela da izračunaju dopunske zapremine ispitivanih binarnih smeša izražena je pomoću maksimalne procentualne greške PD_{max} između eksperimentalnih i izračunatih vrednosti, koja je definisana sledećom jednačinom:

$$PD_{\max}(V^{E}) = \frac{100}{m} \sum_{i=1}^{m} \left| \frac{V_{\exp}^{E} - V_{\exp}^{E}}{\left(V_{\exp}^{E}\right)_{\max}} \right|_{i}$$
(4.7)

gde je $\left(V_{\mathrm{exp}}^{E}\right)_{\mathrm{max}}$ maksimalna eksperimentalna V^{E} vrednost.

4.2 Modelovanje indeksa refrakcije

Indeksi refrakcije binarnih smeša su izračunati primenom različitih pravila mešanja i poređeni su sa eksperimentalnim podacima. Ovde su primenjeni sledeći, vrlo često u savremenoj literaturi korišćeni modeli:

Lorentz-Lorenz (L-L)^{168,169}

$$\frac{n_D^2 - 1}{n_D^2 + 2} = \sum_{i=1}^{N} \left[\phi_i \left(\frac{n_{Di}^2 - 1}{n_{Di}^2 + 2} \right) \right]$$
(4.8)

Dale-Gladstone (D-G)¹⁶⁹

$$n_D - 1 = \sum_{i=1}^{N} \left[\phi_i \left(n_{Di} - 1 \right) \right]$$
(4.9)

Eykman (Eyk)¹⁷⁰

$$\frac{n_D^2 - 1}{n_D + 0.4} = \sum_{i=1}^{N} \left[\phi_i \left(\frac{n_{Di}^2 - 1}{n_{Di} + 0.4} \right) \right]$$
(4.10)

Arago-Biot (A-B)169

$$n_{D} = \sum_{i=1}^{N} \left[\phi_{i} \left(n_{Di} \right) \right]$$
(4.11)

Newton (New)¹⁷¹

$$n_D^2 - 1 = \sum_{i=1}^{N} \left[\phi_i \left(n_D^2 - 1 \right) \right]$$
(4.12)

Oster (Ost)¹⁷²

$$\frac{\left(n_{D}^{2}-1\right)\cdot\left(2n_{D}^{2}+1\right)}{n_{D}^{2}} = \sum_{i=1}^{N} \left[\phi_{i}\left(\frac{\left(n_{Di}^{2}-1\right)\cdot\left(2n_{Di}^{2}+1\right)}{n_{Di}^{2}}\right)\right]$$
(4.13)

U jednačinama (4.8)-(4.13), n_{Di} označava indeks refrakcije čiste komponente, a ϕ_i predstavlja zapreminski udeo komponente u smeši, koji se računa prema sledećoj jednačini:

$$\phi_{i} = \frac{x_{i}V_{i}}{\sum_{i=1}^{N} x_{i}V_{i}}$$
(4.14)

gde je V_i molarna zapremina komponente *i*, a x_i njen molski udeo.

4.3 Modelovanje dinamičke viskoznosti

Viskoznost se obično modeluje pomoću dva tipa modela: prediktivnih i korelativnih. Prediktivni pristup određivanju viskoznosti se uglavnom bazira na modelima doprinosa grupa. Prediktivni modeli korišćeni u ovom radu su UNIFAC-VISCO^{173,174} i ASOG-VISCO¹⁷⁵. To su modeli doprinosa grupa koji se koriste za određivanje koeficijenta aktivnosti prema sledećim jednačinama:

UNIFAC-VISCO
$$\ln \eta = \sum_{i} x_{i} \ln(\eta_{i} V_{i}) - \ln V + \frac{\Delta^{*} g^{EC}}{RT} + \frac{\Delta^{*} g^{ER}}{RT}$$
 (4.15)

gde je η dinamička viskoznost smeše, indeks *i* se odnosi na čiste komponente, x_i je molski udeo komponente *i*. Poslednja dva člana su kombinatorijalni i rezidualni i uzimaju u obzir veličinu i oblik molekula, odnosno međumolekulske interakcije, redom.

ASOG-VISCO
$$\ln(\nu M) = \sum_{i} x_i (\nu_i V_i) - \frac{\Delta G^E}{RT}$$
(4.16)

gde je v kinematska viskoznost smeše, indeks *i* se odnosi na čiste komponente, x_i je molski udeo komponente *i*, a ΔG^E je dopunska Gibsova energija.

U oba modela koeficijenti aktivnosti smeša se odnose na interakcije između strukturalnih grupa. Parametri koji karakterišu interakacije između parova strukturalnih grupa, poznati kao interakcioni parametri grupa, su: α_{nm} za UNIFAC-

VISCO i m_{kl} i n_{kl} za ASOG-VISCO model. Ako su parametri već prethodno određeni u literaturi nije ih potrebno određivati ponovo. Svi detalji o ovim modelima nalaze se u pomenutoj literaturi. U slučaju ispitivanih sistema bilo je potrebno odrediti i nove binarne interakcione parametre iz eksperimentalnih podataka, primenom Marquardt¹⁶⁷ optimizacione tehnike za minimizovanje funkcije cilja:

$$OF = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\eta_{\exp} - \eta_{cal}}{\eta_{\exp}} \right)^2 \to \min$$
(4.17)

gde η_{exp} i η_{cal} označavaju eksperimentalne i izračunate vrednosti dinamičke viskoznosti i *m* je broj eksperimentalnih tačaka. Određivani su samo interakcioni parametri koji nisu nađeni u literaturi, dok su parametri koji su već prethodno određeni samo preuzeti iz odgovarajuće literature. Slična procedura je primenjena za određivanje novih ASOG-VISCO interakcionih parametara.

Dodatno, viskoznosti su korelisane i jednoparametarskim Teja-Rice^{176,177} i McAllister¹⁷⁸ dvoparametarskim "three-body" i troparametarskim "four-body" modelima.

Teja-Rice
$$\ln(\eta\varepsilon) = \ln(\eta\varepsilon)^{R_1} + (\ln(\eta\varepsilon)^{R_2} - \ln(\eta\varepsilon)^{R_1})\frac{\omega - \omega^{R_1}}{\omega^{R_2 - \omega^{R_1}}}$$
 (4.18)

gde se R_1 i R_2 odnose na dva referentna fluida. η je viskoznost, ω factor acentričnosti i ε je parametar smeše.

$$\begin{aligned} \text{McAllister-3 } lnv &= x_1^3 lnv_1 + 3x_1^2 x_2 lnv_{12} + 3x_1 x_2^2 lnv_{21} + x_2^3 lnv_2 - \ln\left(x_1 + x_2 \frac{M_2}{M_1}\right) + \\ 3x_1^2 x_2 ln\left(\frac{2 + \frac{M_2}{M_1}}{3}\right) + 3x_1 x_2^2 ln\left(\frac{1 + \frac{M_2}{M_1}}{3}\right) + x_2^3 ln(\frac{M_2}{M_1}) \end{aligned}$$

$$(4.19)$$

gde su v_{12} i v_{21} interakcioni parametri dobijeni regresionom analizom, M_i i v_i su molekulska masa i kinematska viskoznost čiste komponente *i*, redom.

$$\begin{aligned} \mathbf{McAllister-4} \ ln\nu &= x_1^4 ln\nu_1 + 4x_1^3 x_2 ln\nu_{1112} + 6x_1^2 x_2^2 ln\nu_{1122} + 4x_1 x_2^3 ln\nu_{2221} + \\ x_2^4 ln\nu_2 &- \ln\left(x_1 + x_2 \frac{M_2}{M_1}\right) + 4x_1^3 x_2 ln\left(\frac{3 + \frac{M_2}{M_1}}{4}\right) + 6x_1^2 x_2^2 ln\left(\frac{1 + \frac{M_2}{M_1}}{2}\right) + 4x_1 x_2^3 ln\left(\frac{1 + 3\frac{M_2}{M_1}}{4}\right) + \\ x_2^4 ln\left(\frac{M_2}{M_1}\right) \end{aligned}$$
(4.20)

gde su *v*₁₁₁₂, *v*₁₁₂₂ i *v*₂₂₂₁ binarni interakcioni parametri dobijeni regresionom analizom. Više detalja o ovim modelima može se naći u originalnim radovima autora ovih modela.

Sposobnost ovih modela da izračunaju dinamičke viskoznosti ispitivanih binarnih smeša i da korelišu eksperimentalne podatke za viskoznost izražena je pomoću maksimalne procentualne greške PD_{max} između eksperimentalnih i izračunatih vrednosti, koja je definisana sledećom jednačinom:

$$PD_{\max}\left(\eta\right) = \frac{100}{m} \sum_{i=1}^{m} \left| \frac{\eta_{\exp} - \eta_{cal}}{\left(\eta_{\exp}\right)_{\max}} \right|_{i}$$
(4.21)

gde je $(\eta_{exp})_{max}$ maksimalna eksperimentalna η vrednost a m broj eksperimentalnih tačaka.

Generalno, ako je izračunavanje viskoznosti bazirano na već određenim parametrima u literaturi onda su UNIFAC-VISCO i ASOG-VISCO modeli zapravo prediktivni. Međutim, u slučaju sistema ispitivanih u ovom radu, neki parametri su bili nepoznati, tako da je cilj bilo precizno određivanje njihovih vrednosti i UNIFAC-VISCO i ASOG-VISCO modeli se u tom slučaju tretiraju kao korelativni.

4.4 Modelovanje ravnotežnih podataka NRTL i UNIQUAC modelima

Eksperimentalni ravnotežni podaci (sastavi sa ravnotežnih linija) za ispitivane ternarne smeše korelisani su pomoću modela dve nehaotične tečnosti (NRTL - *Non-Random Two-liquid*)¹⁷⁹ i univerzalnog kvazihemijskog modela (UNIQUAC - *UNIversal Quasi-Chemical*)¹⁸⁰.

Koeficijenti aktivnosti u NRTL modelu računati su pomoću sledeće jednačine:

$$\ln \gamma_{i} = \frac{\sum_{j=1}^{m} \tau_{ji} G_{ji} x_{j}}{\sum_{l=1}^{m} G_{li} x_{l}} + \sum_{j=1}^{m} \frac{x_{j} G_{ij}}{\sum_{l=1}^{m} G_{lj} x_{l}} (\tau_{ij} - \frac{\sum_{r=1}^{m} x_{r} \tau_{rj} G_{rj}}{\sum_{l=1}^{m} G_{lj} x_{l}})$$
(4.22)

gde

$$\tau_{ij} = \frac{\Delta g_{ij}}{RT} \tag{4.23}$$

$$\frac{\Delta g_{ij}}{R} = A_{ij} + B_{ij}T \tag{4.24}$$

$$G_{ij} = \exp(-\alpha_{ij}\tau_{ij}) \qquad (\alpha_{ij} = \alpha_{ji})$$
(4.25)

Ovde, Δg_{ij} opisuje energetske interakcije između komponenata *i* i *j* i α_{ij} je parameter haotičnosti. Generalno postoji pet parametara koji se mogu optimizovati A_{ij} , A_{ji} , B_{ij} , B_{ji} i α_{ij} , ali u ovom slučaju parametri su tretirani su kao temperaturno nezavisni te je $B_{ij}=B_{ji}=0$. Za parametar α_{ij} usvojena je vrednost 0.2^{181} , tako da su samo A_{ij} i A_{ji} parametri optimizovani.

UNIQUAC računa koeficijente aktivnosti kao sumu rezidualnog γ^{R} i kombinatorijalnog γ^{C} doprinosa na sledeći način:

$$\ln \gamma_i = \ln \gamma_i^C + \ln \gamma_i^R \tag{4.26}$$

$$\ln \gamma_{i}^{C} = \ln \frac{\phi_{i}}{x_{i}} + \frac{z}{2} q_{i} \ln \frac{\theta_{i}}{\phi_{i}} + l_{i} - \frac{\phi_{i}}{x_{i}} \sum_{j=1}^{m} x_{j} l_{j}$$
(4.27)

$$\ln \gamma_i^R = q_i [1 - \ln \sum_{j=1}^m \theta_j \tau_{ji} - \sum_{j=1}^m \frac{\theta_j \tau_{ij}}{\sum_{k=1}^m \theta_k \tau_{kj}}]$$
(4.28)

$$\tau_{ij} = \exp(-\frac{\Delta u_{ij}}{RT}) = \exp(-\frac{a_{ij}}{T})$$
(4.29)

$$\phi_{i} = \frac{x_{i}r_{i}}{\sum_{i=1}^{m} x_{i}r_{i}}$$
(4.30)

$$\theta_i = \frac{x_i q_i}{\sum_{i=1}^m x_i q_i} \tag{4.31}$$

$$l_i = \frac{z}{2}(r_i - q_i) - (r_j - 1)$$
(4.32)

Ovde, Δu_{ij} i Δu_{ji} opisuju interakcionu energiju između molekula *i* i *j*, i u ovoj tezi njihove optimizovane vrednosti izražene su preko parametara a_{ij} i a_{ji} .

Koordinacioni broj *z* ima vrednost 10. Parametri *r* i *q* su molekularno strukturne konstante čiste komponente *i* koje zavise od veličine molekula i njihove spoljne površine. Njihove vrednosti su preuzete iz literature za komponente koje su bile dostupne¹⁸². r_i i q_i za DES izračunati su kao suma parametara zapremina grupa R_k i površina grupa Q_k datih u literaturi¹⁸³ na sledeći način:

$$r_i = \sum_k v_k^i R_k \,\mathbf{i} \, q_i = \sum_k v_k^i Q_k \tag{4.33}$$

gde v_{k}^{i} predstavlja broj grupa tipa k u molekulu *i*.

Procena binarnih interakcionih parametara je izvedena minimizacijom funkcije cilja zasnovane na sastavu:

$$OF = \sum_{i} \sum_{\alpha} \sum_{k} \left(x_{ik}^{\alpha(\exp)} - x_{ik}^{\alpha(cal)} \right)^{2}$$
(4.34)

gde *i* predstavlja broj komponenata u smeši, α broj faza i *k* broj ravnotežnih linija; indeksi *exp* i *cal* odnose se na eksperimentalne i izračunate vrednosti molskih udela. Sa ovom funkcijom minimizacije moguće je dobiti binarne interakcione parametre pomoću sledećeg uslova:

$$x_i^I \gamma_i^I = x_i^{II} \gamma_i^{II} \tag{4.35}$$

gde *I* i *II* predstavlja oznake gornje i donje faze u ravnoteži. U cilju provere kvaliteta korelisanja srednja kvadratna standardna odstupanja (rmsd) sastava, σ , izračunata su na sledeći način:

$$\sigma = 100\sqrt{\frac{\sum_{i} \sum_{\alpha} \sum_{k} (x_{ik}^{\alpha(\exp)} - x_{ik}^{\alpha(cal)})}{6k}}$$
(4.36)

5. Rezultati i diskusija

5.1 Tretman toksičnih hemikalija u otpadnim tokovima primenom zelenih rastvarača

5.1.1 Tretman aromata polimerima PEG 200 i PEG 400 – ispitivanje potencijala

U Laboratoriji za Hemijsko-inženjerske parametre, na Tehnološko-metalurškom fakultetu, proučavana su transportna i volumetrijska svojstva smeša polimera i toksičnih organskih rastvarača. Konkretno, merene su eksperimentalne vrednosti gustine, dinamičke viskoznosti i indeksa refrakcije četiri binarne smeše: benzen + PEG 200, benzen + PEG 400, toluen + PEG 200 i toluen + PEG 400 na deset temperatura (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, 333.15) K i na atmosferskom pritisku¹⁸⁴. Eksperimentalni podaci prikazani su u Tabeli P2. Za sve binarne sisteme merenja su izvedena u celom koncentracionom opsegu, osim za sistem toluen + PEG 200, gde su merenja izvedena samo do molskog udela 0.6 zbog ograničene mešljivosti toluena sa PEG 200³³. Vrednosti svih izmerenih termodinamičkih veličina opadaju sa porastom temperature.

Iz ovih eksperimentalnih podataka izračunate su dopunska molarna zapremina V^{E} , devijacije viskoznosti $\Delta \eta$ i indeksa refrakcije Δn_{D} i ove veličine su fitovane RedlichKister polinomom¹⁵⁷ - jednačine (2.1)-(2.4). Parametri fitovanja i odgovarajuće srednje kvadratno odstupanje σ - jednačina (2.5) - dati su u Tabeli P3 za V^{E} , $\Delta \eta$ i Δn_D . Izračunate veličine su analizirane u pogledu specifičnih molekulskih interakcija i efekata mešanja između komponenata smeše, uzimajući u obzir i uticaj temperature.

Dopunske molarne zapremine ispitivanih binarnih smeša u zavisnosti od molskog udela grafički su prikazane na Slici 5.1, zajedno sa krivom izračunatom iz RK jednačine. Dopunske molarne zapremine za sve binarne sisteme su negativne u celom opsegu sastava i temperatura. Veće apsolutne vrednosti dopunskih zapremina su primećene u smešama sa PEG 400. Krive su gotovo simetrične za sistem benzen + PEG 200. Za sisteme sa PEG 400 minimumi krivih su pomereni ka višim PEG molskim udelima, kao što se može videti sa Slike 5.1. Porast temperature od 288.15 K do 333.15 K dovodi do porasta negativnih *V*^E vrednosti u svim analiziranim sistemima. Negativne *V*^E u svim ispitivanim smešama su najverovatnije posledica formiranja određenog tipa heterogenih kompleksa u kojima molekuli rastvarača intereaguju sa lancem polimera bez mnogo perturbacija PEG lokalne strukture¹⁸⁵. Takođe, mogu biti rezultat strukturalnih efekata koji dovode do bližeg geometrijskog pakovanja različitih molekula.

Sposobnost PEGa da menja svoju konformaciju iz polarne u nepolarnu zavisno od hemijskog okruženja i da sa porastom temperature nepolarno stanje postaje dominantnije, mogla bi da objasni zašto dopunske molarne zapremine u svim analiziranim sistemima postaju negativnije sa porastom temperature u smešama sa nepolarnim i slabo polarnim jedinjenjima kao što su benzen i toluen.

Slika 5.1 – Eksperimentalne vrednosti dopunske molarne zapremine V^E u funkciji od benzen/ toluen molskog udela x1 za sisteme: a) benzen (1) + PEG 200 (2); b) benzen (1) + PEG 400 (2); c) toluen (1) + PEG 200 (2); d) toluen (1) + PEG 400 (2) na sledećim temperaturama: (◆) 293.15 K, (●) 303.15 K, (▲) 313.15 K, (■) 323.15 K, (▼) 333.15 K, (──) RK jednačina

Molekuli benzena i toluena su veoma slični osim što je benzen praktično nepolaran dok toluen ima slab dipolni momenat indukovan elektron-donorskom metil grupom na aromatičnom prstenu¹⁸⁶. Ova indukovana polarnost je kao štit koji sprečava dalje interakcije¹⁸⁷ tako da su negativne V^E vrednosti malo veće za binarnu smešu PEG 200 sa benzenom nego sa toluenom. S druge strane, rastvor PEG 400 sa toluenom ima negativnije V^E vrednosti u poređenju sa rastvorima sa benzenom što može da se pripiše slabljenju efekta štita alkil grupe što pospešuje interakcije između PEG 400 i toluena. Sa porastom dužine lanca polimera i njegove nasumično orijentisane lančane konfiguracije, mogućnosti interakcija sa rastvaračem i odgovarajućeg intersticijalnog pakovanja su veće, što rezultira višim *V*^E negativnim vrednostima u oba sistema sa PEG 400 u poređenju sa sistemima koji sadrže PEG 200.

Devijacije viskoznosti za sve ispitivane binarne smeše, prikazane na Slici 5.2, negativne su u čitavom opsegu sastava i na svim temperaturama.

Slika 5.2 – Eksperimentalne vrednosti devijacije viskoznosti Δη u funkciji od benzen/ toluen molskog udela x1 za sisteme: a) benzen (1) + PEG 200 (2); b) benzen (1) + PEG 400 (2); c) toluen (1) + PEG 200 (2); d) toluen (1) + PEG 400 (2) na sledećim temperaturama: (◆) 293.15 K, (●) 303.15 K, (▲) 313.15 K, (■) 323.15 K, (▼) 333.15 K, (─) RK jednačina

Negativne $V^{\rm E}$ i $\Delta \eta$ vrednosti mogu se pripisati strukturalnim faktorima, inkluziji molekula benzena i toluena u šupljine agregata, što rezultira manjom dostupnom površinom za trenje i smanjenjem viskoznosti smeše¹⁸⁸. Porast temperature smanjuje negativne $\Delta \eta$ vrednosti za sve ispitivane binarne smeše. Sistemi sa toluenom imaju

veće negativne $\Delta \eta$ vrednosti nego sistemi sa benzenom. Takođe, sistemi sa PEG 400 imaju nešto veće negativne $\Delta \eta$ vrednosti u poređenju sa ekvivalentnim sistemima sa PEG 200. Devijacije indeksa refrakcije za benzen + PEG 200/ ili PEG 400 smeše i za toluen + PEG 200/ ili PEG 400 smeše, zajedno sa krivama izračunatim pomoću RK jednačine prikazane su na Slici 5.3.

Slika 5.3 – Eksperimentalne vrednosti devijacije indeksa refrakcije Δn_D u funkciji od benzen/ toluen molskog udela x1 za sisteme a) benzen (1) + PEG 200 (2); b) benzen (1) + PEG 400 (2); c) toluen (1) + PEG 200 (2); d) toluen (1) + PEG 400 (2); na sledećim temperaturama: (�) 293.15 K, (●) 303.15 K, (▲) 313.15 K, (■) 323.15 K, (▼) 333.15 K, (──) RK jednačina

 Δn_D vrednosti su negativne u celom opsegu sastava i na svim temperaturama sa maksimumom odstupanja krive pomerenim ka višim molskim udelima PEGa.

Modelovanje

Viskoznost je modelovana pomoću sledećih modela: UNIFAC-VISCO, ASOG-VISCO, Teja-Rice i McAllister. Eksperimentalne vrednosti viskoznosti su korišćenje u određivanju interakcionih parametara sledećih grupa CHar-CH₂O, CHar-Car, Car-CH₃, Car-CH₂, Car-OH i Car-CH₂O zarad njihove primene u UNIFAC-VISCO modelu. Isti pristup je korišćen za izračunavanje sledećih interakcionih parametara korišćenih u ASOG-VISCO modelu: CHar-CH₂O, CHar-Car, Car-CH₂, Car-OH i Car-CH₂O. Svi novi parametri određeni su na osnovu eksperimentalnih podataka za devetnaest binarnih sistema.

Novi UNIFAC-VISCO interakcioni parametri grupa α_{nm} , dobijeni korišćenjem eksperimentalnih podataka za binarne sisteme¹⁸⁴ koji sadrže slične funkcionalne grupe, prikazani su u Tabeli P4. Preostali interakcioni parametri su preuzeti iz originalnog modela^{173,174} i rada¹⁸⁹. Novi ASOG-VISCO interakcioni parametri prikazani su u Tabeli P5. Rezultati dobijeni za UNIFAC-VISCO, ASOG-VISCO, Teja-Rice i McAllister modele za smeše benzen + PEG 200/ PEG 400 i toluen + PEG 200/ PEG 400 u ispitivanom temperaturnom opsegu su prikazani u Tabeli P6.

Prediktivni UNIFAC–VISCO model sa novim interakcionim parametrima daje veoma dobre rezultate za sve sisteme sa maksimalnom procentualnom greškom PD_{max} manjom od 6% u skoro svim slučajevima. Najbolji rezultati su dobijeni za toluen + PEG 200 binarni sistem sa devijacijama PD_{max} ispod 2.24%. ASOG-VISCO daje čak i bolje rezultate. Osim za benzen + PEG 200 smešu, gde maksimalna procentualna greška ide do 2.52%, vrednosti PD_{max} za tri druga analizirana sistema su u svim slučajevima ispod 1.32%.

Iz rezultata dobijenih za korelativne modele može se zaključiti da se sa jednoparametarskim Teja-Rice modelom bolji rezultati dobijaju za binarni sistem sa PEG200, naročito za toluen + PEG 200 smešu, sa maksimalnom procentualnom greškom ispod 0.4%. Devijacije su veće za sisteme sa PEG400 i idu do 8% za benzen +

PEG 400 smešu. Dvoparametarski McAllister-3 model takođe daje bolje rezultate za sisteme sa PEG200 (PD_{max} manja od 0.63%). Za toluen + PEG 400 smešu maksimalne procentualne devijacije su malo veće, ali i dalje ispod 1% i za benzen + PEG 400 smešu devijacije su na većini temperatura ispod 2%. McAllister-4 model daje veoma dobre rezulatate sa vrednostima maksimalne procentualne greške manjim od 0.6% za sve analizirane sisteme (osim za benzen + PEG 400 smešu na 333.15 K) i čak ispod 0.3% za sisteme sa PEG200.

Indeksi refrakcije binarnih smeša predskazani su različitim pravilima mešanja (L-L, D-G, Eyk, A-B, New, Ost) i rezultati su upoređivani sa eksperimentalnim podacima¹⁹⁰. Rezultati za indekse refrakcije dobijeni primenjenim pravilima mešanja za benzen + PEG 200/ ili PEG 400 smeše i toluen + PEG 200/ ili PEG 400 smeše u celom temperaturnom opsegu su sumirani u Tabeli P7. Iz dobijenih rezultata može se zaključiti da sva pravila mešanja zadovoljavajuće predskazuju eksperimentalne indekse refrakcije, sa vrednostima maksimalne srednje devijacije manjim od 0.002. Uticaj temperature je zanemarljiv za sve analizirane sisteme i pravila mešanja.

5.1.2 Tretman aromata i alkohola polimerom PEG 2050-ispitivanje potencijala

U cilju tretiranja toksičnih hemikalija analiza je proširena i na ispitivanje čvrstog PEGa molekulske mase 2050, kao potencijalnog zelenog rastvarača³³. Odabrani su sledeći veliki industrijski zagađivači: benzen, toluen, o-ksilen, THF, piridin, nikotin i alkoholi 1-heksanol, 1-oktanol i 1-dekanol. Ovi sistemi nisu potpuno mešljivi tako da je u ovom slučaju ispitivano njihovo fazno ponašanje. Eksperimentalno je određena ravnoteža čvrsto-tečno polimera PEG 2050 sa navedenim organskim rastvaračima i konstruisani su SLE fazni dijagrami na pritisku 0.1 MPa i u temperaturnom opsegu. Nesigurnost određivanja temperature, procenjena iz ponovljenih merenja, je obično niža od \pm 0.5 K. Izuzetak je izvođenje SLE eksperimenata u PEG-bogatoj oblasti, gde su greške išle do \pm 1.0 K. Ispitivan je uticaj različitih molekulskih karakteristika ispitivanih jedinjenja na fazne dijagrame. Naglasak je pre svega na *(i)* posebnom mehanizmu rastvaranja PEGa u nepolarnim supstancama u poređenju sa polarnim, *(ii)* sposobnosti PEGa da se prilagodi nepolarnim jedinjenjima, *(iii)* neočekivano različita rastvorljivost između piridina i nikotina u čvrstom PEG 2050.

Tačka topljenja (T_m) i entalpija fuzije ($\Delta_{fus}H$) PEGa 2050 su dobijene korišćenjem diferencijalne skenirajuće kalorimetrije (DSC aparat Setaram, Francuska). Usvojeni su sledeći rezultati: T_m =330.14 K i $\Delta_{fus}H$ =370.37 kJ·kmol⁻¹. Nesigurnost merenja temperature topljenja je ± 1.0 K.

Da bi se poredili dobijeni SLE rezultati za ispitivane sisteme sastavi su izraženi prema sledećoj formuli:

$$\Phi_1 = \frac{rx_1}{rx_1 + x_2} \tag{5.1}$$

U jednačini (5.1) indeksi 1 i 2 se odnose na veću (polimer) i manju (rastvarač) komponentu, redom. Simbol *x* se odnosi na molske udele, Φ predstavlja temperaturno nezavisnu zapreminu ili frakciju segmenta definisanu u teoriji rešetke rastvora¹⁹¹. Parametar *r* definiše razliku u veličini molekula komponenata i definiše se kao odnos molarnih zapremina komponenata. U ovom slučaju, uzeto je da je ovaj parametar jednostavan odnos između molekulskih težina komponenata, što je prihvatljiva aproksimacija¹⁹², posebno što je ova procedura korišćena radi mogućnosti poređenja rezultata. Međutim, ova pretpostavka podrazumeva da su segmentni udeli numerički jednaki masenim udelima.

Slika 5.4 predstavlja SLE fazne dijagrame rastvora PEG 2050 i organskih jedinjenja (rastvarača) – benzena, toluena, o-ksilena (Slika 5.4(a)), piridina, nikotina, THF-a (i benzena radi poređenja) (Slika 5.4(b)) i tri alifatična alkohola, n-heksanola, n-oktanola i n-dekanola (Slika 5.4(c)).

Slika 5.4(a) pokazuje fazno ponašanje PEG 2050 sa benzenom i njegovim derivatima. Rezultati SLE eksperimenata za PEG 2050 + p-ksilen³³ su veoma bliski onima u rastvoru o-ksilena. To ukazuje na činjenicu da za dugačak PEG lanac položaj druge metil grupe u molekulu ksilena nema uticaja na rastvorlijvost. SLE ponašanje PEG 2050 i polarnih jedinjenja: piridina, nikotina i THFa su prikazani na Slici 5.4(b). PEGovi veće molekulske mase su izuzetno polarni ali poseduju sposobnost rastvaranja i polarnih i nepolarnih jedinjenja, što je detaljno objašnjeno u Poglavlju 2.1.1. Očigledno je da će polaran piridin (dipolni moment 2.22 D¹⁹³) graditi jače dipol-dipol interakcije, nezavisno od drugih (vodonične veze) koje mogu postojati. THF je takođe veoma polaran, međutim manje od piridina. Imajući ove činjenice u vidu, jasno je zašto ie PEG 2050 prilično rastvoran u ova dva jedinjenja. Međutim, odlična rastvorljivost ovog polimera u anilinu koja je proučavana u literaturi³³, veća u odnosu na ovde ispitivane molekule, nije baš očekivana. Anilin je duplo manje polaran u odnosu na piridin i ima dosta manju baznost vodonične veze. Tako da, na prvi pogled, jake interakcije PEG-anilin nisu favorizovane u odnosu na PEG-piridin interakcije. Međutim, PEG 2050 je izuzetno dobar sorbent za anilin i toluidin¹⁹⁴ i dobar modifikator za epoksi-amino reakcije zbog svoje dobre rastvorljivosti¹⁹⁵. U ovom trenutku, izbegavajući preterane spekulacije, može se pretpostaviti da je ovakvo ponašanje posledica drugih interakcija, najverovatnije disperzionih sila pojačanih intra- i intermolekulskim grupisanjem koje doprinose dipol-dipol interakcijama i vodoničnim vezama, na taj način obezbeđujući tako dobru rastvorljivost. Nikotin pokazuje specifično ponašanje. Za razliku od njegove potpune rastvorljivosti u tečnim PEG 200 i PEG 400 polimerima, nikotin pokazuje smanjenu rastvorljivost u PEG 2050. naročito na višim temperaturama. Međutim, imajući u vidu skoriju volumetrijsku i spektroskopsku studiju piridin/ nikotin rastvora u PEG 200/ PEG 400¹⁷, ovo ponašanje nikotina je i očekivano. Spektroskopska analiza je pokazala nekoliko prepreka u nikotin-tečni PEG interakcijama koje samo mogu da se intenziviraju povećanjem molekulske mase PEGa: (i) nikotin ima prostornu konfiguraciju i raspored njegova dva prstena koji nisu u ravni¹⁹⁶⁻¹⁹⁸ - to sprečava gusto pakovanje i

formiranje jakih, orijentisanih interakcija sa velikim PEG molekulima; *(ii)* međumolekulske vodonične veze u rastvorima nikotina imaju dosta manji intenzitet u poređenju sa rastvorima piridina; *(iii)* molekuli piridina se deformišu u prisustvu polimera što nije slučaj sa nikotinom. Slike 5.4(a) i 5.4(b) pokazuju da je PEG 2050, zbog svoje dobre rastvorljivosti, potencijalno dobar medijum za održivi tretman piridina, benzena i toluena.

Slika 5.4 - Temperatura-sastav SLE fazni dijagrami, na atmosferskom pritisku, za binarne rastvore: (a) PEG 2050 (1) + benzen (\bullet)/ toluen (\bullet)/ o-ksilen (Δ) (2); (b) PEG 2050 (1) + piridin (\blacksquare)/ nikotin (\bullet)/ THF (\Box)(2), (i benzen (\bullet) radi poređenja); (c) PEG 2050 (1) + 1-heksanol (\blacksquare)/ 1-oktanol (O)/ 1-dekanol (\bullet)(2)

Ispitivani alkoholi 1-heksanol, 1-oktanol i 1-dekanol (Slika 5.4(c)) su slabo rastvorni u PEG 2050. S jedne strane i alkoholi i PEG su polarni i grade vodonične veze.

Međutim, jake intra- i inter-molekulske vodonične veze u čistom PEGu dovode do asocijacije molekula u polarnim rastvaračima (voda, urea¹⁹⁹), što u slučaju ispitivanih alkohola može da prevlada nad interakcijama između različitih molekula držeći strukturu čvrstog PEGa zajedno. Rastvorljivost je najbolja u slučaju 1-heksanola i onda opada sa porastom lanca alkohola. To se dešava najverovatnije zbog opadanja polarnosti i kiselosti vodonične veze alkohola usled povećanja lanca. Pomenuti SLE rezultati su predstavljeni i u Tabelama 5.1-5.3.

PEG 2050 (1) + benzen (2) PEG 2050 (1) + toluen (2) *T /* K *T /* K W_2 ili (Φ_2) W_1 ili (Φ_1) W_2 ili (Φ_2) W_1 ili (Φ_1) 0.36238 0.63762 298.15 0.09227 0.90773 298.15 0.4003 0.59970 304.75 0.18061 0.81939 305.05 0.44046 0.55954 306.95 0.20564 0.79436 306.15 0.48332 308.15 308.85 0.51668 0.33548 0.66452 0.52818 0.47182 310.65 0.44192 0.55808 310.15 0.61322 313.15 0.53963 313.95 0.38678 0.46037 0.70791 0.29209 317.65 0.62019 0.37981 315.95 0.8633 0.13670 322.35 0.73833 0.26167 320.45 1.00000 0.00000 330.14 0.00000 330.14 1.00000 PEG 2050 (1) + o-ksilen (2) *T /* K W_1 ili (Φ_1) *T /* K W_1 ili (Φ_1) W_2 ili (Φ_2) W_2 ili (Φ_2) 0.00606 0.99394 298.15 0.42048 0.57952 313.15 0.01102 0.98898 302.25 0.49568 0.50432 314.65 0.04112 0.95888 306.55 0.70207 0.29793 318.65 0.11655 0.88345 309.45 0.85043 323.45 0.14957 1.00000 330.14 0.18762 0.81238 310.65 0.00000 0.25239 0.74761 311.65 0.31474 0.68526 312.15

Tabela 5.1 - SLE podaci na atmosferskom pritisku za binarne rastvore PEG 2050 (1) + benzen/ toluen/ o-ksilen (2)

PEG 2050 (1) + piridin (2)			PEG 20	PEG 2050 (1) + nikotin (2)			
W_1 ili ($arPhi_1$)	W_2 ili (Φ_2)	Т / К	W_1 ili (Φ_1)	W_2 ili (\varPhi_2)	Т / К		
0.50077	0.49923	298.15	0.02570	0.97430	298.15		
0.51738	0.48262	307.25	0.03477	0.96523	303.85		
0.53841	0.46159	310.85	0.07615	0.92385	312.15		
0.58299	0.41701	314.25	0.11119	0.88881	315.25		
0.70940	0.2906	320.05	0.36601	0.63399	323.25		
0.77578	0.22422	322.35	0.22806	0.77194	320.15		
0.86149	0.13851	324.35	0.29849	0.70151	322.15		
0.91222	0.08778	326.05	0.62188	0.37812	326.85		
1.00000	0.00000	330.14	0.50151	0.49849	325.35		
			0.78769	0.21231	328.50		
			1.00000	0.00000	330.14		
PEG 2050 (1) + THF (2)							
W_1 ili ($arPhi_1$)	W_2 ili (Φ_2)	Т / К	W_1 ili (Φ_1)	W_2 ili (Φ_2)	Т / К		
0.45034	0.54966	308.15	0.40293	0.59707	305.45		
0.50526	0.49474	310.15	0.81879	0.18121	323.25		
0.54409	0.45591	311.65	0.88048	0.11952	325.95		
0.59608	0.40392	313.45	1.00000	0.00000	330.14		
0.66611	0.33389	316.65					
0.33641	0.66359	298.15					

Tabela 5.2 - SLE podaci na atmosferskom pritisku za binarne rastvore PEG 2050 (1) + piridin/ nikotin/ THF (2)

Tabela 5.3 - SLE na atmosferskom pritisku za binarne rastvore PEG 2050 (1)+ 1-heksanol/ 1oktanol/ 1-dekanol (2)

PEG 2050 (1) + 1-heksanol (2)		PEG 2050 (1) + 1-oktanol (2)			PEG 2050 (1) + 1-dekanol (2)			
W_1 ili (Φ_1)	W2 ili	T / K	W_1 ili	W_2 ili	Т / К	W_1 ili (Φ_1)	W2 ili	T / K
	(Φ_2)		(Φ_1)	(Φ_2)			(Φ_2)	
0.03444	0.96556	312.65	0.01882	0.98118	317.15	0.01449	0.98551	317.95
0.08185	0.91815	313.65	0.08835	0.91165	318.45	0.10674	0.89326	320.65
0.14480	0.85520	315.15	0.15063	0.84937	319.15	0.16261	0.83739	321.15
0.23901	0.76099	317.15	0.26875	0.73125	320.65	0.23725	0.76275	321.65
0.33043	0.66957	319.65	0.40040	0.59960	321.35	0.32943	0.67057	322.15
0.41618	0.58382	320.65	0.47240	0.52760	321.95	0.39360	0.60640	322.45
0.52420	0.47580	322.15	0.59297	0.40703	322.95	0.49034	0.50966	323.15
0.02515	0.97485	311.05	0.01178	0.98822	314.35	0.56340	0.43660	323.45
0.01866	0.98134	308.55	0.68016	0.31984	324.20	0.65189	0.34811	324.45
0.74140	0.25860	325.25	0.79209	0.20791	325.95	0.81371	0.18629	326.05
1.00000	0.00000	330.14	1.00000	0.00000	330.14	1.00000	0.00000	330.14
5.1.3 Ispitivanje potencijala dvofaznih rastvarača u tretmanu zagađenih voda

Jedan od velikih ekoloških problema predstavljaju zagađene vode. U otpadnim vodama zagađivači su prisutni u maloj količini ili čak samo u tragovima. Uobičajene separacione metode nisu pogodne za uklanjanje zagađivača prisutnih u tragovima i često zahtevaju velike količine rastvarača ili absorbensa (u zavisnosti od tipa separacije: ekstrakcija, membranska separacija, itd.). Dvofazni vodeni sistemi (ABS), zelena alternativa za postojeće separacione procese, su zapravo dvofazni rastvarači u velikoj meri sačinjeni od vode i dve slabo isparljive komponente (rastvarača i agensa za isoliavanie). Princip funkcionisania ove separacione tehnike zasniva se na formiranju dve faze u ABSu. To se postiže mešanjem kosmotropskog jedinjenja (agens za isoljavanje) koje dovodi do formiranja dve nemešljive faze tako što privlači molekule vode i iz početnog vodenog rastvora istiskuje rastvarač u drugu fazu. Na taj način dobijaju se dve faze u ravnoteži – jedna bogata agensom i druga bogata rastvaračem. U obe faze u velikom procentu je prisutna voda. To znači da bi dodatkom male količine rastvarača i agensa u otpadne vode, određeni zagađivači imali veći afinitet ka jednoj od te dve faze. Selektivnim prelaskom zagađivača u jednu fazu njegova koncentracija bi se povećavala i lakše bi se uklonio iz vode. Da bi se takva separaciona neophodna tehnologija primenila je termodinamička fazna karakterizacija ABS sistema. Određivanjem heterogenih i homogenih oblasti u tim sistemima na ambijentalnim uslovima moguće je definisati procesne uslove u realnom slučaju. Ispitivanje tih procesnih uslova i razumevanje mehanizma faznog razdvajanja u ABSu i efekta isoliavania su cilievi ove doktorske teze.

Slika 5.5 – Fazni dijagrami ternarnih sistema PEGDA (1) + so (2) + H₂O (3) na 298.15 K i na atmosferskom pritisku, koji predstavlja podatke sa binodalne krive (●) i ravnotežne (tie-line) podatke (●) i linije (- -) za: (a) K₃PO₄; (b) Na₃C₆H₅O₇; (c) K₂CO₃; (d) MnSO₄; (e) Li₂SO₄ i (f) ZnSO₄

U ovom radu su odabrani ABS sistemi tipa polimer + so, i određene su binodalne i ravnotežne krive. Ispitivani su sledeći sistemi: *PEGDA + K₃PO₄/ Na₃C₆H₅O₇/ K₂CO₃/ MnSO₄/ Li₂SO₄/ ZnSO₄ + voda. Eksperimentalnim merenjem ravnoteže tečno-tečno na*

298.15 K određena je granica rastvorljivosti (binodalne krive) u ispitivanim sistemima kao i ravnotežne linije u oblasti nemešljivosti. Sastavi sa binodalnih krivih za šest ispitivanih sistema prikazani su u Tabeli 5.4, a binodalne krive su predstavljene na Slici 5.5.

Tabela 5.4 – Podaci sa bionadalne krive izraženi u masenim udelima soli, w₂, i PEGDA, w₁, za sisteme PEGDA (1) + so (K₃PO₄/ Na₃C₆H₅O₇/ K₂CO₃/ MnSO₄/ Li₂SO₄/ ZnSO₄) (2) na 298.15 K

PEGDA $(1) + K_3PO_4(2)$		PEGDA (1) +	Na ₃ C ₆ H ₅ O ₇ (2)	PEGDA (1) + K ₂ CO ₃ (2)		
$100 \cdot w_2$	$100 \cdot w_2$ $100 \cdot w_1$		$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	
1.25	42.36	1.58	39.97	1.84	41.14	
8.61	9.57 8.67		10.77	1.47	42.97	
4.79	22.46	1.96	36.94	8.92	7.41	
10.51	5.26	5.37	21.22	3.76	28.52	
1.49	40.34	10.74	5.69	2.64	34.79	
9.15	8.68	4.16	25.30	1.94	39.22	
9.90	7.25	11.90	4.75	9.45	6.11	
9.49	7.80	4.78	23.94	4.14	26.29	
10.72	4.73	12.35	2.90	5.11	21.22	
7.83	10.01	6.29	17.67	10.91	3.80	
11.47	2.62	10.23	5.73	4.45	22.95	
2.84	32.36	7.00	15.16	6.48	16.06	
8.03	9.69	8.97	10.08	7.23	13.69	
7.31	11.33	2.99	30.64	11.96	1.96	
5.05	20.32	0.37	52.01	0.19	61.79	
9.71	7.45	1.14	41.96	1.09	45.92	
3.92	24.83	0.29	54.97	0.81	49.26	
9.24	7.88	0.64	48.26	0.51	55.02	
5.20	19.41	12.42	2.66			
7.74	11.17					
7.19	13.51					
6.13	18.05					
3.32	31.07					
2.07	37.82					
18.97	0.52					
0.21	46.14					
PEGDA (1) + MnSO ₄ (2)		PEGDA (1)) + Li ₂ SO ₄ (2)	PEGDA (1) + ZnSO ₄ (2)		
$100 \cdot w_2$	$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	
2.02	31.64	3.27	28.65	0.28	40.92	
1.34	35.92	2.35	33.08	1.14	33.73	
3.27	25.86	1.59	39.54	0.79	36.41	
10.47	7.38	0.46	53.91	1.58	30.57	

5. Rezultati i diskusija

4.20	22.49	4.08	21.84	2.90	23.67
11.71	3.60	8.34	4.90	3.83	19.45
6.39	16.25	5.72	14.46	4.68	16.66
7.25	14.21	4.94	17.70	6.40	11.66
8.72	10.41	6.96	10.96	6.52	11.00
12.51	2.80	11.03	0.89	11.22	1.78
12.55	1.99	0.27	60.39	12.61	1.32
0.27	48.39	1.04	45.23	8.89	5.16
0.44	43.16	7.63	5.63	7.70	6.37
		9.76	2.71		

Sastavi sa binodalne krive su korelisani sledećom jednačinom:

4.94

20.47

$$[PEGDA] = A \cdot exp(B \cdot [so]^{0.5} - C \cdot [so]^3)$$
(5.2)

gde veličine u uglastim zagradama predstavljaju masene udele komponenata na binodalnim krivama a A, B i C parametre fitovanja, koji su zajedno sa parametrom kvaliteta fitovanja R^2 prikazani u Tabeli 5.5.

Tabela 5.5 – Parametri fitovanja jednačine (5.2) za ispitivane sisteme PEGDA (1) + so (2) + voda (3) na 298.15 K

PEGDA + so sistem	Α	В	С	R^2
PEGDA + K ₃ PO ₄	0.5841	-3.499	1318	0.9806
PEGDA + Na ₃ C ₆ H ₅ O ₇	0.6968	-4.584	822.4	0.9988
PEGDA + K ₂ CO ₃	0.7695	-4.832	1237	0.9983
PEGDA + MnSO ₄	0.5954	-4.416	715.2	0.9976
PEGDA + Li ₂ SO ₄	0.7968	-5.497	2060	0.9979
PEGDA + ZnSO ₄	0.5327	-4.508	1578	0.9969

Na osnovu dobijenih parametara i *Level arm rule* pravila²⁰⁰ ravnotežni (tie-line) sastavi su izračunati u Matlab-u rešavanjem sistema jednačina:

$$[PEGDA]_{PEGDA}[PEGDA]_{PEGDA} = A \cdot exp(B \cdot [so]_{PEGDA}^{0.5} - C \cdot [so]_{PEGDA}^{3})$$
(5.3)

$$[PEGDA]_{so} = A \cdot exp(B \cdot [so]_{so}^{0.5} - C \cdot [so]_{so}^3)$$
(5.4)

$$[PEGDA]_{PEGDA} = \frac{[PEGDA]_M}{\alpha} - \frac{1-\alpha}{\alpha} \cdot [PEGDA]_{so}$$
(5.5)

$$[so]_{PEGDA} = \frac{[so]_M}{\alpha} - \frac{1-\alpha}{\alpha} \cdot [so]_{so}$$
(5.6)

gde *[PEGDA]* i *[so]* predstavljaju maseni udeo polimera i odgovarajuće soli, redom; oznaka u indeksu - PEGDA – označava fazu bogatu polimerom (gornja faza) i oznaka u indeksu – so – označava fazu bogatu solima (donja faza). Dužina ravnotežnih (tie-line) linija je izračunata na osnovu dobijenih ravnotežnih sastava primenom sledeće jednačine:

$$TLL = \sqrt{([so]_{PEGDA} - [so]_{so})^2 - ([PEGDA]_{PEGDA} - [PEGDA]_{so})^2}$$
(5.7)

Rezultati su sumirani u Tabeli 5.6.

Tabela 5.6 – Eksperimentalni ravnotežni sastavi izraženi u masenim udelima soli, w₂, i PEGDA, w₁, za sisteme PEGDA (1) + so (K₃PO₄/Na₃C₆H₅O₇/K₂CO₃/MnSO₄/Li₂SO₄/ZnSO₄) (2) na 298.15 K

PEGDA $(1) + K_3PO_4(2)$					PEGDA (1) + $Na_3C_6H_5O_7$ (2)				
So bogata faza PEGDA bogata faz			gata faza		So boga	So bogata faza		PEGDA bogata faza	
$100 \cdot w_2$	$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	TLL	$100 \cdot w_2$	$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	TLL
12.40	1.38	0.43	46.41	46.59	11.78	03.77	1.02	43.83	41.48
14.21	0.36	0.30	48.26	49.88	13.54	1.68	0.73	47.10	47.19
15.91	0.07	0.19	50.05	52.39	20.19	0.01	0.16	58.06	61.41
	PEGDA (1)	+ K ₂ CO ₃ (2)				PEGDA (1)) + MnSO ₄ (2)	
So boga	ta faza	PEGDA bog	gata faza		So bogata faza PEGDA bogata faza				
$100 \cdot w_2$	$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	TLL	$100 \cdot w_2$	$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	TLL
12.61	1.16	1.43	43.00	43.31	15.51	0.72	1.06	37.77	39.77
16.03	0.07	0.65	52.15	54.30	17.08	0.27	0.58	42.59	45.42
15.10	0.17	0.84	49.39	51.24	21.49	0.01	0.09	52.08	56.30
	PEGDA (1)	+ Li ₂ SO ₄ (2)				PEGDA (1) + ZnSO ₄ (2	2)	
So bogata faza PEGDA bogata faza			So bogata faza PEGDA bogata faza		ogata faza				
$100 \cdot w_2$	$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	TLL	$100 \cdot w_2$	$100 \cdot w_1$	$100 \cdot w_2$	$100 \cdot w_1$	TLL
12.46	0.21	0.64	51.26	52.40	12.08	0.69	1.01	33.81	34.92
14.36	0.02	0.49	54.32	56.04	13.71	0.17	0.04	44.12	46.03
17.60	0.00	0.23	61.35	63.76	14.60	0.07	0.17	48.76	50.78

Zatim je određena konzistentnost ovih ravnotežnih dijagrama primenom Othmer-Tobias²⁰¹ i Bancroft²⁰² jednačina, redom:

$$ln\left(\frac{1-[PEGDA]_{PEGDA}}{[PEGDA]_{PEGDA}}\right) = k_1 + n * ln(\frac{1-[so]_{so}}{[so]_{so}})$$
(5.8)

$$ln\left(\frac{[H_2O]_{so}}{[so]_{so}}\right) = k_2 + r * ln(\frac{[H_2O]_{PEGDA}}{[PEGDA]_{PEGDA}})$$
(5.9)

Linearna zavisnost promenljivih u jednačinama (5.8) i (5.9) ukazuje na to da se eksperimentalni ravnotežni sastavi mogu vrlo dobro fitovati ovim jednačinama, čime je potvrđena njihova konzistentnost i validnost izvršenih eksperimentalnih merenja. Tabela 5.7 sumira vrednosti parametara jednačina (5.8) i (5.9) i prikazuje kvalitet fitovanja, iskazan preko parametra R^2 .

Tabela 5.7 – Parametri jednačina (5.8) i (5.9) za sisteme PEGDA (1) + so (K₃PO₄/ Na₃C₆H₅O₇/ K₂CO₃/ MnSO₄/ Li₂SO₄/ ZnSO₄) (2) na 298.15 K

_								
	PEGDA + so sistem	k_1	п	R^2	k_2	r	R^2	
	PEGDA + K ₃ PO ₄	-0.3629	0.5018	0.9986	0.7268	1.9432	0.9994	
	PEGDA + Na ₃ C ₆ H ₅ O ₇	-0.6793	0.9026	0.9996	0.7492	1.0658	1	
	PEGDA + K ₂ CO ₃	-0.9656	1.2955	0.9974	0.7496	0.7584	0.9980	
	PEGDA + MnSO ₄	-0.8470	1.4364	0.9961	0.5907	0.6979	0.9956	
	PEGDA + Li ₂ SO ₄	-0.8847	1.0277	0.9861	0.8645	0.9715	0.9867	
	PEGDA + ZnSO ₄	-2.1826	2.8680	0.9985	0.7611	0.3441	0.9988	

Koncept stvaranja dvofazne oblasti se zasniva na interakcijama između pojedinačnih konstituenata, u ovom slučaju to su PEGDA, so i voda. Sa Slike 5.6 se može videti da interakcije postoje između svih konstituenata, samo se postavlja pitanje koje će preovladati. PEGDA je snažno hidratisan vodom, tj. njegove -O- i =O grupe, zbog visoke rastvorljivosti ovog polimera u vodi. Ispitivane soli su takođe hidratisane i stepen hidratacije zavisi od valentnosti jona, zato viševalentni anjoni imaju bolji efekat isoljavanja. Međutim, multivalentni katjoni soli snažno reaguju sa kiseonikom, građenjem kompleksa sa -O- i =O grupama PEGDA polimera i tako ometaju efekat isoljavanja anjona, što je objašnjeno i u literaturi na primeru PEGa²⁰³.

Joni soli dovode do dehidratacije -O-i = O grupa PEGDA, ali samo delimično. Anjoni su uglavnom više polarizovani (zbog šire valence elektronske konfiguracije) i zato jače hidratišu nego katjoni i njihov efekat isoljavanja je izraženiji²⁰⁴. Joni na taj način stvaraju hidratacione komplekse sa vodom i udaljavaju se od površine polimera (tj. vrši se ekskluzija polimera u drugu fazu).

Slika 5.6 – Interakcije koje vladaju u dvofaznom rastvaraču (ABS)

Sa povećanjem koncentracije soli i polimera raste stepen ekskluzije što dovodi do formiranja dve faze i nastajanja ABSa koji podrazumeva samo delimičnu dehidrataciju rastvoraka; delimičnu - zato što su obe faze bogate vodom i rastvorci su hidratisani do određenog stepena. U ovom slučaju asocijacija jona sa polimerom nije favorizovana, već su favorizovane rastvorak (so ili polimer)-voda interakcije. Ovde joni i polimer jedni druge isključuju iz svoje blizine zbog hidratacije, raste ekskluzija sa povećanjem koncentracije rastvoraka i na kraju se formira dvofazni vodeni sistem. Ekskluzija može da se javi i zbog odbojnih sila između anjona i delimično negativnih kiseonikovih atoma u polimeru. Generalno, interakcije u ABSu dešavaju se kroz hidrataciju kiseonikovih atoma polimera ili jona soli, kao i kroz interakciju katjona soli sa -0 i =0 grupama u polimeru. Koje od interakcija će preovladati može se samo spekulisati i efekat isoljavanja zavisi samo od toga koje interakcije preovlađuju i da li kod katjona preovlađuje interakcija sa vodom ili polimerom. Ukoliko je gustina naelektrisanja katjona ili molarna masa polimera veća, biće jača i njihova međusobna interakcija. PEGDA je veoma hidrofilan, međutim ako je anjon sa većom elektronskom gustinom (više valentnosti) onda on kroz hidrataciju gradi bolje komplekse sa vodom i jače odbojne sile su između anjona i −0 i =0 grupa, što dovodi do boljeg efekta isoljavanja takve soli. Sve ovo se može i grafički posmatrati sa Slike 5.7.

Slika 5.7 – Grafički prikaz interakcija koje se dešavaju u ispitivanom dvofaznom vodenom sistemu

Slika 5.8 – Efekat tipa soli na fazno razdvajanje: (◊) K₃PO4; (♦) Na₃C₆H₅O₇; (●) K₂CO₃; (●) MnSO₄; (■) Li₂SO₄; (■) ZnSO₄.

U ABSu i polimer i so ostaju čvrsto vezani za rastvarač, vodu, ali isključuju jedan drugog iz dve formirane faze bogate vodom. Na taj način dobijaju se dve vodene faze, jedna bogata solju druga polimerom. Oko ovog razdvajanja na dve faze može se samo spekulisati. Da bi se međusobno uporedio efekat isoljavanja ispitivanih soli, Slika 5.8 je predstavljena preko sastava izraženih u molalitetima. U so-bogatoj oblasti sve soli imaju isti uticaj, dok se određeni trend može uspostaviti u PEGDA-bogatoj oblasti: $Li_2SO_4 < K_2CO_3 < MnSO_4 \approx Na_3C_6H_5O_7 \approx K_3PO_4 < ZnSO_4$. Iako je razlika u ovim uticajima mala, ipak se može zaključiti da ZnSO_4 pokazuje najjači efekat isoljavanja.

5.2 Analiza smeša rastvarača u cilju industrijske primene

5.2.1 PEGDA + alkoholi kao smeše rastvarača-termodinamička analiza

Cilj ove studije jeste ispitivanje promene termodinamičkih i transportnih svojstava smeša PEGDA sa alkoholima sa promenom dužine lanca alkohola i temperature, uzimajući u obzir moguće interakcije između pomenutih komponenata^{205,206}. U tu svrhu merene su gustine ρ , indeksi refrakcije n_D i viskoznosti η tri binarna sistema polietilen glikol diakrilat (PEGDA) + etanol/ 1-propanol/ 1-butanol na osam temperatura T = (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15) K i na atmosferskom pritisku. Rezultati su prikazani u Tabeli P8.

Slika 5.9 daje poređenje gustina, viskoznosti i indeksa refrakcije binarnih sistema PEGDA i alkohola na 288.15 K i 323.15 K i na atmosferskom pritisku. Sa slike se može videti da su eksperimentalne vrednosti gustine, viskoznosti i indeksa refrakcije čistog PEGDA značajno veće u poređenju sa ispitivanim alkoholima. Takođe, jasno je da gustine i indeksi refrakcije smeša rastu sa porastom PEGDA molskog udela eksponencijalno, dok porast viskoznosti sa PEGDA sastavom prati polinomski trend. Može se zaključiti da gustina i indeks refrakcije u oblasti nižih PEGDA koncentracija (od 0 do 0.3 molskog udela) imaju značaj porast, dok približavajući se višim PEGDA molskim udelima krive se približavaju konstantnim vrednostima. To znači da je uticaj PEGDA na gustine i indekse refrakcije PEGDA + alkohol smeša znatno veći u poređenju sa uticajem alkohola. U slučaju viskoznosti postoji konstantan rast vrednosti sa porastom PEGDA molskog udela. Dodatno, primetno je da gustine, viskoznosti i indeksi refrakcije čistih komponenata i njihovih smeša opadaju sa porastom temperature. Ovakav uticaj temperature je najizraženiji kod viskoznosti.

Slika 5.9 – Poređenje eksperimentalnih podataka za: (a) gustinu, (b) viskoznost i (c) indeks refrakcije u zavisnosti od molskog udela za tri sistema na 288.15 K i 323.15 K i na atmosferskom pritisku, gde se simboli odnose na: PEGDA (1) + etanol (2) na (\blacksquare) 288.15 K i (\Box) 323.15 K; PEGDA (1) + 1-propanol (2) na (\blacktriangle) 288.15 K i (\bigtriangleup) 323.15 K; PEGDA (1) + 1-butanol (2) na (\bigcirc) 288.15 K i (\bigcirc) 323.15 K; linije predstavljaju rezultate izračunate jednačinom (5.10) za ρ i n_D i jednačinom (5.11) za η

Naime, viskoznost čistog PEGDA na 288.15 K je skoro šest puta veća nego na 323.15 K. Eksperimentalne vrednosti gustine i indeksa refrakcije u zavisnosti od temperature na atmosferskom pritisku prikazane su na Slikama 5.10 i 5.11, redom, dok je $\ln \eta - 1/T$ promena na atmosferskom pritisku prikazana na Slici 5.12. Može se zaključiti da

gustine i indeksi refrakcije pokazuju linearnu zavisnost u ispitivanom temperaturnom opsegu, gde vrednosti veličina opadaju sa porastom temperature. Slike 5.10 i 5.12 takođe pokazuju da su promene gustina i indeksa refrakcije veće u oblasti nižih PEGDA molskih udela (od 0 do 0.3). Funkcija $\ln \eta - 1/T$ pokazuje linearan trend takođe, potvrđujući da sa porastom temperature PEGDA + alkoholi smeše postaju manje viskozne (Slika 5.11).

 Slika 5.10 – Eksperimentalne vrednosti gustine ρ u zavisnosti od temperature T, na

 atmosferskom pritisku, za sisteme: a) PEGDA (1) + etanol (2); b) PEGDA (1) + 1-propanol (2); i

 PEGDA (1) + 1-butanol (2). Simboli označavaju molske udele: (◇) 0; (◆) 0.05; (○) 0.1; (●) 0.2;

 (△) 0.3; (▲) 0.4; (□) 0.5; (■) 0.6; (▽) 0.7; (♥) 0.8; (★) 0.9; (◀) 1

Fitovanje eksperimentalnih vrednosti gustine i indeksa refrakcije izvedeno je u funkciji od molskog udela PEGDA u smeši sa temperaturno zavisnim parametrima. Kvalitet fitovanja je izražen devijacijom između eksperimentalnih i vrednosti izračunatih različitim jednačinama. Najbolji rezultati su dobijeni korišćenjem sledeće jednačine:

$$\rho, n_D = \exp\left(\left(A_{00} + A_{01}T \right) + \frac{A_{10} + A_{11}T}{x_1 + \left(A_{20} + A_{21}T \right)} \right)$$
(5.10)

gde su A_{00} , A_{01} , A_{10} , A_{11} , A_{20} i A_{21} parametri fitovanja, x_1 je PEGDA molski udeo i T je temperatura.

Slika 5.11 - Eksperimentalne vrednosti viskoznosti lnη - 1/T, na atmosferskom pritisku, za sisteme: a) PEGDA (1) + etanol (2); b) PEGDA (1) + 1-propanol (2); i PEGDA (1) + 1-butanol (2). Simboli označavaju molske udele: (◇) 0; (◆) 0.05; (○) 0.1; (●) 0.2; (△) 0.3; (▲) 0.4; (□) 0.5; (■) 0.6; (▽) 0.7; (♥) 0.8; (★) 0.9; (◀) 1

Vrednosti viskoznosti, za razliku od gustine i indeksa refrakcije, variraju u velikoj meri sa promenom temperature tako da jedna jednačina u kojoj figurišu temperatura i sastav ne daje najbolje rezulatate. Stoga je fitovanje viskoznosti u funkciji od molskog udela PEGDA ili temperature obavljeno nezavisno korišćenjem sledećih jednačina:

$$\eta = B_0 + B_1 x_1 + B_2 x_1^2 + B_3 x_1^3 \tag{5.11}$$

$$ln\eta = C_0 + \frac{C_1}{T} \tag{5.12}$$

gde su B_0 , B_1 , B_2 , B_3 , C_0 i C_1 parametri fitovanja, x_1 je PEGDA molski udeo i T je temperatura.

Slika 5.12 - Eksperimentalne vrednosti indeksa refrakcije n_D u zavisnosti od temperature, na atmosferskom pritisku, za sisteme: a) PEGDA (1) + etanol (2); b) PEGDA (1) + 1-propanol (2); i PEGDA (1) + 1-butanol (2). Simboli označavaju molske udele: (◇) 0; (◆) 0.05; (○) 0.1; (●) 0.2; (△) 0.3; (▲) 0.4; (□) 0.5; (■) 0.6; (▽) 0.7; (♥) 0.8; (★) 0.9; (◀) 1

Za tri binarne smeše na različitim temperaturama i sastavima parametri jednačine (5.10) su prikazani u Tabeli P9, a parametri jednačina (5.11) i (5.12) u Tabeli P10. Odgovarajuća srednja kvadratna odstupanja (rmsd) σ definisana jednačinom (2.5) su takođe prikazana u Tabelama P9 i P10.

Potpuna mešljivost ovih sistema bila je očekivana s obzirom da su alkoholi polarna jedinjenja sa dipolnim momentima: 5.67·10⁻³⁰ C·m za etanol, 5.67·10⁻³⁰ C·m za 1-propanol i 6.00·10⁻³⁰ C·m za 1-butanol¹⁸³. PEGDA, kao hidrofilni polimer, sadrži polarne ili naelektrisane funkcionalne grupe (karbonilne grupe pored etarske veze) što ga čini rastvorljivim u polarnim jedinjenjima, kao što su alkoholi. Iz hemijske strukture PEGDA i alkohola, evidentno je da alkoholi sadrže vodonik odgovoran za vodonične veze između istih molekula alkohola ili sa kiseonikom iz polimera, dok su u PEGDA molekulu prisutne estarske COO⁻ grupe. Može se zaključiti da ovi molekuli grade intermolekulske vodonične veze, tj. vodonik iz hidroksilne grupe alkohola sa kiseonikom iz COO⁻ grupe u polimeru. Postoje takođe i van der Waals-ove disperzione sile i dipol-dipol interakcije između alkohola i polimera, i među molekulima istog jedinjenja. Vodonične veze i dipol-dipol interakcije su iste kod svih alkohola, ali disperzione sile rastu sa povećanjem veličine molekula alkohola.

Modelovanje

Viskoznost je modelovana korišćenjem četiri modela: UNIFAC-VISCO, ASOG-VISCO, Mc-Allister i Teja-Rice. Novi UNIFAC-VISCO interakcioni parametri, α_{nm} , između sledećih funkcionalnih grupa: CH₂=CH/CH₃, CH₂=CH/CH₂, CH₂=CH/OH, CH₂=CH/CH₂O i CH₂=CH/COO, sumirani su u Tabeli P11. Preostali interakcioni parametri uzeti su iz originalnog modela^{173,174} i iz radova^{189,207}.

Na sličan način, novi ASOG-VISCO interakcioni parametri, m_{kl} i n_{kl} , sledećih grupa: CH₂=CH/CH₂, CH₂=CH/OH, CH₂=CH/CH₂O, CH₂=CH/COO, određeni su korišćenjem originalnih interakcionih parametara¹⁷⁵ i parametara iz prethodnih radova^{208,207}. Rezultati su sumirani u Tabeli P12.

Rezultati dobijeni UNIFAC–VISCO, ASOG-VISCO, Teja–Rice i McAllister modelima za smeše PEGDA + etanol/ 1-propanol/ 1-butanol u ispitivanom temperaturnom opsegu prikazani su u Tabeli P13. Slika 5.13 je grafički prikaz eksperimentalnih devijacija viskoznosti od vrednosti dobijenih primenjenim modelima. UNIFAC-VISCO model daje veoma dobre rezultate predskazane viskoznosti za tri ispitivane binarne smeše. U skoro svim slučajevina, maksimalna procentualna devijacija ne prelazi 5%. Najveća odstupanja su dobijena na najnižim temperaturama (sistemi sa etanolom i 1-butanolom), ili na najvišoj ispitivanoj temperaturi u slučaju sistema sa 1-propanolom. Analiza Slika 5.13(a) i 5.13(b) potvrđuje ovaj zaključak.

Slika 5.13 – Modelovanje viskoznosti za sisteme: (a) PEGDA (1) + etanol (2), (b) PEGDA (1) + 1propanol (2) i (c) PEGDA (1) + 1-butanol (2). Simboli označavaju eksperimentalne tačke (●) na 288.15 K i (▲) na 323.15 K, dok linije predstavljaju rezultate dobijene modelima datim u Tabeli 5: (—) ASOG-VISCO, (---) Teja-Rice i (...) McAllister – 4 modelima

ASOG-VISCO daje čak i bolje rezultate, sa maksimalnom procentualnom greškom 2.65%, u skoro svim slučajevima. Najbolji rezultati su dobijeni za PEGDA + 1-butanol binarnu smešu, sa PD_{max} manjom od 0.78%, osim na 288.15 K, gde odstupanje iznosi 1.56%. Iz rezultata dobijenih za korelativne modele, najbolji rezultati se dobijaju za

McAllister-4 model za sva tri sistema. Ovaj zaključak je potvrđen i grafičkim prikazom sistema PEGDA + etanol/ 1-butanol (Slike 5.13(a) i 5.13(c)) gde model veoma dobro koreliše eksperimentalne podatke. Teja-Rice daje najlošiju korelaciju eksperimentalnih podataka, sa najvišom greškom i do 11.03% za PEGDA + etanol binarnu smešu. Ovaj zaključak je očigledan i sa Slika 5.13(b) i 5.13(c), naročito na nižim temperaturama. Najbolji rezultati za sva tri tipa korelativnih modela dobijeni su za PEGDA + 1-butanol binarni sistem, gde je najniža PD_{mx} devijacija dobijena za McAllister-4 model (manje od 1%).

5.2.2 PEG + estri kao smeše rastvarača-termodinamička analiza

U ovoj doktorskoj disertaciji dodatna termodinamička karakterizacija je izvršena u cilju definisanja još nekih novih smeša rastvarača. Četiri binarne smeše dimetil adipat + PEG 200, dimetil adipat + PEG 400, dimetil ftalat + PEG 200 i dimetil ftalat + PEG 400 ispitivane su u temperaturnom opsegu (288.15 do 323.15) K sa korakom 5 K, na atmosferskom pritisku²⁰⁹. Termodinamička svojstva, kao što su gustina ρ , viskoznost η i indeks refrakcije n_D merene su eksperimentalno. Rezultati su prikazani u Tabeli P14.

Iz ovih eksperimentalnih podataka izračunate su dopunske molarne zapremine V^{E} , devijacije viskoznosti $\Delta \eta$ i devijacije indeksa refrakcije Δn_D i fitovane Redlich-Kister polinomom¹⁵⁷. Parametri fitovanja i odgovarajuća srednja kvadratna odstupanja (rmsd) σ dati su u Tabeli P15.

Slika 5.14 predstavlja grafički prikaz V^{E} ponašanja. Smeše DMA sa PEG 200 ili PEG 400 pokazuju ekspanziju zapremine i pozitivne V^{E} vrednosti. Krive za oba sistema su asimetrične i pomerene prema višim DMA molskim udelima. Za DMA + PEG 200 sistem maksimum $V^{E} - x_{1}$ je na x_{1} =0.6 dok je za sistem DMA + PEG 400 maksimum lociran oko x_{1} = 0.7. Sistem DMF + PEG 200 ima krivu S-oblika (na x_{1} =0.3 i x_{1} =0.8 V^{E} pokazuje minimum i maksimum, redom). Sistem DMF + PEG 400 ima negativne V^{E} vrednosti, minimum krive leži na ekvimolarnom sastavu, ali je kriva blagog S-oblika u DMF bogatoj oblasti.

Sa porastom temperature $V^{\rm E}$ vrednosti rastu za sistem DMA + PEG 200. Za sistem koji sadrži PEG 400 (Slika 5.14 (b)) $V^{\rm E}$ opadaju sa porastom temperature na višim temperaturama dok ovaj trend ne postoji na 288.15, 293.15 i 298.15 K. Za DMF + PEG 200 sistem, apsolutne $V^{\rm E}$ vrednosti opadaju sa porastom temperature, u oblasti minimuma. Suprotno tome, pozitivne $V^{\rm E}$ vrednosti postaju veće sa porastom temperature u PEG 200 bogatoj oblasti. Za sistem DMF + PEG 400 apsolutne $V^{\rm E}$ vrednosti opadaju sa porastom temperature.

Slika 5.14 - Eksperimentalne dopunske molarne zapremine V^E za sisteme: (a) DMA (1) + PEG 200 (2); (b) DMA (1) + PEG 400 (2); (c) DMF (1) + PEG 200 (2); (d) DMF (1) + PEG 400 (2); gde x1 označava molski udeo DMA ili DMF na sledećim temperaturama: (◇) 288.15 K, (◆) 293.15 K, (○) 298.15 K, (●) 303.15 K, (△) 308.15 K, (▲) 313.15 K, (□) 318.15 K, (■) 323.15 K, (─) RK jednačina

Devijacije viskoznosti su prikazane na Slici 5.15. Za sisteme sa DMA $\Delta \eta$ vrednosti su negativne. Devijacije viskoznosti su pozitivne za binarnu smešu DMF + PEG 400, dok

za sistem DMF + PEG 200 $\Delta \eta$ - x_1 kriva menja znak od pozitivnog (maksimum na x_1 =0.1) do negativnog (minimum oko x_1 =0.7). Izuzetak se javlja na najvišoj temperaturi, 323.15 K, gde su $\Delta \eta$ vrednosti negativne u celom koncentracionom opsegu. Za dva sistema koja sadrže PEG 400 krive su simetrične dok je za DMA + PEG 200 smešu minimum krive pomeren prema nižim DMA molskim udelima (minimum na x_1 =0.4). Uticaj temperature za sve ispitivne binarne smeše pokazuje isti trend, sa porastom temperature od 288.15 K do 323.15 K apsolutne vrednosti devijacije viskoznosti opadaju.

Slika 5.15 – Eksperimentalne devijacije dinamičke viskoznosti Δη za sisteme: (a) DMA (1) + PEG 200 (2); (b) DMA (1) + PEG 400 (2); (c) DMF (1) + PEG 200 (2); (d) DMF (1) + PEG 400 (2); gde x₁ označava molski udeo DMA ili DMF na sledečim temperaturama: (◊) 288.15 K, (♦) 293.15 K, (○) 298.15 K, (●) 303.15 K, (△) 308.15 K, (△) 313.15 K, (□) 318.15 K, (□) 323.15 K, (─) RK jednačina

79

Devijacije indeksa refrakcije Δn_D za ispitivane sisteme prikazane su na Slici 5.16. Imajući u vidu da je uticaj temperature na Δn_D za ove sisteme zanemarljiv, podaci su dati samo na jednoj temperaturi 303.15 K. Ove vrednosti pokazuju mala pozitivna ili negativna odstupanja od idealnog ponašanja. Δn_D vrednosti nisu prikazane za sistem DMA + PEG 200 s obzirom da su praktično jednake nuli. Sistem DMA + PEG 400 ima pozitivne, dok oba sistema sa DMF pokazuju negativne devijacije indeksa refrakcije. U svim slučajevima Δn_D - x_1 krive su pomerene prema višim DMA ili DMF molskim udelima.

Slika 5.16 – Eksperimentalne devijacije indeksa refrakcije Δn_D za sisteme: (\diamond) DMA (1) + PEG 400 (2); (\blacklozenge) DMF (1) + PEG 200 (2) i (Δ) DMF (1) + PEG 400 (2) gde x_1 označava molski udeo DMA ili DMF na 303.15 K i (——) RK jednačina

Kao što je poznato, pozitivne ili negativne devijacije od idealnog ponašanja mogu se pripisati vodoničnim vezama ili dipol-dipol interakcijama između jedinjenja ili geometrijskom pakovanju između molekula smeše²¹⁰. Da bi se ustanovilo koji od pomenutih faktora dominira snimljeni su FT-IR spektri za čiste komponente i za izabrane sastave analiziranih binarnih smeša (Slika 5.17).

Stvaranje homoasocijata kod ispitivanih estara (DMA ili DMF) formiranjem vodoničnih veza nije moguća s obzirom da su oni samo akceptori protona²¹¹. S druge strane, jedan od vodonikovih atoma iz molekula polietilen glikola može biti privučen jednim od slobodnih elektronskih parova na atomima kiseonika u estru. Takođe, moguće je gradjenje intra- i inter-molekulskih vodoničnih veza unutar jednog PEG

molekula ili između različitih PEG molekula. Pored toga, sva analizirana jedinjenja imaju značajnu polarnu prirodu: dimetil ftalat²¹² i dimetil adipat²¹³ imaju dipolne momente 9.34·10⁻³⁰ i 7.34·10⁻³⁰C·m, redom, dok PEG 200 i PEG 400 imaju dipolne momente 1.02·10⁻²⁹ do 1.3·10⁻²⁹ i 1.23·10⁻²⁹ do 1.65·10⁻²⁹C·m, redom¹⁷. Imajući ovo u vidu, moguće je građenje disperzionih sila i dipol-dipol interakcija između molekula estara i polimera.

Slika 5.17 pokazuje da su za čist PEG sledeće trake od većeg značaja: (a) dve C-H valencione trake bliske jedna drugoj v_s (CH) (2873 cm⁻¹) dodatni, tzv. bočni pik ("shoulder" pik) v_{as} (CH) (~ 2941 cm⁻¹) u CH₂ grupi – frekvencije su nešto veće nego što je očekivano za C-H vezu iz CH₂ grupe u zasićenom jedinjenju zbog prisustva elektronegativne C-O veze; (b) C-H trake koje odgovaraju vibracijama savijanja u ravni (seckanja - "scissoring") $\delta_{scissoring}$ (CH) (1454 cm⁻¹); (c) traka koja odgovara vibraciji istezanja C-O veze (valenciona traka) v_{as} (C-O) (~ 1123 cm⁻¹ za PEG 200 i 1112 cm⁻¹ za PEG 400) koja je veoma intenzivna i lako se primeti ali takođe na nju utiče C-C veza; (d) valenciona OH traka v(OH) (3408 cm⁻¹ za PEG 200 i 3443 cm⁻¹ za PEG 400) čija frekvencija dosta zavisi od vodoničnog vezivanja između ili unutar PEG molekula. Jače vodonične veze dovode do niže v(OH) frekvencije i većeg intenziteta trake, tako da se iz ovih pretpostavki može zaključiti da su jače vodonične veze prisutne u PEG 200 molekulima. Detaljno objašnjenje uticaja PEG dužine lanca na IR spektar može se pronaći u literaturi¹⁷.

Za estre, karakteristične C=O i C-O trake su najintenzivnije tako da se za DMA može zaključiti sledeće: (a) C-H valencione trake iz CH₂ i CH₃ grupa v_s(CH) (2872 cm⁻¹) i v_{as}(CH) (2953 cm⁻¹) imaju nizak intenzitet; (b) C-H trake koje odgovaraju vibracijama savijanja (seckanja) u CH₂ grupi (1367 cm⁻¹) i C-H deformaciona traka u CH₃ grupi (1439 cm⁻¹) imaju nešto niže frekvencije nego što je očekivano zato što su ove grupe direktno vezane za karbonilnu grupu; (c) jaka C=O valenciona traka v(C=O) (1740 cm⁻¹) apsorbuje na višim frekvencijama nego kod ketona zato što -I efekat atoma kiseonika iz -OCH₃ grupe povećava elektronsku gustinu C=O veze kao i

ν(C=O) frekvenciju; (d) C-O valencione trake v_{as}(C-O) (1173, 1200 i 1252 cm⁻¹) su veoma intenzivne. U DMF sledeće trake su karakteristične: (a) C-H valencione trake iz CH₃ grupa vezane za karbonilnu grupu v_s(CH) (2844 cm⁻¹) i v_{as}(CH) (2955 cm⁻¹) su manjeg intenziteta u poređenju sa trakama u DMA, naročito v_s(CH). C-H traka iz benzenovog prstena v(CH) (3003 cm⁻¹) takođe ima veoma slab intenzitet kao i C=C traka v(C=C) (1580 i 1600 cm⁻¹); (b) C-H deformaciona traka van ravni γ(C-H) (747 cm⁻¹) se dobro slaže sa vrednostima frekvencija za 1,2-disupstituisana aromatična jedinjenja (770-735 cm⁻¹). C-H deformacione trake iz CH₃ grupa δ_s(C-H) (1289 cm⁻¹) i δ_{as}(C-H) (1435 cm⁻¹) imaju niže frekvencije zato što su CH₃ grupe vezane za karbonilnu; (c) C=O valenciona traka v(C=O) (1731 cm⁻¹) je malo pomerena u poređenju sa spektrom DMA zato što konjugacija estarske karbonilne grupe smanjuje elektronsku gustinu C=O veze kao i v(C=O) frekvenciju; (d) C-O valencione trake v_{as}(C-O) (1076, 1126 i 1193 cm⁻¹) su intenzivne.

Slika 5.17 (a) poredi infracrveni spektar za binarnu smešu DMA + PEG 200 za udeo DMA u smeši od x_1 =0.6 (maksimum V^E - x_1 krive) sa spektrima čistih komponenata, na 298.15 K. S obzirom da se DMA ponaša samo kao akceptor protona asocijacija unutar molekula vodoničnim vezivanjem nije moguća. Nasuprot tome, u PEG molekulima moguće je intra- i inter-molekulsko vodonično vezivanje. Iz spektra je jasno da je valenciona traka koja odgovara OH grupi pomerena ka višim talasnim dužinama (3456 cm⁻¹) u smeši, pokazujući pik manjeg intenziteta, u poređenju sa čistim PEG 200. Ovo je takozvano *blueshift* ili batohromno pomeranje koje ukazuje na kontrakciju OH veze potvrđujući odsustvo novih heteromolekulskih interakcija koje bi dovele do kontrakcije zapremine, što je u skladu sa pozitivnim V^E vrednostima. Takođe, valencione trake koje odgovaraju C=O i C-O-C vezama ne pokazuju pomeranje u poređenju sa čistim DMA i PEG 200. Devijacije viskoznosti su negativne za ovaj sistem što ukazuje na dominaciju disperzionih sila²¹⁴. Slično ponašanje je primećeno i kod DMA + PEG 400 sistema. Na Slici 5.17 (b) prikazan je infracrveni spektar za binarnu smešu DMA + PEG 400 na $x_1=0.7$ zajedno sa spektrima čistih komponenata. OH valenciona traka (3463 cm⁻¹) nije pomerena, ali je intenzitet pika opao u poređenju sa čistim PEG 400. Isto se može zaključiti i za C=O i C-O-C valencione trake (1737 i 1112 cm⁻¹), gde nema pomeranja ali je intenzitet pikova opao u poređenju sa čistim komponentama. Uzimajući u obzir pozitivne dopunske zapremine, negativne devijacije viskoznosti i zabeležen IR spektar može se zaključiti da u smeši dominiraju disperzione sile između komponenata. Slika 5.17 (c) pokazuje poređenje IR spektra za smešu DMP + PEG 200 na $x_1=0.3$ i $x_1=0.8$ sa spektrima čistih komponenata. Odabrani sastavi odgovaraju minimalnim i maksimalnim V^E vrednostima. OH valenciona traka za smešu bogatu PEG 200 je pomerena ka višim talasnim dužinama (3450 cm⁻¹) u poređenju sa čistim PEG 200, uz smanjenje intenziteta pika. C=0 i C-O-C valencione trake (1737 i 1112 cm⁻¹) ostaju nepromenjene, što ukazuje na to da ove grupe ne učestvuju u hemijskim interakcijama. Uzimajući u obzir negativne V^E vrednosti u PEG bogatoj oblasti $(x_1=0.3)$ i *blueshift* ili batohromno pomeranje OH veze (praćeno skraćenjem OH veze) geometrijsko pakovanje DMF molekula (V_m =163.61·10⁻⁶ m³·mol⁻¹) u PEG 200 molekule (V_m =178.44·10⁻⁶ m³·mol⁻¹) je najverovatnije objašnjenje za negativne V^E vrednosti. Slična spektroskopska studija je dobijena za istu smešu u DMF bogatoj oblasti (x_1 =0.8). Postoji batohromno pomeranje OH veze (~ 3469 cm⁻¹) uz smanjenje intenziteta pika u poređenju sa čistim PEG 200. C=0 i C-O-C valencione trake (1737 and 1112 cm⁻¹) ostaju nepromenjene. IR spektar smeše DMF (1) + PEG 400 (2) na $x_1=0.5$ prikazan je na Slici 5.17 (d). S obzirom da OH (3465 cm⁻¹), C=O (1730 cm⁻¹) i C-O-C (1112 cm⁻¹) valencione trake u smeši ostaju nepromenjene u poređenju sa čistim komponentama, može se zaključiti da, u odsustvu intermolekulskih dipol-dipol interakcija, geometrijsko pakovanje DMF (V_m =163.61·10⁻⁶ m³·mol⁻¹) molekula u PEG 400 (V_m =356.47·10⁻⁶ m³·mol⁻¹) molekule doprinosi negativnim V^{E} vrednostima.

U svim slučajevima posmatrajući V^E vrednosti može se zaključiti da efekat pakovanja dominira. Sa porastom temperature, kinetička energija raste i molekuli se pakuju haotično. S obzirom da se molekuli ne uklapaju dobro, pozitivne V^E vrednosti rastu malo, dok negativne V^E vrednosti postaju manje negativne na višim temperaturama. Zbog porasta kinetičke energije disperzione sile između molekula slabe što dovodi do smanjenja devijacija viskoznosti na višim temperaturama.

Slika 5.17 – Infracrveni spektar za: (a) čist DMA (plava), čist PEG 200 (žuta) i smešu DMA + PEG 200 sa x_{DMA}=0.6 (crvena); (b) čist DMA (plava), čist PEG400 (žuta) i smešu DMA + PEG 400 sa x_{DMA}=0.7 (crvena); (c) čist DMF (crvena), čist PEG 200 (zelena), smeša DMF + PEG 200 sa x_{DMA}=0.3 (plava) i x_{DMA}=0.8 (žuta); (d) čist DMF (plava), čist PEG 400 (žuta) i smeša DMF + PEG 400 sa x_{DMA}=0.5 (crvena)

5.2.3 PEG + jonske tečnosti kao smeše rastvarača-termodinamička analiza

U industriji nekada rastvorna i druga svojstva rastvarača ne odgovaraju primeni i tada mešanje dva ili više rastvarača može doprineti željenim svojstvima rezultujuće smeše usled njihovog sinergetskog dejstva. Vrlo često se u industriji koriste binarne smeše rastvarača. Smeše tipa polimer + jonska tečnost su izuzetno atraktivne smeše rastvarača zbog izraženog pozitivnog ekološkog aspekta, pored činjenice da se svojstva ovakvih smeša lako mogu podesiti za određenu primenu. Kao što je već ranije predloženo u literaturi²¹⁵, mogućnost upotrebe PEG + jonska tečnost rastvora kao potencijalnog održivog hibridnog materijala ili kao smeše rastvarača ili tečnog dvofaznog sistema je široka. Zbog atraktivnosti i moguće industrijske primene PEG + jonska tečnost smeša, cilj ove teze je termodinamička karakterizacija smeša polimera, PEG 200 i PEG 400, sa određenim jonskim tečnostima, [C₂mim][NTf₂], [C₂mim][OTf] i [P_{6,6,6,14}][OTf].

U prvom koraku, ispitivana je ravnoteža faza tečno-tečno binarnog rastvora triheksiltetradecil fosfonijum [P_{6,6,6,14}]⁺ jonske tečnosti koja sadrži triflatni [OTf]⁻ anjon sa polietilen glikolom prosečne molekulske mase 400²¹⁶. Konstruisan je fazni dijagram temperatura-sastav tako da označava homogenu i heterogenu oblast ispitivanog rastvora. Rezultati koju su dobijeni veoma su važni sa fundamentalne tačke gledišta jer doprinose razumevanju interakcija – vodonične veze i jon-dipol - koje postoje u ispitivanom rastvoru.

<i>X</i> 1	<i>X</i> 2	Т / К
0.1984	0.8016	298.1
0.2336	0.7664	333.1
0.2756	0.7244	360.3
0.3101	0.6899	381.4
0.3626	0.6374	399.9
0.3996	0.6004	409
0.5022	0.4978	414.6
0.5993	0.4007	414.2
0.6639	0.3361	410.9
0.7489	0.2511	405.2
0.8006	0.1994	399.0
0.8399	0.1601	389.9
0.8804	0.1196	368.1
0.9093	0.0907	333.2

Tabela 5.8 - Tečno-tečno fazne granice (temperature zamućenja, T/K) na pritisku 0.1 MPa za binarni rastvor PEG 400 (1) + [P6,6,6,14][OTf] (2)^a

aStandardne NIST nesigurnosti su: za molski ude
o $u(x)=3\cdot 10^{-4}$ i za temperaturu $u(T)=\pm 0.4$ K.

Na Slici 5.18 predstavljen je dijagram zavisnosti temperatura-molski sastav u ravnoteži tečno-tečno sistema PEG 400 + [P_{6,6,6,14}][OTf]. Podaci o tačkama zamućenja (tačke koje leže na binodalnoj krivoj) prikazani su u Tabeli 5.8. PEG 200 + [P_{6,6,6,14}][OTf] rastvor je uvek homogen u širokom temperaturnom opsegu (283.15 K - 463.15 K), što je ustanovljeno u literaturi²¹⁶. Slika 5.19 pokazuje da rastvori PEG 400 + [P_{6,6,6,14}][OTf]/ ([P_{6,6,6,14}][NTf2] preuzet iz literature²¹⁶ radi poređenja) ispoljavaju tip faznog dijagrama sa gornjom kritičnom temperaturom rastvora (UCST-*Upper Critical Solution Temperature*) i poseduju velike oblasti nemešljivosti, ali kod [P_{6,6,6,14}][OTf] je daleko manje izražena ta oblast nemešljivosti.

Slika 5.18 - Temperatura-sastav LLE fazni dijagram, na atmosferskom pritisku, za binarni rastvor PEG 400 (1) + [P_{6,6,6,14}][0Tf] (2)

Slika 5.19 - Temperatura-sastav LLE fazni dijagrami, na atmosferskom pritisku, za binarne rastvore: (*)PEG 400 (1) + [P_{6,6,6,14}][OTf] (2) i (°) PEG 400 (1) + [P_{6,6,6,14}][NTf₂](2)

Za ispitivanu [P_{6,6,6,14}][OTf] jonsku tečnost dijagram je dosta manje širok i kritična tačka je skoro 40 K niža u slučaju [OTf]⁻ anjona.

U ovoj tezi ispitivane su imidazolijum i fosfonijum jonske tečnosti kao alternativni rastvarači. Imidazolijum katjon obično dovodi do potpune mešljivosti odgovarajućih jonskih tečnosti sa ispitivanim tečnim polimerima²¹⁶. Međutim, fosfonijum katjon uzrokuje suprotno fazno ponašanje tečnosti – veoma ograničenu mešljivost. Potpuna mešljivost se javlja samo u slučaju PEG 200 + $[P_{6,6,6,14}][OTf]$ rastvora²¹⁶. Ova razlika je prilično očekivana ako se uzme u obzir mnogo bolja sposobnost imidazolijum jonskih tečnosti da formiraju vodonične veze – imaju veću kiselost vodonične veze α i dipolarnost (polarizabilnost) (π^*), u poređenju sa fosfonijum jonskim tečnostima. S druge strane PEG je dobar akceptor protona (Tabela 2.1) preko svojih (ponovljenih) atoma kiseonika etarske grupe u lancu. Tabela 2.1 pokazuje da je baznost vodonične veze β definitivno veća za [OTf]⁻ anjon nego za [NTf₂]⁻. Prema tome, ovi rezultati jasno pokazuju da [OTf]⁻ anjon, povezan sa fosfonijum katjonom, obezbeđuje značajno bolju tečno-tečno rastvorljivost sa dobrim donorom protona PEG 400 nego [NTF₂]⁻ (vidi Sliku 5.19). Generalno, posmatrani uticaj dužine lanca polimera u ispitivanom tečnom faznom ponašanju je pokazao da duži lanac vodi do lošije rastvorljivosti. Ovaj fenomen je primećen i ranije u drugim PEG + jonska tečnost rastvorima²¹⁵ i može se očekivati s obzirom da duži lanac umanjuje kiselost vodonične veze polimera – ovaj parameter je za PEG 400 značajno niži (~30%) u poređenju sa PEG 200 (Tabela 2.1), iako se lanci ne razlikuju mnogo po dužini. Zato je ispitivana [P_{6,6,6,14}][OTf] jonska tečnost potpuno mešljiva sa PEG 200, dok sa PEG 400 pokazuje široku oblast nemešljivosti. Potrebno je ponovo istaći da duži lanci PEGa povećavaju polarnost i olakšavaju samoumrežavanje. Najupečatljiviji primer ovog uticaja lanca je potpuna mešljivost [P_{6,6,6,14}][OTf] jonske tečnosti sa PEG 200²¹⁶ i veoma ograničena mešljivost sa PEG 400.

U ovoj tezi dobijeni su ravnotežni podaci za sistem PEG 400 + $[P_{6,6,6,14}][OTf]$ koji ukazuju u kom opsegu temperatura i sastava bi ispitivan rastvor mogao da se koristi kao smeša rastvarača (u homogenoj oblasti sa Slike 5.18) ili kao tečni dvofazni sistem podesivih svojstava (u heterogenoj oblasti sa Slike 5.18). U nastavku istraživanja, izvršena je termodinamička analiza još dve zelene smeše tipa polimer + jonska

tečnost. U ovom slučaju u pitanju su potpuno mešljivi sistemi – PEG 200 + [C₂mim][NTf₂]/ [C₂mim][OTf]. Eksperimentalno su merene gustine ovih rastvora na pritisku 0.1MPa i u temperaturnom opsegu (288.15 -318.15) K²¹⁷. Iz eksperimentalnih podataka izračunate su dopunske molarne zapremine i rezultati su prikazani u Tabeli P16.

Slika 5.20 – Temperaturno zavisne dopunske molarne zapremine za: (a) PEG 200 (1) + [C₂mim][NTf₂] (2) i (b) PEG 200 (1) + [C₂mim][OTf] (2) rastvore, na pritisku 0.1 MPa: (●) 288.15K, (○) 298.15 K, (▲) 308.15 K, (△) 318.15 K

Slika 5.21 – Poređenje dopunskih molarnih zapremina za PEG 200 (1) + [C₂mim][NTf₂] (2) i PEG 200 (1)+ [C₂mim][OTf] (2) rastvore, na 298.15 K i 0.1 MPa: (○) PEG 200 + [C₂mim][NTf₂] rastvor, (●)PEG 200 + [C₂mim][OTf] rastvor

Zavisnost dopunske molarne zapremine V^E od temperature i sastava za ispitivane rastvore je prikazana na Slikama 5.20 (a) i (b). Poređenje za dva sistema na 298.15 K prikazano je na Slici 5.21.

Tabela 2.1 prikazuje solvatohromne Kamlet-Taft parametre – kiselost (α) i baznost (β) vodonične veze i polarizabilnost (π^*) – ispitivanih čistih jedinjenja. Definicija i fizičko značenje ovih parametara su opisani u literaturi^{216,56}. Potrebno je ponovo istaći da su parametri α i β kontrolisani katjonom i anjonom, redom⁵⁶. Na osnovu ovih proračuna analizirane su molekulske interakcije ispitivanih rastvora. Ove analize pokazuju da jonske tečnosti dovode do privlačnih interakcija koje su u principu mnogo jače kada je [C₂mim][OTf] jonska tečnost prisutna kao jedna od komponenata. Uzajamne interakcije PEG-joni iz jonske tečnosti, PEG-PEG i katjon-anjon iz jonske tečnosti postoje i utiču na volumetrijsko ponašanje ispitivanih rastvora. Konačno, rezultati ukazuju da postojeće privlačne interakcije nisu jedini faktor koji utiče na trenutno kompleksno ponašanje viskoznosti i da veličina molekula/jona i njihovo pakovanje takođe pokazuju određeni uticaj.

Analiza dopunske molarne zapremine

Vrednosti dopunskih molarnih zapremina za PEG 200 + $[C_2mim][NTf_2]$ nisu velike po apsolutnoj vrednosti ali, što je još interesantnije, postoji promena znaka iz pozitivnog ka negativnom (Slika 5.20(a)). S druge strane, dopunske molarne zapremine rastvora PEG 200 + $[C_2mim][OTf]$ su uvek negativne(Slika 5.20(b)). Njihov ekstremum je više nego duplo niži u poređenju sa negativnim ekstremumom V^E za rastvore sa $[C_2mim][NTf_2]$ jonskom tečnošću – Slika 5.21.

Ekperimentalni podaci jasno pokazuju da obe ispitivane jonske tečnosti generalno uzrokuju jake privlačne sile sa PEG 200 – vodonične veze i jon-dipol interakcije. Dipolarnost, kiselost i baznost vodonične veze dati u Tabeli 2.1, kao i visoki dipolni momenat PEG 200^{24,25} kvantitativno podržavaju ovu pretpostavku. Prema tome, u ovim sistemima, vodonične veze se formiraju *(i)* donacijom protona (uglavnom C₂-H) iz imidazolijum katjona etarskom kiseoniku iz PEG monomera²¹⁵ i *(ii)* kroz prihvatanje protona – zbog svoje baznosti vodonične veze anjon jonske tečnosti prihvata protone iz PEG krajnjih -OH grupa. S obzirom da je katjon isti za obe ispitivane jonske tečnosti, poređenje dopunskih molarnih zapremina, prikazano na Slici 5.21, ukazuje da su ove privlačne interakcije mnogo jače u slučaju [OTf]⁻ anjona. Ovo je u skladu sa spektroskopskim rezultatima, rezultatima rastvorljivosti i fazne ravnoteže^{216,56,70}. To objašnjava mnogo bolju sposobnost građenja vodoničnih veza ovog anjona u poređenju sa [NTf₂]⁻ – pogledati i β parametre u Tabeli 2.1.

V^E ponašanje PEG 200 + [C₂mim][NTf₂] rastvora, tj. promena znaka iz pozitivnog u negativan, dešava se sa porastom koncentracije polimera. Ovaj fenomen može da se posmatra kao rezultat uzajamnih PEG-jonska tečnost, jonska tečnost katjon-anjon i PEG-PEG interakcija kao što je i ranije istaknuto u radu²¹⁶. Naime, intra-molekulske vodonične veze postoje unutar¹⁷ i, naročito, između PEG molekula³⁴. Takođe, interakcije između suprotnih jona su daleko od zanemarljivih u obe ispitivane jonske tečnosti^{218,219}. U slučaju vodoničnih veza potreba za povećanim PEG 200 prisustvom može biti odraz relativno niske baznosti vodonične veze [NTf₂]⁻ anjona (Tabela 2.1). Relativno male pozitivne vrednosti dopunske molarne zapremine u oblasti bogatoj jonskom tečnošću u PEG 200 + [C₂mim][NTf₂] rastvoru ukazuju na preovladavanje slabih privlačnih sila - disperzionih sila između alkil lanaca jonske tečnosti i PEG 200 – doprinosi ekspanziji prilikom mešanja.

Drugi intrigantan fenomen je jaka asimetrična zavisnost dopunske molarne zapremine od sastava za PEG 200 + [C₂mim][OTf] rastvor iako se molekuli čistih komponenata ne razlikuju puno u veličini. Ova asimetrija može se tumačiti kao rezultat već pomenutog uzajamnog dejstva između postojećih interakcija – negativan ekstremum dopunske molarne zapremine je postignut približno na istom sastavu polimera. Međutim, ovog puta, mnogo viša baznost vodonične veze OTF⁻ anjona doprinosi manje negativnim V^{E} . Vrednosti dopunske molarne zapremine postaju više negativne (ili manje pozitivne) sa porastom temperature. Ovo je u skladu sa činjenicom da visoko usmerene vodonične veze neznatno opadaju sa temperaturom²²⁰ i tako vode relaksaciji trodimenzionalne strukture što olakšava gusto pakovanje. Ovo ponašanje je već primećeno u našoj prethodnoj studiji za (piridin/nikotin+PEG 200/ 400) rastvore¹⁷.

Modelovanje

Modelovanje *V^E* podataka je izvedeno korišćenjem Peng-Robinson-Stryjek-Vera kubne jednačine stanja (PRSV CEOS)¹⁶² za koju su kritični parametri i faktori acentričnosti ispitivanih čistih komponenata dati u Tabeli 2.2.

PRSV CEOS je kombinovana sa sledećim pravilima mešanja: (i) van der Waals jedan fluid (vdW1) pravilo mešanja koje zavisi od sastava¹⁶³ i *(ii)* pravilo mešanja koje uključuje dopunsku Gibsovu slobodnu energiju (G^{E}) razvijeno od strane Twu i koautora (TCBT)¹⁶⁴. Parametri u oba pravila mešanja su korelisani na svakoj temperaturi. Detaljno objašnjenje o modelima ovde korišćenim može se naći u našim prethodnim radovima^{165,166}. vdW1 pravilo mešanja je korišćeno ku obliku vdW1-2 (parametri k_{ii} i m_{ii}) i vdW1-3 (parametri k_{ii} , l_{ii} i m_{ii}) pravila izraženih jednačinama (4.2) i (4.3). Oblici TCBT pravila mešanja su TCBT-2 (parametri $\Delta G_{12,1}$ i $\Delta G_{21,1}$) i TCBT-3 (parametri $k_{ii,1}$, $\Delta G_{12,1}$ i $\Delta G_{21,1}$) pravila izražena jednačinom (4.4). Navedeni parametri su dobijeni minimizacijom iste funkcije cilja predstavljene jednačinom (4.6) primenom Marquardt optimizacione metode¹⁶⁷. Vrednosti parametara i greške primenjenih modela date su u Tabeli P18. Rezultati su očekivani imajući u vidu kompleksnost čistih komponenata i njihove kompetitivne interakcije - jon-jon, jondipol, vodonične veze i disperzione interakcije - sve utvrđene ovde (videti iznad) i u našoj prethodnoj publikaciji²¹⁶. Efikasnost korelisanja vdW1-1 pravila mešanja je prethodno testirana, i kvalitet dobijenih rezultata je veoma mali - relativne (procentualne) devijacije su išle i do 70% i nikad ispod 25%. Prema tome, ti rezultati nisu uključeni u Tabelu P18. Međutim, vdW1-3 pravilo mešanja - uprkos svojoj relativnoj jednostavnosti – daje veoma dobre rezultate i, kao što je očekivano, TCBT-3 pokazuje najbolji učinak (*PD_{max}* između 0.37% i 1.42%).

Dinamička viskoznost, eksperimentalno određena u literaturi za ispitivane sisteme²²¹, korelisana je primenom tri korelativna modela, sa različitim brojem binarnih interakcionih parametara: jednoparametrski Teja-Rice^{176,177} prikazan jednačinom (4.18), dvoparametarski Three-body McAllister (McAllister-3) i troparametarski Fourbody McAllister (McAllister-4) modeli^{178,222} prikazani jednačinama (4.19) i (4.20), redom. Ponovo, vrednosti binarnih interakcionih parametara su dobijeni iz eksperimentalnih podataka minimizacijom iste funkcije cilja korišćene za V^E modelovanje. Svi rezultati su prikazani u Tabeli P19. Može se primetiti da su rezultati slični za oba ispitivana binarna sistema i da McAllister modeli, sa dva ili tri parametra, daju veoma dobre rezultate, naročito za PEG 200 + [C₂min][OTf] sistem, sa devijacijama ispod 0.5%.

5.3 Separacija azeotropa

5.3.1 Eutektičke smeše kao zeleni rastvarači za separaciju azeotropnih sistema metanol + heptan/ toluen

Kao što je ranije rečeno, eutektičke smeše pokazuju veoma pozitivna svojstva kao što su niska toksičnost i isparljivost, jednostavan i jeftin način sinteze, biodegradabilnost i obnovljivost (s obzirom da se konstituenti DESova mogu dobiti iz prirodnih izvora). Ove smeše predstavljaju najnoviju generaciju zelenih rastvarača, čija je glavna prednost u odnosu na jonske tečnosti netoksičnost. Polazeći od hipoteze da eutektičke smeše kao polarni rastvarači pokazuju afinitet prema polarnim supstancama, u ovoj tezi ispitana je ta hipoteza na primeru određenih azeotropnih smeša čije se komponentne značajno razlikuju u vrednostima polarnosti.

Prvo je ispitivana eutektička smeša sačinjena od biodegradabilnih jedinjenja koja se javljaju u prirodi, holin hlorida i dl-jabučne kiseline (u molarnom odnosu 1:1) i uvedena je oznaka DES1. Ispitivana je separacija azeotropnih smeša koje su sačinjene od komponenata različite polarnosti, heptan + metanol i toluen + metanol. Postupak sinteze smeše DES1 je detaljno objašnjen u Poglavlju 3.2. Nakon sinteze izvršena je karakterizacija dobijenog rastvarača DES1. Molarne mase i temperature faznog prelaza čistih komponenata i DES1 se nalaze u Tabeli 5.9, gde je molarna masa DES1 izračunata kao srednja vrednost molarnih masa individualnih komponenti.

U cilju određivanja temperature staklastog prelaza za DES1, kalorimetrijska merenja su izvedena na MicroCal MC-2 senzitivnom diferencirajućem skenirajućem kalorimetru (DSC) uz upotrebu standardnog DA-2 softverskog paketa za prikupljanje podataka i Origin softvera za DSC analizu podataka.

Tabela 5.9 – Molarne mase i temperature faznog prelaza čistih komponenata i DES1

Komponenta	Molarna masa∕ kg∙kmol-1	Temperatura faznog prelaza/ K
Holin Hlorid	139.62	575.15-578.15ª
dl-Jabučna kiselina	134.09	404.5-406.5 ^b
DES1 (1:1)	136.86	218°, 216.67 ^d

^a Temperatura topljenja i dekompozicije [Chemical book-material safety data sheet]

^b Temperatura topljenja [Chemical book-material safety data sheet]

° Temperatura staklastog prelaza, ovaj rad

d Francisco i sar.¹⁰⁹

Struktura sintetisanog DES1 je proverena pomoću NMR analize (Slika 5.22). Imajući u vidu da je sintetisani DES1 veoma higroskopan, sušen je pod vakuumom pre upotrebe prema proceduri primenjenoj na jonske tečnosti koja je detaljno opisana u našem prethodnom radu²¹⁶. Sadržaj vode ispitivanog DES1 meren je Karl Fisher titracionom tehnikom. Dobijeni sadržaj vode ispitivanog DES1 bio je manji od 1.2 wt %.

Osnovna termodinamička svojstva čistog DES1 su određena i vrednosti se mogu naći u Tabelama u Prilogu u kojima su prikazani rezultati za smeše DES1 sa metanolom i vodom. Viskoznost čistog DES1 merena je na reometru Anton Paar Modular Compact Rheometer MCR 102. Nesigurnost izračunavanja molskog udela je manja od $\pm 1.10^{-4}$. Eksperimentalna nesigurnost merenja gustine je $\pm 4.10^{-2}$ kg·m⁻³. Nesigurnost merenja indeksa refrakcije je ± 0.00009 . Dinamička viskoznost je merena sa relativnom nesigurnošću ± 1 %. Procenjena nesigurnost temperature dobijena iz ponovljenih merenja je manja od ± 0.5 K. Gustine čistog DES1 su u opsegu između 1.278119·10⁻³ kg·m⁻³ na 298.15 K do 1.236060·10⁻³ kg·m⁻³ na 363.15 K, što je više u poređenju sa sličnim tečnostima ispitivanim u literaturi. U radu²²³ ispitivana je smeša holin hlorid+urea imenovana kao relin (molarni odnos 1:2) i gustina varira između 1.2001·10⁻³ kg·m⁻³ do 1.1554·10⁻³ kg·m⁻³ u istom temperaturnom opsegu.

Slika 5.22 – (a) Kvantitativni ¹³C NMR (125.80 MHz) i (b) ¹H NMR (500.26 MHz) spektar (dmso-d6, 298K) čistog DES1 sintetisanog grejanjem na 80 °C (s označava rastvarač). Strukuture i numerisanje oba jedinjenja su prikazani na slici

U radu²²⁴ holin hlorid+glicerol, smeša imenovana kao glicelin (molarni odnos 1:2), je ispitivana i gustina varira između 1.1943·10⁻³ kg·m⁻³ do 1.1495·10⁻³ kg·m⁻³ u opsegu temperatura 293.15 i 363.15. Kao što je očekivano, gustine sva tri DESa opadaju sa porastom temperature. Viskoznost je u opsegu 24492 mPa·s do 300.95 mPa·s za ispitivani DES1, dok se za relin i glicelin nalazi u opsegu 1371.9719 mPa·s do 19.9490 mPa·s i od 472.9671 mPa·s do 19.5866 mPa·s, na temperaturama između 298.15 i 363.15 K, redom.

Može se zaključiti da DES1 ovde ispitivan ima više gustine u poređenju sa relinom i glicelinom i poseduje značajno veće viskoznosti, naročito pri nižim temperaturama, ali sa porastom temperature viskoznost značajno opada. DES1 se tretira kao jedna komponenta, kao što je i ranije rađeno u literaturi za druge kombinacije eutektičkih smeša^{130,225}.

Prema pregledanoj literaturi nema studija koje se bave karakterizacijom DES1 i njegovom primenom u separaciji azeotropa u procesu ekstrakcije tečno-tečno. Sposobnost analiziranog DES1 u separaciji azeotropa kao što su heptan + metanol i toluen + metanol ispitivana je kroz eksperimentalno određivanje ravnoteže tečno-tečno (LLE) ternarnih smeša heptan + metanol + DES1 i toluen + metanol + DES1. S obzirom da mnoga jedinjenja forimiraju azeotrope, separacija azeotropa u industrijskim procesima je tema od velikog značaja. U petrohemijskim procesima alkoholi koji se dodaju kao oksigenati benzinu izazivaju formiranje alkan/alkohol azeotropa²², npr. metanol/heptan dok je metanol/toluen smeša široko zastupljena u farmaceutskoj industriji²³. Prema tome, postoji zahtev za novim ekstrakcionim rastvaračima visoke selektivnosti i visokih vrednosti distribucionog koeficijenta.

U cilju testiranja ekstrakcionih sposobnosti ispitivanog DES1, binodalne i ravnotežne krive su eksperimentalno određene za dva pomenuta ternarna sistema i iz ovih podataka izračunati su distribucioni koeficijenti i selektivnosti. Detaljan opis eksperimentalnog postupka određivanja binodalne krive i ravnotežnih linija dat je u Poglavlju 3.3.10. Za ova dva sistema prilikom određivanja sastava na krajevima ravnotežnih linija, tj. sastava dve faze u ravnoteži, korišćene su termogravimetrijska i NMR metoda. Tom prilikom uzorci su uzeti iz obe faze. Kvantitativna analiza gornjeg sloja je izvedena kvantitativnom ¹³C NMR spektroskopijom i analiza donjeg sloja je izvedena kombinovanjem NMR analize i termogravimetrijske metode.

Eksperimentalni LLE rezultati, dati kao molski udeli komponenata u rafinatu i ekstraktu, vrednosti selektivnosti i distribucionog koeficijenta za dva ispitivana sistema heptan + metanol + DES i toluen + metanol + DES dati su u Tabeli 5.10.

Heptan – bogata faza		DE	S – bogata	β	S		
X_1^I	X_2^I	X_3^I	$X1^{II}$	X_2^{II}	X3 ^{II}		
1.0000	0.0000	0.0000	0.0000	0.2943	0.7057		
1.0000	0.0000	0.0000	0.0000	0.5000	0.5000		
1.0000	0.0000	0.0000	0.0000	0.6496	0.3504		
1.0000	0.0000	0.0000	0.0000	0.7570	0.2430		
1.0000	0.0000	0.0000	0.0038	0.8452	0.1510		
			Toluen (1) + Me	etanol (2) +	- DES1 (3)		
Toluen - bogata faza		DES - bogata faza			β	S	
X_1^I	X_2^I	X_3^I	X_1^{II}	X_2^{II}	X_3^{II}		
0.9940	0.0060	0.0000	0.0000	0.1995	0.8005	33.450	
0.9862	0.0138	0.0000	0.0129	0.4018	0.5853	29.102	2229.0
0.9615	0.0385	0.0000	0.0332	0.5294	0.4374	13.764	398.37
0.9346	0.0654	0.0000	0.0546	0.6502	0.2952	9.9388	169.98
0.9200	0.0800	0.0000	0.0658	0.6777	0.2565	8.4674	118.40

Tabela 5.10 – Eksperimentalni ravnotežni sastavi, vrednosti distribucionog koeficijenta i selektivnosti za dva ternarna sistema na 298.15 K i na atmosferskom pritisku^{a,b}

^a x_1 je molski udeo heptana/toluena, x_2 je molski udeo metanola, i x_3 je molski udeo DESa. ^b Prazne ćelije su ostavljene zbog deljenja nulom.

Za evaluaciju ekstrakcione efikasnosti DES1, vrednosti za distribucioni koeficijent β i selektivnost *S*, računate su pomoću jednačina (2.6) i (2.7) i vrednosti su prikazane u Tabeli 5.10. Slika 5.23 predstavlja binodalne krive i ravnotežne linije za sisteme heptan + metanol + DES1 i toluen + metanol + DES1. Sa Slike 5.23 jasno je da je nemešljiva oblast šira za smešu sa heptanom. Očigledno je i da heptan i toluen nisu mešljivi sa DES1, dok je široka nemešljiva oblast imeđu heptana i metanola (Slika 5.23 (a)) rezultat široke oblasti nemešljivosti između metanola i heptana. Kvantitativna analiza donjeg sloja izvedena je kombinovanjem NMR analize i termogravimetrijske metode. Molski udeo heptana/ toluena dobijen je iz NMR spektra, dok je molski udeo DES1 dobijen isparavanjem isparljivih komponenata. Molski udeo metanola u donjem sloju dobijen je iz jednostavne jednačine koja sumira molske udele sve tri komponente i ta suma jednaka je 1. Odnos integrala ¹³C signala je korišćen za kvantitativnu analizu slojeva NMRom zato što ¹H NMR spektar metanolovog CH₃ signala delimično preklopljen sa holin metil-grupama. Nedavno objavljen rad Florindo-a i sar.²²⁶ pokazuje da male količine nečistoća mogu da se formiraju tokom sinteze čistog DESa. Autori su primetili različite karakteristike DESova sintetisanih pomoću dve različite metode, mlevenjem i zagrevanjem. Zaključeno je da zagrevanje može da promoviše formiranje estara u DESu.

Slika 5.23 – Eksperimentalni ternarni LLE dijagrami na 298.15 K za: (a) heptan (1) + metanol (2) + DES1 (3); (b) toluen (1) + metanol (2) + DES1 (3); predstavljeni binodalnom krivom (●); ravnotežnom krivom (—) i sastavima na krajevima ravnotežne krive (○)

Iz selektivnosti i distribucionih koeficijenata datih u Tabeli 5.10, može se zaključiti da je DES1 obećavajući kandidat za separaciju azeotropa dva tipa alkan/ alkohol i aromat/ alkohol. Za sistem heptan + metanol + DES1, Tabela 5.10 ukazuje da DES i metanol nisu prisutni u rafinatu. Prema distribucionom koeficijentu, DES1 pokazuje odličnu selektivnost prema metanolu. DES1 nije prisutan u rafinatu ni kod sistema toluen + metanol + DES1, dok je metanol prisutan u tragovima (maksimalno 0.0800 u molskom udelu). Za ovaj azeotrop DES1 takođe pokazuje veoma dobru selektivnost, naročito pri niskim koncentracijama metanola. Ovako visoke vrednosti i distribucionog koeficijenta i selektivnosti objašnjavaju se preko strukture donora protona (HBD), dl-jabučne kiseline. Kao što je objašnjeno u literaturi²²⁷, OH veza u karboksilnoj grupi je jače polarizovana nego kod alkohola, i omogućava snažnije povezivanje sa metanolom preko vodoničnih veza. Ovo je razlog za tako visoke
vrednosti distribucionog koeficijenta. Takođe, dl-jabučna kiselina sa tri OH grupe poboljšava ekstrakciju metanola što objašnjava visoke vrednosti selektivnosti. S obzirom da u DES1 bogatoj fazi heptan ili toluen nisu prisutni, ili se nalaze samo u tragovima čist metanol može se dobiti destilacijom iz ekstrakta. Heptan kao nepolaran molekul može da formira disperzione veze. Toluen može da gradi i dipoldipol i disperzione sile s obzirom da poseduje slab dipolni momenat (0.4 D)¹⁸³. Polaran metanol (dipolni momenat je 1.7 D)¹⁸³ formira jake vodonične veze, kao i slabe dipol-dipol i disperzione sile. Kod sistema heptan + metanol + DES1 ravnotežne linije pokazuju da praktično nema mešanja između heptana i metanola jer metanol je jako povezan vodoničnim vezama sa DES1 pa disperzione sile između metanola i heptana nisu dovolino jake da koegzistiraju zajedno sa vodoničnim vezama. S druge strane, metanol može da formira dipol-dipol sile sa toluenom koje su dovoljno jake da koegzistiraju sa vodoničnim vezama. To dovodi do male mešljivosti između metanola i toluena što smanjuje oblast nemešljivosti u ternarnoj smeši toluen + metanol + DES1. Heptan + metanol smeša je prethodno analizirana u literaturi korišćenjem nekih jonskih tečnosti (Tabela P20). Prema našem saznanju nema podataka koji se bave separacijom toluen + metanol azeotropa primenom ekstrakcije tečno-tečno, iako postoje neke druge separacione tehnike prijavljene u literaturi^{23,228}. Poređenje selektivnosti ispitivanog DES1 u odnosu na IL ispitivane u literaturi (Tabela P20) za sistem heptan + metanol ukazuju da je DES bolji ekstrakcioni agens. Imajući u vidu visoke S vrednosti, nekoliko ekstrakcionih koraka bi bilo potrebno da se dobije veoma čist ekstrakt u industrijskom procesu. Dodatno, razmatrajući visoke β vrednosti, ekstrakcija ne bi zahtevala veliku količinu rastvarača. Uzimajući u obzir niske troškove rastvarača, potencijalna industrijska primena ispitivanog DES1 svakako ispunjava većinu principa zelene hemije.

Eksperimentalni ravnotežni podaci za dve ispitivane ternarne smeše korelisani su primenom modela dve nehaotične tečnosti (NRTL)¹⁷⁹ i univerzalnog kvazihemijskog modela (UNIQUAC)¹⁸⁰. Tabela P21 pokazuje dobijene parametre i devijacije za NRTL i UNIQUAC modele. Kao što se može videti odlična rmsd je dobijena za oba modela, dok

98

se bolje slaganje dobija za sistem heptan + metanol + DES1. Procedura za određivanje r_i i q_i objašnjena je u literaturi za druge DES komponente¹³⁰. Tabela 5.11 daje r_i i q_i vrednosti za jedinjenja ispitivana u ovom radu.

Komponenta i	r i	q i	
Heptan	5.174	4.396	
Toluen	3.9228	2.968	
Metanol	1.4311	1.432	
DES1	5.52375	5.162	

Table 5.11 – UNIQUAC zapreminski i površinski strukturalni parametri za ispitivane čiste komponente

Slika 5.24 prikazuje eksperimentalne ravnotežne podatke zajedno sa podacima izračunatim pomoću NRTL i UNIQUAC modela gde je vizuelno prikazana uspešnost fitovanja.

Slika 5.24 – Poređenje NRTL modela (□) i UNIQUAC modela (Δ) sa eksperimentalnim ravnotežnim podacima (■) za: (a) heptan (1) + metanol (2) + DES1 (3); (b) toluen (1) + metanol (2) + DES1 (3). Pune linije su eksperimentalne ravnotežne linije, tačkasta linija predstavlja NRTL i crta-tačka linija UNIQUAC model

Imajući u vidu da su u DES1 bogatoj fazi toluen ili heptan prisutni samo u tragovima, ekstrakt može da se smatra binarnom smešom DES1 i metanola. Poznavanje

termodinamičkih osobina ove zaostale smeše je od industrijskog značaja. Prema tome, gustine, viskoznosti i indeksi refrakcije smeše DES1 + metanol mereni su na temperaturama između 298.15 K i 323.15 K. Sva merenja su izvedena na atmosferskom pritisku sa korakom temperature 5 K. Tabela P22 prikazuje eksperimentalne vrednosti gustine, viskoznosti i indeksa refrakcije DES1 + metanol smeše u datom temperaturnom opsegu, dok Slika 5.25 gustine i viskoznosti na određenim temperaturama.

Neki autori²²⁹ su nedavno utvrdili da dodatak treće komponente DESu čini da ona smanji visoku viskoznost DESa. U ovom radu ispitivano je kako dodatak vode ili glicerola u DES1 utiče na viskoznost i ostale termodinamičke osobine. Količina dodate vode nije prešla 0.5751 molski udeo s obzirom da visok sadržaj vode može da naruši strukturu DESa²³⁰. Gustine i viskoznosti za sistem voda + DES1 mereni su na temperaturama između 298.15 K i 363.15 K, dok su indeksi refrakcije mereni do 343.15 K zbog ograničenja same aparature (Tabela P23). Za smešu DES1 + glicerol (holin hlorid:dl-jabučna kiselina:glicerol 1:1:0.5) viskoznosti su određene između 298.15 K i 363.15 K i 363.15 K jerikazane u Tabeli P24.

Slika 5.25 – Eksperimentalne vrednosti: (a) gustina i (b) viskoznosti naspram DES molskog udela za sistem DES1 (1) + metanol (2) gde se simboli odnose na ekperimentalne podatke na nekoliko temperatura: (♦) 298.15 K; (○) 303.15 K; (●) 308.15 K; (△) 313.15 K; (▲) 318.15 K i (□) 323.15 K. Crvene tačke predstavljaju vrednosti viskoznosti dobijene na reometru

Dok je uticaj temperature na gustinu smeše DES1 + metanol vrlo mali (Slika 5.25 (a)), njen uticaj na viskoznosti čistog DES1 je značajan (Slika 5.25(b)). Na sobnoj temperaturi viskoznost DES1 je dosta visoka (oko 20000 mPa·s). Međutim, i povećanje temperature i dodatak male količine metanola čistom DES1 značajno smanjuje viskoznost smeše. Iz ekvimolarne smeše, idući prema čistom metanolu, uticaj temperature na viskoznosti sistema DES1 + metanol nestaje (kriva teži konstantnoj vrednosti – Slika 5.25).

Glicerol je dodat u molarnom odnosu holin hlorid:dl-jabučna kiselina:glicerol (1:1:0.5). Na Slici 5.26 prikazane su gustine i viskoznosti smeše voda + DES1 na odabranim temperaturama. Dodatak vode čistom DES1 smanjuje i gustinu i viskoznost. Kako količina vode raste, viskoznost značajno opada, naročito na nižim temperaturama. Prema tome, u cilju smanjenja visoke viskoznosti čistog DES1, voda može da se koristi kao treći DES konstituent kao što su predložili i drugi autori²²⁹.

Slika 5.26 – Eksperimentalne vrednosti: (a) gustine i (b) viskoznosti u odnosu na molski udeo vode za sistem voda (1) + DES1 (2) gde se simboli odnose na eksperimentalne podatke za nekoliko temperatura: (♦) 298.15 K; (○) 303.15 K; (●) 308.15 K; (△) 313.15 K; (▲) 318.15 K; (□) 323.15 K; (■) 328.15 K; (+) 338.15 K; (△) 348.15 K; (◀) 358.15 K i (X) 363.15 K. Crvene tačke su vrednosti viskoznosti dobijene na reometru

Slika 5.27 opisuje promene viskoznosti sa porastom temperature za DES1 + glicerol smešu. Kada se glicerol doda u DES1 u molskom odnosu holin hlorid:dl-jabučna kiselina:glicerol 1:1:0.5, na sobnoj temperaturi viskoznosti značajno opadaju i dodatno sa povećanjem temperature dalje smanjenje viskoznosti je moguće. Prema tome, glicerol takođe može da se predloži kao treći DES konstituent.

Slika 5.27 – Eksperimentalne vrednosti viskoznosti u odnosu na temperaturu za sistem DES1 (1) + Glicerol (2) (holin hlorid:dl-jabučna kiselina:glicerol u molskom odnosu 1:1:0.5) u temperaturnom opsegu između 298.15 K i 363.15 K

Već je navedeno u literaturi^{231,232} da jonske tečnosti i smeše sa temperaturom staklastog prelaza, kao što je DES1 ispitivan u ovom radu, imaju slab nelinearan trend ln η u zavisnosti od 1/*T*. Iako viskoznosti smeše holin hlorid:dl-jabučna kiselina:glicerol analizirane ovde mogu da se opišu Arrhenius-ovim modelom, viskoznost-temperatura profil može se uspešno opisati i Vogel-Fulcher-Tamman modelom (VFT)²³³:

$$\ln \eta = A + B / (T - T_0) \tag{5.10}$$

gde su *A*, *B* i T_0 empirijske konstante dobijene kao rezultat fitvanja. Iz ovih parametara može se izračunati energija aktivacije viskoznog toka $E_{a,\eta}$:

$$E_{a,\eta} = RB(\frac{T}{T - T_0})^2$$
(5.11)

Izračunati parametri, energija aktivacije i procenjene vrednosti kvaliteta fitovanja R^2 prikazani su u Prilogu (Tabela P25). Dijagrami zavisnosti ln η od 1/T zajedno sa linijom koja je rezultat fitovanja VFT modelom prikazani su na Slici 5.28.

Slika 5.28 – Eksperimentalne vrednosti ln η u zavisnosti od T⁻¹ za sistem DES1 (1) + glicerol (2) (holin hlorid:dl-jabučna kiselina:glicerol u molskom odnosu 1:1:0.5) u temperaturnom opsegu između 298.15 K i 363.15 K. Linije su rezultat fitovanja Vogel-Fulcher-Tamman modelom

5.3.2 Eutektičke smeše kao zeleni rastvarači za separaciju azeotropnih sistema heksan/heptan + etanol: Uticaj dodavanja vode na separaciju azeotropa

U nastavku istraživanja bavili smo se kreiranjem još nekih novih rastvarača koji bi mogli da se primene u separaciji azeotropa. Ponovo se kao potencijalni rastvarač razmatra eutektička smeša. Konkretno, odabran je netoksičan i biodegradabilan eutektik holin hlorid + 1,2-propandiol u molarnom odnosu 1:3 (DES2) za ispitivanje potencijalne primene u separaciji azeotropa heksan + etanol i heptan + etanol procesom ekstrakcije tečno-tečno (LLE). Pregled literature ukazuje da se nijedna studija dosada nije bavila detaljnom termodinamičkom karakterizacijom DES2 i njegovom primenom u separaciji azeotropa procesom ekstrakcije tečno-tečno. Pored brojnih prednosti u odnosu na tradicionalne rastvarače, jedan od najvećih nedostataka ovog DES2 je njegova velika viskoznost. S obzirom da je proces LLE ekstrakcije zasnovan na prenosu mase, velika viskoznost rastvarača bi zahtevala mnogo više energije za mešanje. Određena literaturna ispitivanja su pokazala da voda može da smanji viskoznost DES2 (što je potvrdjeno u prethodnom poglavlju sa DES1 smešom) i da ternarni DESovi svakako mogu da nađu svoju ulogu kao ekstrakcioni agensi. Dai i sar.²³⁴ su ispitivali strukturu DESa holin hlorid + 1,2-propandiol, kao i uticaj vode na supermolekulsku strukturu tog DESa i na povezivanje vodoničnim vezama između komponenata DESa. Rezultati su pokazali da je formirana struktura očuvana dokle god je sadržaj vode ispod 50%. Dai i sar.¹¹³ su potvrdili da polarnost ispitivanog DESa raste dodatkom vode što ukazuje da bi ekstrakciona efikasnost ovakvog ternarnog DESa mogla da se poboljša dodatno. Znajući ovo, u ovoj tezi je postavljena hipoteza da je ekstrakciona sposobnost ternarnog DESa holin hlorid + 1,2propandiol + voda u molarnom odnosu 1:1:2 (pod oznakom PCH) bolja u separaciji azeotropa heksan/ heptan + etanol u odnosu na istu smešu bez vode (DES2). Ovaj molarni odnos u PCH smeši (sa približno 14 mas% vode) je odabran iz razloga što sa ovom količinom vode originalna struktura DES2 ostaje očuvana, a istovremeno dodatak vode utiče na povećanje polarnost i smanjenje viskoznost DESa čime se očekuje i efikasnija ekstrakciona sposobnost. S obzirom da je ovaj ternarni DES već prethodno okarakterisan u pomenutoj literaturi, gde je označen kao PCH, zadržaćemo istu skraćenicu. Molarne mase sintetisanih eutektičkih smeša su izračunate kao srednja vrednost molarnih masa pojedinačnih konstituenata. Molarna masa DES2 iznosi 91.97 kg·kmol⁻¹ a PCH 62.94 kg·kmol⁻¹.

U cilju potvrđivanja postavljene hipoteze, eksperimentalno su određene binodalne krive i ravnotežne linije za ispitivane DES2/ PCH + azeotrop sisteme i iz ovih podataka proračunati su distribucioni koeficijenti i selektivnosti. Eksperimentalna merenja ravnoteže tečno-tečno izvršena su na 298.15 K i na atmosferskom pritisku. Detaljan opis postupka određivanja binodalne krive i ravnotežnih linija dat je u Poglavlju 3.3.10.

Nakon što je ustanovljen sastav smeše koji odgovara binodalnoj krivoj, za te smeše mereni su indeksi refrakcije pomoću Anton Paar RXA 156 refraktometra na 298.15 K. Nesigurnost izračunavanja molskog udela je manja od \pm 1·10⁻⁴. Nesigurnost merenja

indeksa refrakcije je \pm 0.00009. Nesigurnost temperature je procenjena iz ponovljenih merenja i manja je od \pm 0.5 K.

Drugi deo eksperimenta prestavlja određivanje ravnotežnih linija. Prema postupku opisanom u Poglavlju 3.3.10 pravljene su ternarne smeše heksan/ heptan + etanol + DES2/ PCH poznatog sastava u heterogenoj oblasti ispod binodalne krive. Smeše su mešane 30 min a zatim je fazno odvajanje obavljeno u centrifugi u periodu od 30 min pri 1000 obrtaja/min, čime su početne smeše razdvojene na dve faze koje su u ravnoteži. Pri određivanju sastava sa krajeva ravnotežnih linija (sastavi dve faze u ravnoteži) primenjen je računski metod izračunavanja sastava preko indeksa refrakcije. Uzorci su uzimani iz obe faze i izmereni su indeksi refrakcije za svaku fazu. Sastavi na krajevima ravnotežnih linija izračunati su preko izmerenih indeksa refrakcije, kao što je to uspešno primenjeno i u literaturi²²⁷. Sastavi obe faze u ravnoteži su izračunati fitovanjem eksperimentalnih rezultata pomoću sledećih jednačina:

$$n_D = Aw_1 + Bw_1^2 + Cw_2 + Dw_2^2 + Ew_3 + Fw_3^2$$
(5.12)

$$w_3 = G \exp |\mathrm{Hw}_1^{0.5} + \mathrm{Iw}_1^3| \tag{5.13}$$

$$w_2 = 1 - w_1 - w_3 \tag{5.14}$$

gde w_1 , w_2 i w_3 odgovaraju masenim udelima sastava heksana/ heptana, etanola i DES2/PCH, redom, a parametri *A* do *I* su parametri fitovanja.

Prema našem saznanju termodinamičke osobine ova dva ispitivana eutektika nisu analizirane u literaturi u širokom temperaturnom opsegu. Stoga su ovde izmerene gustina, viskoznost, indeks refrakcije i brzina zvuka za DES2 i PCH na temperaturama između 288.15 K i 333.15 K. Sva merenja izvedena su na atmosferskom pritisku i sa korakom temperature 5 K. pH i provodljivost zabeleženi su na temperaturi 300.15 K. Merenja gustine su izvršena sa eksperimentalnom ponovljivošću $\pm 8 \cdot 10^{-2}$ kg·m⁻³, a proširena merna nesigurnost, uključujući uticaj čistoće uzorka je ± 1 kg·m⁻³ sa intervalom poverenja 0.95. Relativna nesigurnost merenja dinamičke viskoznosti je procenjena na $\pm 2\%$, dok je ponovljivost merenja brzine zvuka ± 0.1 m·s⁻¹. Rezultati merenja indeksa refrakcije, gustine, viskoznosti i brzine zvuka oba ispitivana rastvarača, DES2 i PCH, prikazani su u Tabeli P26, zajedno sa vrednostima pH i provodljivosti na sobnoj temperaturi.

Dodatno, NRTL i UNIQUAC modeli su primenjeni za korelisanje ravnotežnih podataka dva ispitivana sistema. Ovde je eutektik tretiran kao jedna komponenta, kao što je urađeno i u literaturi za druge kombinacije eutektičkih smeša^{130,225}. Procedura za određivanje r_i i q_i eutektika je objašnjena ranije u literaturi za druge DES kombinacije¹³⁰. Tabela 5.12 prikazuje r_i i q_i vrednosti za jedinjenja ispitivana u ovom radu.

Komponenta i	r _i	\boldsymbol{q}_i
Heptan	5.1742	4.396
Heksan	4.4998	3.856
Etanol	2.5755	2.588
DES2	4.5977	4.489
РСН	3.0465	3.181

Tabela 5.12 - UNIQUAC stukturni parametri zapremine i površine za ispitivane čiste komponente i eutektičke smeše

Eksperimentalni LLE rezultati, dati kao molski udeli komponenata u rafinatu i ekstraktu, vrednosti selektivnosti i distribucionog koeficijenta za četiri ispitivana sistema heksan + etanol + DES2/ PCH i heptan + etanol + DES2/ PCH prikazani su u Tabeli 5.13. Za evaluaciju DES2/ PCH ekstrakcione efikasnosti, vrednosti distribucionog koeficijenta β i selektivnosti *S*, korišćene su jednačine (2.6) i (2.7).

Ova dva ispitivana sistema smatraju se ternarnim smešama iako sami eutektici sadrže dve ili tri komponente. Dai i sar.¹¹³ su detaljno objasnili supermolekulsku strukturu različitih eutektičkih smeša, između ostalog za smešu holin hlorid + 1,2-propandiol.

Autori su otkrili da su individualne DES komponente vezane jakim vodoničnim vezama formiranim između -OH grupa u 1,2-propandiolu i hlorida i vodoničnim vezama sa -CH₂-OH u holin hloridu. Dodatak vode u izvesnoj količini utiče na formiranu strukturu DES2. Supermolekulska kompleksna struktura PCH je očuvana sve dok je sadržaj vode ispod 50 wt%, ali dalje razblaženje dovodi do rastvora slobodnih formi individualnih komponenata u vodi¹¹³. Zato je u ovom radu voda dodata u količini približno 14 wt%, da bi se izbeglo razaranje formirane mreže vodoničnih veza. Postepene promene u strukturi DESa tokom razblaženja mogu da utiču na njihove fizičko-hemijske osobine kao i na njihovu dalju primenu¹¹³, ali mreža jakih vodoničnih veza čuva kompaktnu strukturu eutektika i stoga se DES2 ili PCH mogu posmatrati kao jedna komponenta.

Tabela 5.13 - Eksperimentalni ravnotežni sastavi, vrednosti distribucionog koeficijenta i selektivnosti za četiri ternarna sistema na 298.15 K i na atmosferskom pritsku^a

			Heksar	n (1) + Etai	nol (2) + D	ES2 (3)		
Heksan – bogata faza			DES2 - bogata faza			β	S	
X_1^I	$X2^I$	$X3^I$	_	X_1^{II}	$X2^{II}$	X_3^{II}		
0.9789	0.0207	0.0004		0.0007	0.1000	0.8993	4.8	7128.5
0.9707	0.0289	0.0004		0.0032	0.2037	0.7932	7.0	2165.5
0.9590	0.0405	0.0005		0.0079	0.2992	0.6929	7.4	894.1
0.9281	0.0712	0.0007		0.0165	0.3947	0.5888	5.5	311.5
0.9066	0.0925	0.0009		0.0306	0.4833	0.4861	5.2	154.7
0.8508	0.1475	0.0018		0.0449	0.5378	0.4173	3.6	69.1
0.8095	0.1877	0.0027		0.0707	0.5955	0.3339	3.2	36.3
			Heksa	n (1) + Eta	nol (2) + F	PCH (3)		
Hel	ksan - boga	ta faza		PCH - bogata faza			β	S
X_1^I	X_2^I	$X3^{I}$	_	X_1^{II}	X_2^{II}	X_3^{II}		
0.9897	0.0083	0.0021		0.0005	0.0945	0.9051	11.4	22754.3
0.9756	0.0221	0.0023		0.0028	0.2092	0.7880	9.5	3256.7
0.9683	0.0293	0.0024		0.0074	0.3120	0.6806	10.7	1396.0
0.9516	0.0457	0.0027		0.0208	0.4545	0.5247	9.9	455.2
0.9220	0.0746	0.0034		0.0382	0.5447	0.4171	7.3	176.3
0.8880	0.1078	0.0042		0.0696	0.6233	0.3071	5.8	73.8
			Heptar	n (1) + Etai	nol (2) + D	ES2 (3)		
Heptan - bogata faza		DES2 - bogata faza			β	S		
X_1^I	X_2^I	$X3^{I}$	_	X_1^{II}	X_2^{II}	X3 ¹¹		
0.9858	0.0000	0.0142		0.0007	0.1681	0.8312		
0.9707	0.0150	0.0143		0.0032	0.2799	0.7170	18.7	5743.0
0.9590	0.0265	0.0144		0.0079	0.3800	0.6121	14.3	1733.6

0.9281	0.0571	0.0148		0.0165	0.4775	0.5060	8.4	ł 47	0.0
0.8508	0.1331	0.0161		0.0449	0.6166	0.3384	4.0	5 8	7.7
0.8095	0.1734	0.0171		0.0707	0.6682	0.2611	3.9) 44	4.2
0.9858	0.0000	0.0142		0.0007	0.1681	0.8312			
Heptan (1) + Etanol (2) + PCH (3)									
Heptan - bogata faza			PCH - bogata faza			β		S	
X_1^I	$X2^I$	$X3^I$	_	X_1^{II}	X_2^{II}	X_3^{II}			
0.9922	0.0000	0.0078		0.0008	0.1622	0.8370			
0.9922	0.0000	0.0078		0.0001	0.0715	0.9284			
0.9842	0.0081	0.0077		0.0032	0.2920	0.7048	36.	0 110	72.8
0.9608	0.0316	0.0076		0.0079	0.4151	0.5770	13.	1 159	92.1
0.9326	0.0599	0.0075		0.0154	0.5202	0.4644	8.2	7 52	5.9
0.9007	0.0918	0.0075		0.0305	0.6295	0.3401	6.9) 20	2.8
0.9008	0.0310	0.0076		0.0079	0.4151	0.5770	13.	1 15 7 E2	92.1

^a Prazne ćelije označavaju veoma visoke *S* ili β vrednosti.

Slika 5.29 prikazuje binodalne krive i ravnotežne linije za sisteme heksan + etanol + DES2 i heksan + etanol + PCH , heptan + etanol + DES2 i heptan + etanol + PCH. Sa slike može se primetiti da je oblast nemešljivosti šira za smeše sa PCH i da heksan/ heptan nije mešljiv sa eutekticima. Dai i sar. zaključuju da dodatak vode utiče na polarnost i da promenjene polarnosti razblaženih eutektika značajno utiču na kapacitet rastvaranja polarnih jedinjenja. Voda kao polarnije jedinjenje povećava polarnost eutektičkih smeša koje sadrže alkohol, prema tome PCH je polarniji od DES2. Na osnovu zaključenog, očekuje se veća selektivnost PCH prema etanolu i eksperiment je potvrdio ovu pretpostavku. Iz selektivnosti i distribucionih koeficijenata prikazanih u Tabeli 5.13, može se zaključiti da ispitivane binarne i ternarne eutektičke smeše predstavljaju obećavajuće kandidate za separaciju alkan/alkohol tipa azeotropa.

Za četiri ispitivana sistema heksan + etanol + DES2/ PCH i heptan + etanol + DES2/ PCH, Tabela 5.13 pokazuje da su eutektik i alkan uspešno razdvojeni jer se DES2/ PCH nalazi u rafinatu u tragovima, a alkan u tragovima u ekstraktu. Donji ekstrakcioni sloj sadrži značajno više etanola što je u skladu sa visokim vrednostima distribucionog koeficijenta i selektivnosti prikazanih u Tabeli 5.13. Ovako visoke vrednosti objašnjava struktura donora protona, 1,2-propandiol-a. Kao što je objašnjeno u literaturi²²⁷, OH veza u alkoholu je jako polarizovana, i na taj način doprinosi jakom

vodoničnom vezivanju sa etanolom. Ovo je razlog za visoke vrednosti distribucionog koeficijenta. Takođe, 1,2-propandiol sa dve -OH grupe poboljšava ekstrakciju etanola što objašnjava visoke vrednosti selektivnosti.

Slika 5.29 - Eksperimentalni ternarni LLE dijagrami na 298.15 K za: (a) heksan (1) + etanol (2) + DES2 (3); (b) heksan (1) + etanol (2) + PCH (3); (a) heptan (1) + etanol (2) + DES 2 (3); (b) heptan (1) + etanol (2) + PCH (3); predstavljeni binodalnom krivom (●); ravnotežnom krivom (−) i sastavima na krajevima ravnotežne krive (○)

S obzirom da se u ekstraktu alkan javlja samo u tragovima, čist etanol može se dobiti destilacijom iz ekstrakta. Alkan kao nepolaran molekul može da formira disperzione sile. Polarni etanol (dipolni momenat je 1.7 D¹⁸³) formira jake vodonične veze, kao i slabije dipol-dipol i disperzione sile. U heksan/ heptan + etanol + PCH sistemima etanol je jače vezan za PCH s obzirom da ternarni eutektik sadrži vodu koja povećava njegovu polarnost i formira dodatne vodonične veze sa etanolom što rezultira većom nemešljivom oblašću na ternarnom dijagramu (Slika 5.29 (b) i (d)) i većom selektivnošću prema etanolu u poređenju sa binarnom eutektičkom smešom DES2. Za sisteme sa heptanom selektivnost je povećana otprilike 10 puta sa primenom PCH rastvarača i potpuna ekstrakcija etanola iz rafinata je takođe poboljšana. Za sisteme sa heksanom, dodatak vode takođe povećava selektivnost više nego trostruko. Može se zaključiti da zelena LLE separacija azeotropa može biti veoma selektivna prema etanolu pri količinama etanola do oko 0.5 molskih udela u ternarnom sistemu sa DES2 i za malo više udele etanola za sisteme sa PCH rastvaračem. Poredeći sa literaturom potvrđena je uspešnost predloženih ekstrakcionih sistema (Tabela P27).

Uzimajući u obzir nisku cenu ovih rastvarača, industrijska primena ispitivanih rastvarača DES2 i PCH svakako ispunjava većinu principa zelene hemije. Plus niža viskoznost PCH zahteva manje energije za prenos mase, pa stoga obezbeđuje ekonomski isplativiji proces.

Eksperimentalni ravnotežni podaci četiri ispitivana ternarna sistema korelisani su primenom modela dve nehaotične tečnosti (NRTL)¹⁷⁹ i univerzalnog kvazihemijskog modela (UNIQUAC)¹⁸⁰. Tabela P28 predstavlja dobijene parametre i devijacije za NRTL i UNIQUAC modele. Kao što se može videti zadovoljavajuća rmsd je dobijena za oba modela, ali najbolje slaganje sa NRTL modelom dobijeno je za sistem heksan + etanol + DES2, a UNIQUAC model podjednako dobro koreliše sastave za sisteme heksan + etanol + PCH i heptan + etanol + DES2. Slika 5.30 prikazuje eksperimentalne ravnotežne podatke zajedno sa podacima izračunatim NRTL i UNIQUAC modelima gde se kvalitet fitovanja može i vizuelno analizirati. UNIQUAC koreliše rezultate bolje, posmatrajući rmsd i dijagrame.

Slika 5.30 - Poređenje NRTL modela (□) i UNIQUAC modela (Δ) sa eksperimentalnim ravnotežnim linijama (■) za: (a) heksan (1) + etanol (2) + DES2 (3); (b) heksan (1) + etanol (2) + PCH (3); (c) heptan (1) + etanol (2) + DES2 (3); (d) heptan (1) + etanol (2) + PCH (3). Pune linije su eksperimentalne ravnotežne linije, tačkaste linije predstavljaju NRTL a crta-tačka linije UNIQUAC model

6.Zaključci

U ovoj doktorskoj disertaciji izvršena je termodinamička karakterizacija četiri tipa zelenih rastvarača: polimera, jonskih tečnosti, eutektičkih smeša i dvofaznih rastvarača. Razmatrana je njihova potencijalna primena u rešavanju tri industrijska problema.

Tretman toksičnih hemikalija primenom zelenih rastvarača

- Polimeri polietilen glikol molarne mase 200, 400 i 2050 (PEG 200, PEG 400 i PEG 2050) i polietilen glikol diakrilat molarne mase 700 (PEGDA 700) ispitivani su kao zeleni rastvarači u cilju tretmana velikih industrijskih zagađivača kao što su aromati i viši alkoholi. Termodinamika rastvora dvofaznih rastvarača *polietilen glikol diakrilat molarne mase 700 (PEGDA 700) + so + voda* ispitivana je u cilju primene ovih rastvarača u prečišćavanju voda.
- Za smeše *benzen / toluen* + *PEG 200 / PEG 400* eksperimentalno su merene gustine, viskoznosti i indeksi refrakcije u temperaturnom opsegu (288.15 -333.15) K i izračunate dopunska molarna zapremina, devijacije viskoznosti i indeksa refrakcije. S obzirom da je sistem toluen + PEG 200 delimično mešljiv, merenja su vršena do molskog udela toluena 0.6. Ustanovljeno je da su $V^{\rm E}$, $\Delta \eta$ i Δn_D vrednosti negativne za sve binarne sisteme u celom opsegu temperatura i sastava. Ovakvo ponašanje može se objasniti formiranjem izvesnog tipa heterogenih kompleksa u kojima molekuli rastvarača intereguju sa lancima

polimera usled specifične sposobnosti PEGa da menja svoju konformaciju iz polarne u nepolarnu zavisno od okruženja i temperature. Takođe, može biti posledica strukturalnih efekata koji dovode do bližeg geometrijskog pakovanja različitih molekula, u ovom slučaju molekula benzena i toluena u šuplijne agregata, što rezultira manjom površinom za trenje samim tim i viskoznost smeše se smanjuje. Porast temperature povećava negativne V^E vrednosti a smanjuje negativne $\Delta \eta$ vrednosti. Dodatno, dinamička viskoznost je modelovana Teja-Rice i McAllister korelativnim modelima. Primenjeni su i prediktivni UNIFAC-VISCO i ASOG-VISCO modeli doprinosa grupa gde su određeni i novi interakcioni parametri za oba modela. Indeksi refrakcije su predskazivani različitim pravilima mešania (Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton, i Oster) i poređeni sa eksperimentalnim rezultatima. Prediktivni UNIFAC-VISCO model sa novim interakcionim parametrima daie veoma dobre rezultate za sve sisteme sa maksimalnom procentualnom greškom manjom od 6% u skoro svim slučajevima. ASOG-VISCO daje čak i bolje rezultate, gde maksimalna procentualna greška ide do ispod 1.32% u većini slučajeva. Iz rezultata dobijenih za korelativne modele može se zaključiti da se sa jednoparametarskim Teja-Rice modelom bolji rezultati dobijaju za sisteme sa PEG 200, naročito za toluen + PEG 200 smešu, sa maksimalnom procentualnom greškom ispod 0.4%. Dvoparametarski McAllister-3 model takođe daje bolje rezultate za sisteme sa PEG 200 (PD_{max} manja od 0.63%). McAllister-4 model daje veoma dobre rezultate sa vrednostima maksimalne procentualne greške manjim od 0.6% za sve analizirane sisteme i čak ispod 0.3% za sisteme sa PEG 200. Generalna preporuka za ovaj tip sistema jeste primena prediktivnog ASOG-VISCO i korelativnog McAllister modela za uspešno modelovanje vrednosti viskoznosti. Primenjena pravila mešanja zadovoljavajuće predskazuju eksperimentalne indekse refrakcije, sa vrednostima maksimalne srednje devijacije manjim od 0.002. Uticaj temperature je zanemarljiv za sve analizirane sisteme i pravila mešanja.

- Ispitivano je fazno čvrsto-tečno ponašanje sistema PEG 2050 + benzen / toluen / o-ksilen / THF / piridin / nikotin / 1-heksanol / 1-oktanol / 1-dekanol i određene su homogene i heterogene oblasti. Posmatranjem sistema sa benzenom i njegovim derivatima, zaključuje se da dodatne metil grupe na derivatima benzena smanjuju rastvorljivost u PEG 2050. Poredeći o-ksilen sa literaturnim rezultatima za p-ksilen zaključuje se da menjanje položaja metil grupa na aromatičnom prstenu ne utiče na rastvorljivost. PEGovi velike molarne mase su izuzetno polarni i to objašnjava bolju rastvorljivost PEG 2050 u polarnim jedinjenima piridinu i THF jer mogu da grade dipol-dipol interakcije sa polimerom, nezavisno od drugih (vodonične veze) koje mogu postojati u rastvoru. Nikotin zbog svoje prostorne konfiguracije i rasporeda njegova dva prstena koja nisu u ravni pokazuje smanjenu rastvorljivost u PEG 2050. Ispitivani alkoholi su slabo rastvorni u PEG 2050 što može biti usled asocijacije molekula. Rastvorljivost je najbolja u slučaju 1-heksanola i onda opada sa porastom lanca alkohola, i to najverovatnije zbog opadanja polarnosti i kiselosti vodonične veze alkohola usled povećanja dužine lanca. Sa aspekta primene rezultati ukazuju da PEG 2050 može da se koristi kao održivi medijum za tretman benzena, toluena i piridina.
- Ispitivano je fazno ponašanje dvofaznih rastvarača *PEGDA* + *K*₃*PO*₄/*Na*₃*C*₆*H*₅*O*₇/*K*₂*CO*₃/*MnSO*₄/*Li*₂*SO*₄/*ZnSO*₄ + *voda* i efekat isoljavanja različitih soli prilikom formiranja dve faze u rastvaraču. Na osnovu faznih dijagrama zavisnosti sastava PEGDA od sastava soli zaključeno je da je razlika uticaja ispitivanih soli zanemarljiva. U so-bogatoj oblasti sve soli imaju isti uticaj, dok se određeni trend može uspostaviti u PEGDA-bogatoj oblasti: *Li*₂*SO*₄ < *K*₂*CO*₃ < *MnSO*₄ ≈ *Na*₃*C*₆*H*₅*O*₇ ≈ *K*₃*PO*₄ < *ZnSO*₄. Iako je razlika u ovim uticajima mala, ipak se može zaključiti da ZnSO₄ pokazuje najjači efekat isoljavanja.

Smeše rastvarača

- Ispitivane su sledeće industrijski značajne smeše rastvarača sa potencijalnom industrijskom primenom su ispitivane: *PEGDA + etanol / 1-propanol / 1-butanol; DMA / DMF + PEG 200 / PEG 400;* i ekološki atraktivne smeše *PEG 400 + [P*_{6,6,6,14}][OTf]; PEG 200 + [C₂mim][NTf₂] / [C₂mim][OTf].
- Eksperimentalno su izmerene vrednosti gustine ρ , viskoznosti η i indeksa refrakcije n_D za PEGDA + etanol/ 1-propanol/ 1-butanol binarne smeše na temperaturama (288.15 - 323.15) K. Sve merene fizičke veličine rastu sa porastom PEGDA molskog udela i sa opadanjem temperature. Merene fizičke veličine su korelisane u funkciji od temperature i PEGDA molskog udela. Gustine i indeksi refrakcije smeša pokazuju eksponencijalnu zavisnost od sastava, uključujući temperaturnu zavisnost parametara, dok viskoznosti pokazuju polinomsku zavisnost od sastava. U slučaju korelisanja u zavisnosti od temperature, sve tri veličine (ρ , $\ln \eta$ i n_D) pokazuju linearan trend. Uticaj temperature na viskoznost smeša je veći nego u slučaju gustine i indeksa refrakcije. Takođe, uticaj PEGDA molskog udela na gustine i indekse refrakcije PEGDA + alkohol smeša je daleko veći u poređenju sa uticajem udela alkohola. Dodatno, modelovanje viskoznosti je izvedeno primenom dva tipa modela: prediktivnih UNIFAC-VISCO i ASOG-VISCO, i korelativnih McAllister i Teja-Rice. Prediktivni ASOG-VISCO daje bolje rezultate među prediktivnim modelima, dok među korelativnim modelima najbolje rezultate daje McAllister-4 jednačina, za sva tri ispitivana binarna sistema. Takođe, novi UNIFAC-VISCO i ASOG-VISCO binarni interakcioni parametri su određeni iz eksperimentalnih vrednosti viskoznosti.
- Eksperimentalna merenja gustine ρ , viskoznosti η i indeksa refrakcije n_D binarnih smeša DMA + PEG 200 / PEG 400 i DMF + PEG 200 / PEG 400 izvršena su u opsegu temperatura (288.15 -323.15) K i određene su dopunske molarne zapremine V^{E} i devijacije $\Delta \eta$ and Δn_D . FT-IR analiza je odrađena na 298.15 K za sve binarne smeše u cilju određivanja mogućih efekata konstituenata na molekulsku strukturu smeše.

U slučaju $V^{\rm E}$ i $\Delta\eta$ vrednosti, različiti trendovi su primećeni, od pozitivnih do krivih S-oblika. Δn_D devijacije za sve binarne smeše imaju veoma male vrednosti, naročito za sistem DMA + PEG 200. Zbog polarnosti komponenata i njihove sposobnosti da grade vodonične veze pošlo se od pretpostavke da su moguće intermolekulske vodonične veze između različitih molekula. FT-IR studija dokazuje da ne postoje vodonične veze kao ni dipol-dipol interakcije između različitih molekula i da je geometrijsko pakovanje između tih molekula najverovatnije objašnjenje za negativne $V^{\rm E}$ vrednosti dok pozitivne $V^{\rm E}$ i negativne $\Delta\eta$ vrednosti mogu da se pripišu disperzionim silama između različitih molekula.

- Eksperimentalno je određena ravnoteža tečno-tečno binarnog sistema PEG 400 + [P_{6,6,6,14}][OTf] i konstruisan je temperatura-sastav fazni dijagram. PEG 400 + [P_{6,6,6,14}][OTf] rastvor pokazuje UCST tip faznog dijagrama i poseduje veliku oblast nemešljivosti. Rezultati dobijeni u ovoj studiji ukazuju da bi ovaj rastvor binarna smeša kompleksne moći rastvaranja mogao da se koristi kao smeša rastvarača pri molskom udelu PEG 400 polimera 0 0.2 ili 0.9 1, na niskim temperaturama (298.1 K i niže). PEG 400 + [P_{6,6,6,14}][OTf] smeša može se primeniti i kao tečni dvofazni sistem podesivih osobina rastvaranja pri molskom udelu PEG 400 polimera 0.2 0.9 i u opsegu temperatura 298.1 K 414.6 K, za širok spektar target molekula.
- Eksperimentalna merenja gustina rastvora PEG 200 + [C₂mim][NTf₂] / [C₂mim][OTf] izvršena su u temperaturnom opsegu (288.15 318.15) K i izračunate su dopunske molarne zapremine. Dobijene dopunske molarne zapremine pokazuju da [OTf]⁻ anjon generalno dovodi do snažnijih privlačnih interakcija nego [NTf₂]⁻. Uzajamno katjon-anjon dejstvo u ispitivanim jonskim tečnostima, kao i PEG-PEG i PEG-anjon interakcije, utiču na dopunske molarne zapremine ovde dobijene naime na njihovu promenu znaka u slučaju PEG 200 + [C₂mim][NTf₂] rastvora i njihovu izraženu asimetričnu zavisnost od sastava vezano za PEG 200 + [C₂mim][OTf]. *V*^E je modelovana korišćenjem Peng-

Robinson-Stryjek-Vera kubne jednačine stanja (PRSV CEOS) primenom dvoparametarskog vdW1-2 i troparametarskog vdW1-3, kao i TCBT-2 i TCBT-3 pravila mešanja. Parametri u oba pravila mešanja su korelisani na svakoj temperaturi. Rezultati su očekivani imajući u vidu kompleksnost čistih komponenata i njihove kompetitivne interakcije – jon-jon, jon-dipol, vodonične veze i disperzione interakcije. Svi modeli uspešno opisuju odstupanje smeša od idealnosti, pri čemu TCBT-3 pokazuje najbolje performanse. Dinamička viskoznost je korelisana primenom tri korelativna modela, sa različitim brojem binarnih interakcionih parametara: jednoparametrski Teja-Rice, dvoparametarski Three-body McAllister (McAllister-3) i troparametarski Fourbody McAllister (McAllister-4) modeli. Može se primetiti da su rezultati slični za oba ispitivana binarna sistema i da McAllister modeli, sa dva ili tri parametra, daju veoma dobre rezultate, naročito za (PEG 200 + [C₂min][OTf]) sistem, sa *PD_{max}*.

Separacija azeotropa primenom eutektičkih smeša kao ekstrakcionih rastvarača

Uloga eutektičkih smeša holin hlorid + dl-jabučna kiselina u molarnom odnosu
 1:1 (DES1); holin hlorid + 1,2-propandiol u molarnom odnosu 1:3 (DES2) i holin
 hlorid + 1,2-propandiol + voda u molarnom odnosu 1:1:2 (PCH) kao zelenih
 rastvarača ispitivana je u cilju njihove primene kao ekstrakcionih agenasa u
 separaciji azeotropa u procesu ekstrakcije tečno-tečno. Odabrani azeotropi su
 tipa alkan + alkohol i toluen + alkohol i zasnovani su na razlici u polarnosti.
 Ternarni sistemi eksperimentalno ispitivani su: heptan + metanol + DES1;
 toluen + metanol + DES1; heksan + etanol + DES2; heptan + etanol + DES2;
 heksan + etanol + PCH; heptan + etanol + PCH.
 Vršena su eksperimentalna
 merenja ravnoteže tečno-tečno ternarnih smeša na 298.15 K i na
 atmosferskom pritisku.
 Određene su binodalne krive i ravnotežne linije i
 konstruisani su dijagrami međusobne zavisnosti sastava sve tri komponente

koje ukazuju na homogene i heterogene oblasti u rastvorima kao i na efikasnost separacije alkohola iz smeše sa alkanom ili toluenom. Ravnotežni podaci za sve sisteme su modelovani NRTL i UNIQUAC modelima.

- Selektivnost DES1 rastvarača prema metanolu prilično visoka. Heptan ili toluen su prisutni u ekstraktu samo u tragovima, tako da se separacija metanola nakon ekstrakcije može obaviti jednostavno destilacijom s obzirom da je DES neisparljiv. DES1 poseduje veću selektivnost i distributivnost za separaciju heptan + metanol azeotropa u poređenju sa literaturom. S obzirom da nema literaturnih podataka za toluen + metanol separaciju primenom tečno-tečno ekstrakcije korišćenjem DES ili IL rastvarača, ovaj rad otkriva da je DES1 takođe pogodan za ekstrakciju alkohola iz alkohol + aromat smeše. Bolja raspodela metanola je postignuta u sistemu heptan + metanol + DES zbog nepolarne prirode heptana. Dodatno, gustina, viskoznost i indeks refrakcije smeša DES1 + metanol i voda + DES1 eksperimentalno su određeni u širokom temperaturnom opsegu i na atmosferskom pritisku. Viskoznosti DES1 + glicerol smeše u molarnom odnosu 1:1:0.5 (holin hlorid:dl-jabučna kiselina:glicerol) merene su na različitim temperaturama. Rezultati pokazuju da voda i glicerol, dodati u maloj količini, mogu značajno da smanje viskoznost DES1. NRTL i UNIQUAC modeli pokazuju odlično slaganje sa eksperimentalnim podacima, dok za sistem heptan + metanol + DES oba modela pokazuju bolje performanse.
- Selektivnost PCH rastvarača prema etanolu je prilično veća u poređenju sa DES2 što ukazuje na činjenicu da voda snažno utiče na selektivnost. Polarniji PCH, pretpostavlja se, bolje razdvaja smešu dve komponente različite polarnosti kao što su heksan/heptan + etanol i eksperiment je to potvrdio. Heksan/heptan je prisutan u tragovima u ekstraktu, tako da separacija etanola nakon ekstrakcije može jednostavno da se izvede destilacijom jer je eutektik niske isparljivosti. Ekstrakciona sposobnost oba rastvarača, DES2 i PCH, je malo manja kod oba sistema sa heksanom. Za sisteme sa heptanom

čak postoji i potpuna separacija ispoljena odsustvom etanola u rafinatu. Druga prednost PCH je niža viskoznost u poređenju sa DES2. NRTL i UNIQUAC modeli pokazuju dobro slaganje sa eksperimentalnim podacima, dok UNIQUAC daje i niže rmsd. Najbolji rezultati dobijeni su za sistem heksan + etanol + DES2 sa oba modela.

7.Reference

- 1. Anastas PT, Warner JC. *Green Chemistry: Theory and Practice*. New York: Oxford University Press; 2000.
- 2. Garcia Villaluenga JP, Tabe-Mohammadi A. A review on the separation of benzene/cyclohexane mixtures by pervaporation processes. *J Memb Sci.* 2000;169:159-174. doi:10.1016/S0376-7388(99)00337-3.
- 3. Bokade V V., Kharul UK. Selective synthesis of cumene by isopropylation of benzene using catalytic membrane reactor. *Chem Eng J.* 2009;147:97-101. doi:10.1016/j.cej.2008.06.035.
- 4. Al-Kinany MC, Jibril BY, Al-Khowaiter SH, et al. Low temperature transalkylation of odiethylbenzene with benzene to ethylbenzene using triflic acid as a catalyst. *Chem Eng Process*. 2005;44:841-846. doi:10.1016/j.cep.2004.08.011.
- 5. Liang YX, Wong O, Armstrong T, et al. An overview of published benzene exposure data by industry in China, 1960-2003. *Chem Biol Interact.* 2005;153-154:55-64. doi:10.1016/j.cbi.2005.03.009.
- 6. Carrieri M, Tranfo G, Pigini D, et al. Correlation between environmental and biological monitoring of exposure to benzene in petrochemical industry operators. *Toxicol Lett.* 2010;192:17-21. doi:10.1016/j.toxlet.2009.07.015.
- 7. Capleton AC, Levy LS. An overview of occupational benzene exposures and occupational exposure limits in Europe and North America. *Chem Biol Interact.* 2005;153-154:43-53. doi:10.1016/j.cbi.2005.03.007.
- 8. Chen HH, Lin YR, Chan MH. Toluene exposure during brain growth spurt and adolescence produces differential effects on N-methyl-d-aspartate receptor-mediated currents in rat hippocampus. *Toxicol Lett.* 2011;205:336-340. doi:10.1016/j.toxlet.2011.06.026.
- 9. Moro AM, Brucker N, Charão M, et al. Evaluation of genotoxicity and oxidative damage in painters exposed to low levels of toluene. *Mutat Res Toxicol Environ Mutagen*. 2012;746:42-48. doi:10.1016/j.mrgentox.2012.02.007.
- 10. Asenjo NG, Alvarez P, Granda M, Blanco C, Santamaria R, Menendez R. High performance activated carbon for benzene/toluene adsorption from industrial wastewater. *J Hazard Mater*. 2011;192:1525-1532. doi:10.1016/j.jhazmat.2011.06.072.
- 11. Rene ER, Murthy DVS, Swaminathan T. Performance evaluation of a compost biofilter treating toluene vapours. *Process Biochem*. 2005;40:2771-2779. doi:10.1016/j.procbio.2004.12.010.

- 12. Vergara-Fernandez A, Lara Molina L, Pulido NA, Aroca G. Effects of gas flow rate, inlet concentration and temperature on the biofiltration of toluene vapors. *J Environ Manage*. 2007;84:115-122. doi:10.1016/j.jenvman.2006.04.009.
- 13. Delhomenie MC, Bibeau L, Bredin N, et al. Biofiltration of air contaminated with toluene on a compost-based bed. *Adv Environ Res.* 2002;6:239-254. doi:10.1016/S1093-0191(01)00055-7.
- 14. Kimura ET, Ebert DM, Dodge PW. Acute Toxicity and Limits of Solvent Residue for Sexteen Organic Solvents. *Toxicol Appl Pharmacol*. 1971;19:699-704. doi:10.1016/0041-008X(71)90301-2.
- 15. Sherman AR. Encyclopedia of Reagents for Organic Synthesis: Pyridine. In: Vol Hoboken, New Jersey: J. Wiley & Sons; 2004.
- 16. Shimohama S. Nicotinic Receptor-Mediated Neuroprotection in Neurodegenerative Disease Models. *Biol Pharm Bull*. 2009;32:332-336. doi:10.1248/bpb.32.332.
- 17. Višak ZP, Ilharco LM, Garcia AR, et al. Volumetric Properties and Spectroscopic Studies of Pyridine or Nicotine Solutions in Liquid Polyethylene Glycols. *J Phys Chem B*. 2011;115:8481-8492. doi:10.1021/jp202464h.
- 18. Wypych G. *Handbook of Solvents*. Toronto-New York: ChemTech Publishing; 2001.
- 19. Marcus Y. Solvent Mixtures: Properties and Selective Solvation. United States: CRC Press; 2002.
- 20. Yasmin M, Gupta M. Thermodynamical Study of Alcoholic Solutions of Poly (ethylene glycol) Diacrylate and Poly (ethylene glycol) Dimethacrylate. *Int J Thermodyn.* 2012;15:111-117. doi:10.5541/ijot.371.
- 21. Comuñas MJP, Bazile J-P, Baylaucq A, Boned C. Density of Diethyl Adipate using New Vibrating Tube Densimeter from (293.15 to 403.15) K and up to 140 MPa. Calibration and Measurements. *J Chem Eng Data*. 2008;53:986-994. doi:10.1021/je700737c.
- 22. Wlazło M, Marciniak A. Ternary liquid-liquid equilibria of trifluorotris(perfluoroethyl)phosphate based ionic liquids+benzothiophene+heptane. *Fluid Phase Equilib*. 2013;338:253-256. doi:10.1016/j.fluid.2013.10.028.
- 23. Mandal S, Pangarkar VG. Separation of methanol-benzene and methanol-toluene mixtures by pervaporation: effects of thermodynamics and structural phenomenon. *J Memb Sci.* 2002;201:175-190. doi:10.1016/S0376-7388(01)00728-1.
- 24. Sengwa RJ, Kaur K, Chaudhary R. Dielectric properties of low molecular weight poly (ethylene glycol) s. *Polym Int.* 2000;49:599-608. doi:10.1002/1097-0126(200006)49:6<599::AID-PI425>3.0.CO;2-K.
- 25. Rudan-Tasic D, Klofutar C. Apparent Specific Polarization and Dipole Moment of Some Poly (oxyethylene) Glycols in 1,4-Dioxane and Benzene Solutions at 298 .15 K. *Monatshefte fur Chemie*. 2005;136:1171-1182. doi:10.1007/s00706-005-0323-x.
- 26. Kim I, Jang MD, Ryu YK, Cho EH, Lee YK, Park JH. Dipolarity , Hydrogen-Bond Basicity and Hydrogen-Bond Acidity of Aqueous Poly (ethylene glycol) Solutions. *Anal Sci.* 2002;18:1357-1360. doi:http://www.ark.chem.ufl.edu/Published_Papers/PDF/1297.pdf.
- 27. Andersson M, Karlstrom G. Conformational Structure of 1,2-Dimethoxyethane in Water and Other Dipolar Solvents, Studied by Quantum Chemical, Reaction Field, and Statistical Mechanical Techniques. *J Phys Chem.* 1985;89:4957-4962. doi:10.1021/j100269a014.
- 28. Begum R, Matsuura H. Conformational properties of short poly(oxyethylene) chains in water studied by IR spectroscopy. *J Chem Soc Faraday Trans.* 1997;93:3839-3848. doi:10.1039/a703436i.
- 29. Linse P, Bjoerling M. Lattice Theory for Multicomponent Mixtures of Copolymers with Internal Degrees of Freedom in Heterogeneous Systems. *Macromolecules*. 1991;24:6700-6711.

doi:10.1021/ma00025a022.

- 30. Chen CY, Even MA, Wang J, Chen Z. Sum Frequency Generation Vibrational Spectroscopy Studies on Molecular Conformation of Liquid Polymers Poly(ethylene glycol) and Poly(propylene glycol) at Different Interfaces. *Macromolecules*. 2002;35:9130-9135. doi:10.1021/ma020614j.
- 31. Bartlett JR, Cooney RP. Raman Spectroscopic Studies of Poly (oxyethy1ene) Chain Conformations in Non-ionic Surfactants. *J Chem Soc Faraday Trans*. 1986;82:597-605.
- 32. Bjorling M, Karlstrom G, Linse P. Conformational Adaption of Poly(ethylene oxide). A 13C NMR Study. *J Phys Chem.* 1991;95:6706-6709. doi:10.1021/j100170a060.
- 33. Ivaniš GR, Vuksanović JM, Calado MS, Kijevčanin ML, Šerbanović SP, Višak ZP. Liquid-liquid and solid-liquid equilibria in the solutions of poly(ethylene glycol) with several organic solvents. *Fluid Phase Equilib.* 2012;316:74-84. doi:10.1016/j.fluid.2011.12.013.
- 34. Philippova OE, Kuchanov SI, Topchieva IN, Kabanov VA. Hydrogen Bonds in Dilute Solutions of Poly(ethy1ene glycol). *Macromolecules*. 1985;18:1628-1633.
- 35. Heldebrant DJ, Witt HN, Walsh SM, Ellis T, Rauscher J, Jessop PG. Liquid polymers as solvents for catalytic reductions. *Green Chem.* 2006;8:807-815. doi:10.1039/b605405f.
- 36. Toxicological Evaluation of Certain Food Additives. In: *Food Additives Series 14*. Vol Geneva: World Health Organization; 1979.
- 37. Code of Federal Regulations. In: *Title 21*. Vol Washington: CITE 21CFR172.820, FDA; 2001.
- Huddleston JG, Willauer HD, Griffin ST, Rogers RD. Aqueous Polymeric Solutions as Environmentally Benign Liquid/Liquid Extraction Media. *Ind Eng Chem Res.* 1999;38:2523-2539. doi:10.1021/ie980505m.
- 39. Harris JM, ed. *Poly(Ethylene Glycol) Chemistry: Bio-Technical and Bio-Medical Applications*. New York: Plenum Press, Inc.; 1992.
- 40. Liang J, Lv J, Fan J, Shang Z. Polyethylene Glycol as a Nonionic Liquid Solvent for the Synthesis of N-Alkyl and N-Arylimides. *Synth Commun.* 2009;39:2822-2828. doi:10.1080/00397910802474966.
- 41. Chen J, Spear SK, Huddleston JG, Rogers RD. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. *Green Chem.* 2005;7:64-82. doi:10.1039/b413546f.
- 42. Wang L, Zhang Y, Liu L, Wang Y. Palladium-Catalyzed Homocoupling and Cross-Coupling Reactions of Aryl Halides in Poly(ethylene glycol). *J Org Chem.* 2006;71:1284-1287. doi:10.1021/jo052300a.
- 43. Wang J-Q, Cai F, Wang E, He L-N. Supercritical carbon dioxide and poly(ethylene glycol): an environmentally benign biphasic solvent system for aerobic oxidation of styrene. *Green Chem*. 2007;9:882-887. doi:10.1039/b701875d.
- 44. Hou Z, Theyssen N, Brinkmann A, Leitner W. Biphasic Aerobic Oxidation of Alcohols Catalyzed by Poly(ethylene glycol)-Stabilized Palladium Nanoparticles in Supercritical Carbon Dioxide. *Angew Chemie - Int Ed*. 2005;44:1346-1349. doi:10.1002/anie.200461493.
- 45. Goddard ED. *Principles of Polymer Science and Technology in Cosmetics and Personal Care*. New York: Marcel Dekker; 1999.
- 46. Yasmin M, Gupta M, Shukla JP. Experimental and computational study on viscosity and optical dielectric constant of solutions of poly (ethylene glycol) 200. *J Mol Liq.* 2011;160:22-29. doi:10.1016/j.molliq.2011.02.005.
- 47. Han F, Zhang J, Chen G, Wei X. Density, Viscosity, and Excess Properties for Aqueous Poly (ethylene glycol) Solutions from (298.15 to 323.15) K. *J Chem Eng Data*. 2008;53:2598-2601. doi:10.1021/je800464t.

- 48. Sharma V, Szymusiak M, Shen H, Nitsche LC, Liu Y. Formation of Polymeric Toroidal-Spiral Particles. *Langmuir*. 2012;28:729-735. doi:10.1021/la203338v.
- 49. Hurley FH, Wler TP. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. *J Electrochem Soc.* 1951;98:203-206. doi:10.1149/1.2778132.
- 50. Petković M, Seddon KR, Rebelo LPN, Pereira CS. Ionic liquids: a pathway to environmental acceptability. *Chem Soc Rev.* 2011;40:1383-1403. doi:10.1039/c004968a.
- 51. Višak ZP, Calado MS, Vuksanović JM, et al. Solutions of ionic liquids with diverse aliphatic and aromatic solutes Phase behavior and potentials for applications: A review article. *Arab J Chem*. 2014. doi:10.1016/j.arabjc.2014.10.003.
- 52. Plechkova N V, Seddon KR. Applications of ionic liquids in the chemical industry. *Chem Soc Rev.* 2008;37:123-150. doi:10.1039/b006677j.
- 53. Rogers RD, Seddon KR. Ionic Liquids--Solvents of the Future? *Science (80-)*. 2003;302:792-793. doi:10.1126/science.1090313.
- 54. Paulechka YU, Kabo GJ, Blokhin A V., Vydrov OA, Magee JW, Frenkel M. Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluorophosphate in the Ideal Gas State. *J Chem Eng Data*. 2003;48:457-462. doi:10.1021/je025591i.
- 55. Rebelo LPN, Lopes JNC, Esperanca JMSS, Filipe E. On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids. *J Phys Chem B*. 2005;109:6040-6043. doi:10.1021/jp050430h.
- 56. Crowhurst L, Mawdsley PR, Perez-arlandis JM, Salter PA, Welton T. Solvent–solute interactions in ionic liquids. *Phys Chem Chem Phys.* 2003;5:2790-2794. doi:10.1039/b303095d.
- 57. Ab Rani MA, Brant A, Crowhurst L, et al. Understanding the polarity of ionic liquids. *Phys Chem Chem Phys.* 2011;13:16831-16840. doi:10.1039/c1cp21262a.
- 58. Cammarata L, Kazarian SG, Salter P a., Welton T. Molecular states of water in room temperature ionic liquids. *Phys Chem Chem Phys.* 2001;3:5192-5200. doi:10.1039/b106900d.
- 59. Domańska U, Marciniak A. Solubility of Ionic Liquid [emim][PF 6] in Alcohols. *J Phys Chem B*. 2004;108:2376-2382. doi:10.1021/jp030582h.
- 60. Domanska U, Casas LM. Solubility of Phosphonium Ionic Liquid in Alcohols, Benzene, and Alkylbenzenes. *J Phys Chem B*. 2007;111:4109-4115. doi:10.1021/jp070293j.
- 61. Domańska U, Zawadzki M, Lewandrowska A. Effect of temperature and composition on the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of N-octylisoquinolinium bis{(trifluoromethyl)sulfonyl}imide with alcohols. *J Chem Thermodyn*. 2012;48:101-111. doi:10.1016/j.jcis.2010.04.060.
- 62. Crosthwaite JM, Aki SNVK, Maginn EJ, Brennecke JF. Liquid Phase Behavior of Imidazolium-Based Ionic Liquids with Alcohols. *J Phys Chem B*. 2004;108:5113-5119. http://www.scopus.com/inward/record.url?eid=2-s2.0-2342558605&partnerID=tZOtx3y1.
- 63. Crosthwaite JM, Aki SNVK, Maginn EJ, Brennecke JF. Liquid phase behavior of imidazoliumbased ionic liquids with alcohols: effect of hydrogen bonding and non-polar interactions. *Fluid Phase Equilib*. 2005;228-229:303-309. doi:10.1016/j.fluid.2004.07.014.
- Crosthwaite JM, Muldoon MJ, Aki SNVK, Maginn EJ, Brennecke JF. Liquid Phase Behavior of Imidazolium-Based Ionic Liquids with Alcohols: Experimental Studies and Modeling. J Phys Chem B. 2006;110:9354-9361. http://www.scopus.com/inward/record.url?eid=2-s2.0-2342558605&partnerID=tZOtx3y1.
- 65. Rebelo LPN, Canongia Lopes JN, Esperanca JMSS, et al. Accounting for the Unique, Doubly Dual Nature of Ionic Liquids from a Molecular Thermodynamic and Modeling Standpoint. *Acc Chem Res.* 2007;40:1114-1121. doi:10.1021/ar7000556.

- 66. Višak ZP. Some Aspects of Ionic Liquids as Diverse and Versatile Sustainable Solvents. *J Solution Chem.* 2012;41:1673-1695. doi:10.1007/s10953-012-9899-z.
- 67. Calado MS, Petrovski Z, Manic MS, Najdanović-Višak V, Macedo EA, Višak ZP. Liquid-liquid equilibria of imidazolium ionic liquids having bistriflamide or triflate anions with aromatic non-polar and polar compounds. *Fluid Phase Equilib*. 2013;337:67-72. doi:10.1016/j.fluid.2012.10.007.
- 68. Łachwa J, Szydłowski J, Makowska A, et al. Changing from an unusual high-temperature demixing to а UCST-type in mixtures of 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide and arenes. Green Chem. 2006:8:262-267. doi:10.1039/b513308d.
- 69. Freemantle M. Designer solvent-Ionic liquids may boost clean technology development. *Chem Eng News*. 1998;76:32-37. doi:10.1021/cen-v076n013.p032.
- 70. Trindade CAS, Višak ZP, Bogel-Lukasik R, Bogel-LUkasik E, da Ponte MN. Liquid-Liquid Equilibrium of Mixtures of Imidazolium-Based Ionic Liquids with Propanediols or Glycerol. *Ind Eng Chem Res.* 2010;49:4850-4857. doi:10.1021/ie901700b.
- 71. Freire MG, Carvalho PJ, Gardas RL, Marrucho IM, Santos LMNBF, Coutinho AP. Mutual Solubilities of Water and the [Cnmim][Tf2N] Hydrophobic Ionic Liquids. *J Phys Chem B*. 2008;112:1604-1610.
- 72. J. Golding J, R. MacFarlane D, Spiccia L, Forsyth M, W. Skelton B, H. White A. Weak intermolecular interactions in sulfonamide salts: structure of 1-ethyl-2-methyl-3-benzyl imidazolium bis[(trifluoromethyl)sulfonyl]amide. *Chem Commun.* 1998:1593-1594. doi:10.1039/a802745e.
- 73. MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M. Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases. *J Phys Chem B*. 1999;103:4164-4170. doi:10.1021/jp984145s.
- 74. Deetlefs M, Hardacre C, Nieuwenhuyzen M, Padua AAH, Sheppard O, Soper AK. Liquid structure of the ionic liquid 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]amide. *J Phys Chem B*. 2006;110:12055-12061. doi:10.1021/jp060924u.
- 75. Cruickshank DWJ. The Role of 3d-Orbitals in pi-Bonds between (a) Silicon, Phosphorus, Sulphur, or Chlorine and (b) Oxygen or Nitrogen. *J Chem Soc.* 1961:5486-5504.
- 76. Chiappe C, Pieraccini D. Determination of Ionic Liquids Solvent Properties Using an Unusual Probe : The Electron Donor – Acceptor Complex between 4,4'-bis(Dimethylamino)benzophenone and Tetracyanoethane. *J Phys Chem A*. 2006;110:4937-4941. doi:10.1021/jp057236f.
- 77. Coleman S, Byrne R, Minkovska S, Diamond D. Thermal reversion of spirooxazine in ionic liquids containing the [NTf2]- anion. *Phys Chem Chem Phys.* 2009;11:5608-5614. doi:10.1039/b901417a.
- 78. Valderrama JO, Robles PA. Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids. *Ind Eng Chem Res.* 2007;46:1338-1344. doi:10.1021/ie0707220.
- 79. Tariq M, Carvalho PJ, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN. Viscosity of (C2-C14) 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids in an extended temperature range. *Fluid Phase Equilib*. 2011;301:22-32. doi:10.1016/j.fluid.2010.10.018.
- 80. Beste Y, Eggersmann M, Schoenmakers H. Extraktivdestillation mit ionischen Flussigkeiten. *Chemie Ing Tech.* 2005;77:1800-1808. doi:10.1002/cite.200500154.
- 81. Beste YA, Eggersmann M, Schoenmakers H. Einsatz ionischer Flüssigkeiten zur Entschwefelung von Produktströmen bei der Erdölverarbeitung; Ionische Flüssigkeiten als Entrainer in der

Extraktivdestillation. Chemie Ing Tech. 2004;76:1407.

- 82. Turner MB, Spear SK, Holbrey JD, Rogers RD. Production of bioactive cellulose films reconstituted from ionic liquids. *Biomacromolecules*. 2004;5:1379-1384. doi:10.1021/bm049748q.
- 83. Endres F. Ionic liquids: Solvents for the electrodeposition of metals and semiconductors. *ChemPhysChem.* 2002;3:144-154. doi:10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#.
- 84. Maase M, Massonne K. *Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities Transformations and Processes.* Vol (Rogers RD, Seddon KR, eds.). Washington D.C.: American Chemical Society; 2005.
- 85. Sekiguchi K, Atobe M, Fuchigami T. Electropolymerization of pyrrole in 1-ethyl-3methylimidazolium trifluoromethanesulfonate room temperature ionic liquid. *Electrochem commun*. 2002;4:881-885.
- 86. Sekiguchi K, Atobe M, Fuchigami T. Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid. *J Electroanal Chem.* 2003;557:1-7. doi:10.1016/S0022-0728(03)00344-9.
- 87. Orchillés AV, Miguel PJ, Vercher E, Martínez-Andreu A. Ionic liquids as entrainers in extractive distillation: Isobaric vapor-liquid equilibria for acetone + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. *J Chem Eng Data*. 2007;52:141-147. doi:10.1021/je0603170.
- 88. Orchillés AV, Miguel PJ, Vercher E, Martínez-Andreu A. Isobaric vapor-liquid equilibria for methyl acetate + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa. *J Chem Eng Data*. 2007;52:915-920. doi:10.1021/je600518s.
- 89. Orchillés AV, Miguel PJ, Vercher E, Martínez-Andreu A. Using 1-ethyl-3-methylimidazolium trifluoromethanesulfonate as an entrainer for the extractive distillation of ethanol + water mixtures. *J Chem Eng Data*. 2010;55:1669-1674. doi:10.1021/je900719z.
- 90. Soriano AN, Doma BT, Li MH. Carbon dioxide solubility in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. *J Chem Thermodyn*. 2009;41:525-529. doi:10.1016/j.jct.2008.11.001.
- 91. Burba CM, Rocher NM, Frech R, Powell DR. Cation-anion interactions in 1-ethyl-3methylimidazolium trifluoromethanesulfonate-based ionic liquid electrolytes. *J Phys Chem B*. 2008;112:2991-2995. doi:10.1021/jp076577l.
- 92. Arce A, Rodríguez H, Soto A. Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether. *Fluid Phase Equilib.* 2006;242:164-168. doi:10.1016/j.fluid.2006.01.008.
- 93. Liu T, Vilar R, Eugénio S, Grondin J, Danten Y. Electrodeposition of copper thin films from 1ethyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imid. *J Appl Electrochem*. 2015;45:87-93. doi:10.1007/s10800-013-0630-6.
- 94. Randriamahazaka H, Plesse C, Teyssié D, Chevrot C. Ions transfer mechanisms during the electrochemical oxidation of poly(3,4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide ionic liquid. *Electrochem commun.* 2004;6:299-305. doi:10.1016/j.elecom.2004.01.002.
- 95. Schilderman AM, Raeissi S, Peters CJ. Solubility of carbon dioxide in the ionic liquid 1-ethyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide. *Fluid Phase Equilib.* 2007;260:19-22. doi:10.1016/j.fluid.2007.06.003.
- 96. Arce A, Earle MJ, Rodriguez H, Seddon KR. Separation of Benzene and Hexane by Solvent Extraction with 1-Alkyl-3-methylimidazolium Bis{(trifluoromethyl)sulfonyl}amide Ionic

Liquids: Effect of the Alkyl-Substituent Length. *J Phys Chem B*. 2007;111:4732-4736. doi:10.1021/jp066377u.

- 97. Arce A, Earle MJ, Rodriguez H, Seddon KR, Soto A. 1-Ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide as solvent for the separation of aromatic and aliphatic hydrocarbons by liquid extraction extension to C7- and C8-fractions. *Green Chem.* 2008;10:1294-1300. doi:10.1039/b807222a.
- 98. Arce A, Earle MJ, Rodriguez H, Seddon KR, Soto A. Bis{(trifluoromethyl)sulfonyl}amide ionic liquids as solvents for the extraction of aromatic hydrocarbons from their mixtures with alkanes: effect of the nature of the cation. *Green Chem.* 2009;11:365-372. doi:10.1039/B814189D.
- 99. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R. Gas separations using nonhexafluorophosphate [PF6]- anion supported ionic liquid membranes. *J Memb Sci*. 2004;238:57-63. doi:10.1016/j.memsci.2004.02.033.
- 100. Ferreira R, Blesic M, Trindade J, Marrucho I, Lopes JNC, Rebelo LPN. Solubility of fluorinated compounds in a range of ionic liquids. Cloud-point temperature dependence on composition and pressure. *Green Chem.* 2008;10:918-928. doi:10.1039/b805902k.
- 101. Smith EL, Abbott AP, Ryder KS. Deep Eutectic Solvents (DESs) and Their Applications. *Chem Rev.* 2014;114:11060-11082. doi:10.1021/cr300162p.
- 102. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. *J Am Chem Soc.* 2004;126:9142-9147.
- 103. Gorke JT, Srienc F, Kazlauskas RJ. Hydrolase-catalyzed biotransformations in deep eutectic solvents. *Chem Commun (Camb)*. 2008;(10):1235-1237. doi:10.1039/b716317g.
- 104. Imperato G, Eibler E, Niedermaier J, König B. Low-melting sugar-urea-salt mixtures as solvents for Diels-Alder reactions. *Chem Commun (Camb)*. 2005;(9):1170-1172. doi:10.1039/b414515a.
- 105. Gore S, Baskaran S, Koenig B. Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid-urea mixtures. *Green Chem*. 2011;13(4):1009. doi:10.1039/c1gc00009h.
- 106. Hayyan A, Mjalli FS, Alnashef IM, Al-Wahaibi T, Al-Wahaibi YM, Hashim MA. Fruit sugar-based deep eutectic solvents and their physical properties. *Thermochim Acta*. 2012;541:70-75. doi:10.1016/j.tca.2012.04.030.
- 107. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. *Chem Commun*. 2003:70-71. doi:10.1039/b210714g.
- 108. Ruß C, König B. Low melting mixtures in organic synthesis an alternative to ionic liquids? *Green Chem.* 2012;14:2969-2982. doi:10.1039/b000000x.
- 109. Francisco M, van den Bruinhorst A, Zubeir LF, Peters CJ, Kroon MC. A new low transition temperature mixture (LTTM) formed by choline chloride+lactic acid: Characterization as solvent for CO2 capture. *Fluid Phase Equilib*. 2013;340:77-84. doi:10.1016/j.fluid.2012.12.001.
- 110. Francisco M, van den Bruinhorst A, Kroon MC. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. *Green Chem.* 2012;14(8):2153-2157. doi:10.1039/c2gc35660k.
- 111. Moon SY, Hong SH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of malic acid. *Biochem Eng J.* 2008;40(2):312-320. doi:10.1016/j.bej.2008.01.001.
- 112. Yuan Y, Leng Y, Shao H, Huang C, Shan K. Solubility of dl-malic acid in water, ethanol and in mixtures of ethanol+water. *Fluid Phase Equilib.* 2014;377:27-32. doi:10.1016/j.fluid.2014.06.017.
- 113. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural Deep Eutectic Solvents as New

Potential Media for Green Technology. *Anal Chim Acta*. 2013;766:61-68. doi:10.1016/j.aca.2012.12.019.

- 114. Rigano R, Andolfatto C. Bio-based propylene glycol: 1,2-propylene glycol from 100% renewable source. *Househ Pers Care Today*. 2013;8:29-33.
- 115. Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML, del Monte F. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. *Chem Soc Rev.* 2012;41(14):4996-5014. doi:10.1039/c2cs15353j.
- 116. Tang B, Row KH. Recent developments in deep eutectic solvents in chemical sciences. *Monatshefte fur Chemie*. 2013;144:1427-1454. doi:10.1007/s00706-013-1050-3.
- 117. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM. A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. *Fuel Process Technol.* 2010;91(1):116-120. doi:10.1016/j.fuproc.2009.09.002.
- 118. Chen Z, Zhou B, Cai H, Zhu W, Zou X. Simple and efficient methods for selective preparation of αmono or α,α-dichloro ketones and β-ketoesters by using DCDMH. *Green Chem.* 2009;11(2):275. doi:10.1039/b815169e.
- 119. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. *Nature*. 2004;430:1012-1016. doi:10.1038/nature02860.
- 120. Parnham ER, Drylie EA, Wheatley PS, Slawin AMZ, Morris RE. Ionothermal Materials Synthesis Using Unstable Deep-Eutectic Solvents as Template-Delivery Agents. *Angew Chemie*. 2006;118(30):5084-5088. doi:10.1002/ange.200600290.
- 121. Drylie EA, Wragg DS, Parnham ER, et al. Ionothermal synthesis of unusual choline-templated cobalt aluminophosphates. *Angew Chemie Int Ed.* 2007;46(41):7839-7843. doi:10.1002/anie.200702239.
- 122. Mota-Morales JD, Gutiérrez MC, Sanchez IC, Luna-Bárcenas G, del Monte F. Frontal polymerizations carried out in Deep-Eutectic mixtures providing both the monomers and the polymerization medium. *Chem Commun (Camb)*. 2011;47(18):5328-5330. doi:10.1039/c1cc10391a.
- 123. Abbott AP, Capper G, McKenzie KJ, Ryder KS. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. *J Electroanal Chem*. 2007;599(2):288-294. doi:10.1016/j.jelechem.2006.04.024.
- 124. Liao HG, Jiang YX, Zhou ZY, Chen SP, Sun SG. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. *Angew Chemie Int Ed*. 2008;47(47):9100-9103. doi:10.1002/anie.200803202.
- 125. Dai Y, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in carthamus tinctorius L. *Anal Chem.* 2013;85(13):6272-6278. doi:10.1021/ac400432p.
- 126. Kareem MA, Mjalli FS, Hashim MA, AlNashef IM. Liquid-liquid equilibria for the ternary system (phosphonium based deep eutectic solvent-benzene-hexane) at different temperatures: A new solvent introduced. *Fluid Phase Equilib*. 2012;314:52-59. doi:10.1016/j.fluid.2011.10.024.
- 127. Kareem MA, Mjalli FS, Hashim MA, Hadj-Kali MKO, Bagh FSG, Alnashef IM. Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha. *Fluid Phase Equilib*. 2012;333:47-54. doi:10.1016/j.fluid.2012.07.020.
- 128. Gonzalez ASB, Francisco M, Jimeno G, De Dios SLG, Kroon MC. Liquid-liquid equilibrium data for the systems {LTTM+benzene+hexane} and {LTTM+ethyl acetate+hexane} at different

temperatures and atmospheric pressure. *Fluid Phase Equilib.* 2013;360:54-62. doi:10.1016/j.fluid.2013.09.010.

- 129. Oliveira FS, Pereiro AB, Rebelo LPN, Marrucho IM. Deep eutectic solvents as extraction media for azeotropic mixtures. *Green Chem.* 2013;15:1326-1330. doi:10.1039/c3gc37030e.
- 130. Gonzalez ASB, Francisco M, Jimeno G, De Dios SLG, Kroon MC. Liquid-liquid equilibrium data for the systems {LTTM+benzene+hexane} and {LTTM+ethyl acetate+hexane} at different temperatures and atmospheric pressure. *Fluid Phase Equilib.* 2013;360:54-62. doi:10.1016/j.fluid.2013.09.010.
- 131. Dai Y, Witkamp GJ, Verpoorte R, Choi YH. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. *Anal Chem.* 2013;85:6272-6278. doi:10.1021/ac400432p.
- 132. Thuy Pham TP, Cho CW, Yun YS. Environmental fate and toxicity of ionic liquids: A review. *Water Res.* 2010;44(2):352-372. doi:10.1016/j.watres.2009.09.030.
- 133. Francisco M, Van Den Bruinhorst A, Kroon MC. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. *Angew Chemie Int Ed.* 2013;52(11):3074-3085. doi:10.1002/anie.201207548.
- 134. Hinze WL, Pramauro E. A Critical Review of Surfactant-Mediated Phase Separations (Cloud-Point Extractions): Theory and Applications. *Crit Rev Anal Chem*. 1993;24:133-177.
- 135. Scamehorn JF, Harwell JH. Surfactant-Based Treatment of Aqueous Process Streams. In: Wasan DT, Ginn ME, Shah DO, eds. *Surfactants in Chemical/ Process Engineering*. Vol New York: Surfactant Science Series; Marcel Dekker; 1988:77-125.
- 136. Johansson HO, Karlström G, Mattiasson B, Tjerneld F. Effects of Hydrophobicity and Counter Ions on the Partitioning of Amino Acids in Thermoseparating Ucon-Water Two-Phase Systems. *Bioseparation*. 1995;5:269-269.
- 137. Freire MG, Cláudio AFM, Araújo JMM, et al. Aqueous biphasic systems: a boost brought about by using ionic liquids. *Chem Soc Rev.* 2012;41:4966-4995. doi:10.1039/c2cs35151j.
- 138. Bi W, Tian M, Row KH. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. *J Chromatogr A*. 2013;1285:22-30. doi:10.1016/j.chroma.2013.02.041.
- 139. Cui Q, Peng X, Yao X-H, et al. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. *Sep Purif Technol.* 2015;150:63-72. doi:10.1016/j.seppur.2015.06.026.
- 140. Peng X, Duan M-H, Yao X-H, et al. Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. *Sep Purif Technol.* 2016;157:249-257. doi:10.1016/j.seppur.2015.10.065.
- 141. Dai Y, Rozema E, Verpoorte R, Choi YH. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. *J Chromatogr A*. 2016;1434:50-56. doi:10.1016/j.chroma.2016.01.037.
- 142. Kumar AK, Parikh BS, Pravakar M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. *Environ Sci Pollut Res.* 2016;23:9265-9275. doi:10.1007/s11356-015-4780-4.
- 143. Zhang C-W, Xia S-Q, Ma P-S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. *Bioresour Technol*. 2016;219:1-5. doi:10.1016/j.biortech.2016.07.026.
- 144. Das AK, Sharma M, Mondal D, Prasad K. Deep eutectic solvents as efficient solvent system for the extraction of k-carrageenan from Kappaphycus alvarezii. *Carbohydr Polym*. 2016;136:930-935.

doi:10.1016/j.carbpol.2015.09.114.

- 145. Lu W, Alam A, Pan Y, Wu J, Wang Z, Yuan Z. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. *Bioresour Technol.* 2016;218:123-128. doi:10.1016/j.biortech.2016.05.120.
- 146. Chiappe C, Mezzetta A, Pomelli CS, Iaquaniello G, Gentile A, Masciocchi B. Development of costeffective biodiesel from microalgae using protic ionic liquids. *Green Chem.* 2016;18:4982-4989. doi:10.1039/C6GC00923A.
- 147. Kim YH, Choi YK, Park J, et al. Ionic liquid-mediated extraction of lipids from algal biomass. *Bioresour Technol.* 2012;109:312-315. doi:10.1016/j.biortech.2011.04.064.
- 148. Desai RK, Streefland M, Wijffels RH, Eppink MHM. Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. *Green Chem.* 2016;18:1261-1267. doi:10.1039/C5GC01301A.
- 149. da Costa Lopes AM, Brenner M, Falé P, Roseiro LB, Bogel-Łukasik R. Extraction and Purification of Phenolic Compounds from Lignocellulosic Biomass Assisted by Ionic Liquid, Polymeric Resins, and Supercritical CO 2. *ACS Sustain Chem Eng.* 2016;4:3357-3367. doi:10.1021/acssuschemeng.6b00429.
- 150. Ma HH, Zhang BX, Zhang P, Li S, Gao YF, Hu XM. An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids. *Fuel Process Technol*. 2016;148:138-145. doi:10.1016/j.fuproc.2016.02.038.
- 151. Lee SH, Doherty T V., Linhardt RJ, Dordick JS. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. *Biotechnol Bioeng*. 2009;102:1368-1376. doi:10.1002/bit.22179.
- 152. Fort D a., Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. *Green Chem.* 2007;9:63-69. doi:10.1039/b607614a.
- 153. Bogdanov MG, Svinyarov I. Ionic liquid-supported solid-liquid extraction of bioactive alkaloids. II. Kinetics, modeling and mechanism of glaucine extraction from Glaucium flavum Cr. (Papaveraceae). *Sep Purif Technol*. 2013;103:279-288. doi:10.1016/j.seppur.2012.10.035.
- 154. Xu W, Chu K, Li H, et al. Ionic liquid-based microwave-Assisted extraction of flavonoids from bauhinia championii (Benth.) benth. *Molecules*. 2012;17:14323-14335. doi:10.3390/molecules171214323.
- 155. Lin H, Zhang Y, Han M, Yang L. Aqueous ionic liquid based ultrasonic assisted extraction of eight ginsenosides from ginseng root. *Ultrason Sonochem*. 2013;20:680-684. doi:10.1016/j.ultsonch.2012.10.003.
- 156. Olkiewicz M, Plechkova N V., Fabregat A, et al. Efficient extraction of lipids from primary sewage sludge using ionic liquids for biodiesel production. *Sep Purif Technol.* 2015;153:118-125. doi:10.1016/j.seppur.2015.08.038.
- 157. Redlich O, Kister AT. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind Eng Chem.* 1948;40:345-348. doi:10.1021/ie50458a036.
- 158. Radović I. Doktorksa Disertacija. Tehnološko-metalurški fakultet, Univerzitet u Beogradu; 2008.
- 159. Spasojević V. *Doktorska Disertacija*. Tehnološko-metalurški fakultet, Univerzitet u Beogradu; 2014.
- 160. Domanska U. Vapour-liquid-solid equilibrium of eicosanoic acid in one- and two-component solvents. *Fluid Phase Equilib*. 1986;26:201-220. doi:10.1016/0378-3812(86)90006-3.
- 161. Najdanović-Višak V, Rodriguez A, Višak ZP, et al. Co-solvent effects in LLE of 1-hydroxyethyl-3methylimidazolium based ionic liquids + 2-propanol + dichloromethane or 1,2-dichloroethane.

Fluid Phase Equilib. 2007;254:35-41. doi:10.1016/j.fluid.2007.02.020.

- 162. Stryjek R, Vera JH. PRSV: An Improved Peng- Robinson Equation of State for Pure Compounds and Mixtures. *Can J Chem Eng.* 1986;64(2):323-333. doi:10.1002/cjce.5450640224.
- 163. Adachi Y, Sugie H. A new mixing rule-modified conventional mixing rule. *Fluid Phase Equilib*. 1986;28:103-118. doi:10.1016/0378-3812(86)85072-5.
- 164. Twu CH, Coon JE, Bluck D, Tilton B. CEOS/AE mixing rules from infinite pressure to zero pressure and then to no reference pressure. *Fluid Phase Equilib.* 1999;158-160:271-281. doi:10.1016/S0378-3812(99)00143-0.
- 165. Šerbanović SP, Kijevčanin ML, Radović IR, Djordjević BD. Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules. *Fluid Phase Equilib.* 2006;239:69-82. doi:10.1016/j.fluid.2005.10.022.
- 166. Živković EM, Kijevčanin ML, Radović IR, Šerbanović SP, Djordjević BD. Viscosity of the binary systems 2-methyl-2-propanol with n-alkanes at T=(303.15, 308.15, 313.15, 318.15 and 323.15)K: Prediction and correlation New UNIFAC-VISCO interaction parameters. *Fluid Phase Equilib*. 2010;299:191-197. doi:10.1016/j.fluid.2010.10.009.
- 167. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. *J Soc Ind Appl Math.* 1963;11:431-441. doi:10.1017/CB09781107415324.004.
- 168. Lorentz H. Concerning the Relationship between the Velocity of Propagation of Light and the Body Density. *Ann Phys (N Y)*. 1880;245:641-665. doi:10.1002/andp.18802450406.
- 169. Heller W. Remarks on Refractive Index Mixture Rules. *J Phys Chem.* 1966;69:1123-1129. doi:10.1021/j100888a006.
- 170. Pineiro A, Brocos P, Amigo A, Pintos M, Bravo R. Surface tensions and refractive indices of (tetrahydrofuran + n-alkanes) at T = 298.15 K. *J Chem Thermodyn*. 1999;31:931-942. doi:10.1021/je5007696.
- 171. Partington JR. Vol.3, Section X. In: *An Advanced Treatise on Physical Chemistry*. Vol London: Longmans&Green; 1953.
- 172. Oster G. The scattering of light and its applications to chemistry. *Chem Rev.* 1948;43:319-365.
- 173. Chevalier JL, Petrino P, Gaston-Bonhomme Y. Estimation method for the kinematic viscosity of a liquid-phase mixture. *Chem Eng Sci*. 1988;43:1303-1309. doi:10.1016/0009-2509(88)85104-2.
- 174. Gaston-Bonhomme Y, Petrino P, Chevalier JL. UNIFAC-VISCO group contribution method for predicting kinematic viscosity: extension and temperature dependence. *Chem Eng Sci.* 1994;49:1799-1806. doi:10.1016/0009-2509(94)80065-0.
- 175. Tochigi K, Yoshino K, Rattan VK. Prediction of Kinematic Viscosities for Binary and Ternary Liquid Mixtures with an ASOG-VISCO Group Contribution Method. *Int J Thermophys.* 2005;26:413-419. doi:10.1007/s10765-005-4505-x.
- 176. Teja AS, Rice P. Generalized Corresponding States Method for the Viscosities of Liquid Mixtures. *Ind Eng Chem Fundam*. 1981;20:77-81. doi:10.1021/i100001a015.
- 177. Teja AS, Rice P. The measurement and prediction of the viscosities of some binary liquid mixtures containing n-hexane. *Chem Eng Sci.* 1981;36:7-10. doi:10.1016/0009-2509(81)80042-5.
- 178. McAllister RA. The viscosity of liquid mixtures. *AIChE J.* 1960;6:427-431. http://onlinelibrary.wiley.com/doi/10.1002/aic.690060316/abstract.
- 179. Renon H, Prausnitz JM. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. *AIChE J.* 1968;14:135-144. doi:10.1002/aic.690140124.
- 180. Abrams DS, Prausnitz JM. Statistical Thermodynamics of Liquid Mixtures: A New P txpression

for the Excess Gibbs Energy of Partly or Completely Miscible Systems. *AIChE J.* 1975;21:116–128. doi:10.1002/aic.690210115.

- 181. Gomis V, Font A, Saquete MD, García-Cano J. Phase equilibria of the water+1-butanol+toluene ternary system at 101.3kPa. *Fluid Phase Equilib.* 2015;385:29-36. doi:10.1016/j.fluid.2014.10.038.
- 182. Santiago RS, Santos GR, Aznar M. UNIQUAC correlation of liquid–liquid equilibrium in systems involving ionic liquids: The DFT–PCM approach. *Fluid Phase Equilib.* 2009;278:54-61. doi:10.1016/j.fluid.2010.02.013.
- 183. Poling BE, Prausnitz JM, O'Connell JP. *The Properties Of Gases And Liquids.*; 2001. doi:10.1036/0070116822.
- 184. Vuksanović JM, Živković EM, Radović IR, Djordjević BD, Šerbanović SP, Kijevčanin ML. Experimental study and modelling of volumetric properties, viscosities and refractive indices of binary liquid mixtures benzene+PEG 200/PEG 400 and toluene+PEG 200/PEG 400. *Fluid Phase Equilib.* 2013;345:28-44. doi:10.1016/j.fluid.2013.02.010.
- 185. Błaszczak Z, Pochylski M, Iwaszkiewicz-Kostka I, Ziobrowski P, Drozdowski M, Farhoud M. Brillouin scattering study of polyethylene glycol different solutions. *J Mol Liq.* 2005;121:75-79. doi:10.1016/j.molliq.2004.10.034.
- 186. Altschuller AP. The Dipole Moments of Hydrocarbons. J Phys Chem. 1953;57:538-540.
- 187. Pochylski M, Aliotta F, Blaszczak Z, Gapinski J. Evidences of Nonideal Mixing in Poly(ethylene glycol)/Organic Solvent Mixtures by Brillouin Scattering. *J Phys Chem B*. 2006;110:485-493. doi:10.1021/jp0538130.
- 188. Chowdhury MA, Majid MA, Saleh MA. Volumetric and viscometric behaviour of binary systems: (1-hexanol + hydrocarbons). *J Chem Thermodyn*. 2001;33:347-360. doi:10.1006/jcht.2000.0751.
- 189. Bajić DM, Ivaniš GR, Višak ZP, Živković EM, Šerbanović SP, Kijevčanin ML. Densities, viscosities, and refractive indices of the binary systems (PEG200+1,2-propanediol, +1,3-propanediol) and (PEG400+1,2-propanediol, +1,3-propanediol) at (288.15 to 333.15)K and atmospheric pressure: Measurements and modeling. *J Chem Thermodyn.* 2013;57:510-529. doi:10.1016/j.jct.2012.07.024.
- 190. Vuksanović J, Bajić D, Ivaniš G, et al. Prediction of excess molar volumes of selected binary mixtures from refractive index data. *J Serbian Chem Soc.* 2014;79:707-718. doi:10.2298/JSC130813127V.
- 191. De Sousa HC, Rebelo LPN. A Continuous Polydisperse Thermodynamic Algorithm for a Modified Flory-Huggins Model: The (polystyrene + nitroethane) Example. *J Polym Sci Part B Polym Phys.* 2000;38:632-651. doi:10.1002/(SICI)1099-0488(20000215)38:4<632::AID-POLB15>3.0.CO;2-Q.
- 192. Višak ZP. Phenomenological Interpretation of the Systems Exhibiting a Closed-Loop Liquid-Liquid Phase Diagram by Using a Simple gE-Model. *J Solution Chem.* 2011;40:261-283. doi:10.1007/s10953-010-9644-4.
- 193. Dipti M, Prakash Rastogi P. Electric Dipole Moment of 4-Chloro-2,3-tetra-, penta-, and hexamethylene Quinoline. *Bull Chem Soc Jpn*. 1976;49:206-208.
- 194. Korenman YI, Strashilina NY, Kuchmenko TA. Solvent Effect on the Sensitivity and Selectivity of Determining Aniline and Toluidines in the Air by Piezoelectric Microweighing. *J Anal Chem.* 2001;56:1113-1117.
- 195. Swier S, Van Assche G, Vuchelen W, Van Mele B. Role of Complex Formation in the Polymerization Kinetics of Modified Epoxy-Amine Systems. *Macromolecules*. 2005;38:2281-2288. doi:10.1021/ma047796x.

- 196. Elmore DE, Dougherty DA. A Computational Study of Nicotine Conformations in the Gas Phase and in Water. *J Org Chem*. 2000;65:742-747. doi:10.1021/jo991383q.
- 197. Whidby JF, Edwards III WB, Pitner TP. Isomeric Nicotines. Their Solution Conformation and Proton, Deuterium, Carbon-13, and Nitrogen- 15 Nuclear Magnetic Resonance. *J Org Chem Org Chem*. 1979;44:794-798.
- 198. Pitner TP, Edwards III WB, Bassfield RL, Whidby JF. The Solution Conformation of Nicotine . A 1 H and 2 H Nuclear Magnetic Resonance Investigation. *J Am Chem Soc.* 1978;100:246-251.
- 199. Ghosh K, Chatterjee BC, Sarkar A. Molecular association in polyethylene glycol II. Light scattering studies. *Colloid Polym Sci.* 1976;254:429-430.
- 200. Merchuk JC, Andrews BA, Asenjo JA. Aqueous two-phase systems for protein separation Studies on phase inversion. *J Chromatogr B*. 1998;711:285-293.
- 201. Othmer DF, Tobias PE. Tie line correlation. *Ind Eng Chem.* 1942;34:693-696. doi:10.1021/ie50390a600.
- 202. Bancroft D. The Velocity of Longitudinal Waves in Cylindrical Bars. *Phys Rev.* 1941;59:588-593.
- 203. Ananthapadmanabhan KP, Goddard ED. Aqueous Biphase Formation in Polyethylene Oxide-Inorganic Salt Systems. *Langmuir*. 1987;3:25-31. doi:10.1016/0021-9797(86)90230-4.
- 204. Sadeghi R, Jahani F. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. *J Phys Chem B*. 2012;116:5234-5241. doi:10.1021/jp300665b.
- 205. Vuksanović J, Radović I, Šerbanović S, Kijevčanin M. Experimental study of thermodynamic and transport properties of binary mixtures of poly(ethylene glycol) diacrylate and alcohols at different temperatures. *J Serbian Chem Soc.* 2015;80:933-946. doi:10.2298/JSC141009005V.
- 206. Volić M. Master Rad. Tehnološko-metalurški fakultet, Univerzitet u Beogradu; 2013.
- 207. Živković EM, Bajić DM, Radović IR, Šerbanović SP, Kijevčanin ML. Volumetric and viscometric behavior of the binary systems ethyl lactate+1,2-propanediol, +1,3-propanediol, +tetrahydrofuran and +tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination. *Fluid Phase Equilib.* 2014;373:1-19. doi:10.1016/j.fluid.2014.04.002.
- 208. Bajić DM, Jovanović J, Živković EM, Višak ZP, Šerbanović SP, Kijevčanin ML. Experimental measurement and modelling of viscosity of the binary systems pyridine or nicotine with polyethylene glycols at T=(288.15-333.15)K. New UNIFAC-VISCO and ASOG-VISCO interaction parameters. *Fluid Phase Equilib*. 2013;338:282-293. doi:10.1016/j.fluid.2012.11.021.
- 209. Vuksanović JM, Radović IR, Šerbanović SP, Kijevčanin ML. Experimental Investigation of Interactions and Thermodynamic Properties of Poly(ethylene glycol) 200/400 + Dimethyl Adipate/Dimethyl Phthalate Binary Mixtures. *J Chem Eng Data*. 2015;60:1910-1925. doi:10.1021/acs.jced.5b00156.
- 210. Kijevčanin ML, Djordjević BD, Radović IR, Živković EM, Tasić AŽ, Šerbanović SP. Modeling of Volumetric Properties of Organic Mixtures Based on Molecular Interactions.
- 211. Knežević-Stevanović AB, Šerbanović SP, Radović IR, Djordjević BD, Kijevčanin ML. Thermodynamic and Spectroscopic Study of the Ternary System Dimethyladipate + Tetrahydrofuran +1-Butanol at T = (288.15 to 323.15) K. *J Chem Eng Data*. 2013;58:2932-2951. doi:10.1021/je4003916.
- 212. Yaws CL. *Thermophysical Properties of Chemicals and Hydrocarbons*. Norwich, New York: William Andrew Inc.; 2008.
- 213. Lee MJ, Lai CH, Wang TB, Lin HM. Vapor-Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water. *J Chem Eng Data*. 2007;52:1291-1296. doi:10.1021/je700027n.

- 214. Fort RJ, Moore WR. Viscosities of binary liquid mixtures. *Trans Faraday Soc.* 1966;62:1112-1119.
- 215. Rodríguez H, Francisco M, Rahman M, Sun N, Rogers RD. Biphasic liquid mixtures of ionic liquids and polyethylene glycols. *Phys Chem Chem Phys.* 2009;11:10916-10922. doi:10.1039/b916990c.
- 216. Calado MS, Ivaniš GR, Vuksanović JM, Kijevčanin ML, Šerbanović SP, Višak ZP. "Green Meets Green" Sustainable solutions of imidazolium and phosphonium ionic liquids with poly(ethylene glycol): Solubility and phase behavior. *Fluid Phase Equilib.* 2013;344:6-12. doi:10.1016/j.fluid.2013.01.019.
- 217. Vuksanovic JM, Calado MS, Ivanis GR, Kijevcanin ML, Serbanovic SP, Visak ZP. Environmentally friendly solutions of liquid poly(ethylene glycol) and imidazolium based ionic liquids with bistriflamide and triflate anions: Volumetric and viscosity studies. *Fluid Phase Equilib*. 2013;352:100-109. doi:10.1016/j.fluid.2013.05.013.
- 218. Fernandes AM, Rocha MAA, Freire MG, Marrucho IM, Coutinho JAP, Santos LMNBF. Evaluation of Cation-Anion Interaction Strength in Ionic Liquids. *J Phys Chem B*. 2011;115:4033-4041. doi:10.1021/jp201084x.
- 219. Bini R, Bortolini O, Chiappe C, Pieraccini D, Siciliano T. Development of Cation/Anion "Interaction" Scales for Ionic Liquids through ESI-MS Measurements. *J Phys Chem B*. 2007;111:598-604. doi:10.1021/jp0663199.
- 220. Dougherty RC. Temperature and pressure dependence of hydrogen bond strength: A perturbation molecular orbital approach. *J Chem Phys.* 1998;109:7372-7378. doi:10.1063/1.477343.
- 221. Vuksanović JM, Calado MS, Ivaniš GR, Kijevšanin ML, Šerbanović SP, Višak ZP. Environmentally friendly solutions of liquid poly(ethylene glycol) and imidazolium based ionic liquids with bistriflamide and triflate anions: Volumetric and viscosity studies. *Fluid Phase Equilib.* 2013;352:100-109. doi:10.1016/j.fluid.2013.05.013.
- 222. Chevalier JLE, Petrino PJ, Gaston-Bonhomme YH. Viscosity and Density of some Aliphatic, Cyclic, and Aromatic Hydrocarbons Binary liquid Mixtures. *J Chem Eng Data*. 1990;35:206-212. doi:10.1021/je00060a034.
- 223. Yadav A, Pandey S. Densities and Viscosities of (Choline Chloride + Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range 293.15 K to 363.15 K. *J Chem Eng Data*. 2014;59:2221-2229. doi:10.1021/je5001796.
- 224. Yadav A, Trivedi S, Rai R, Pandey S. Densities and dynamic viscosities of (choline chloride+glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15-363.15)K. *Fluid Phase Equilib.* 2014;367:135-142. doi:10.1016/j.fluid.2014.01.028.
- 225. Kareem MA, Mjalli FS, Hashim MA, Hadj-Kali MKO, Ghareh Bagh FS, Alnashef IM. Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha. *J Chem Thermodyn*. 2013;65:138-149. doi:10.1016/j.jct.2013.05.046.
- 226. Florindo C, Oliveira FS, Rebelo LPN, Fernandes AM, Marrucho IM. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. *ACS Sustain Chem Eng.* 2014;2:2416-2425. doi:10.1021/sc500439w.
- 227. Oliveira FS, Pereiro AB, Rebelo LPN, Marrucho IM. Deep eutectic solvents as extraction media for azeotropic mixtures. *Green Chem.* 2013;15(5):1326-1330. doi:10.1039/c3gc37030e.
- 228. Lue SJ, Ou JS, Kuo CH, Chen HY, Yang TH. Pervaporative separation of azeotropic methanol/toluene mixtures in polyurethane-poly(dimethylsiloxane) (PU-PDMS) blend membranes: Correlation with sorption and diffusion behaviors in a binary solution system. *J Memb Sci.* 2010;347:108-115. doi:10.1016/j.memsci.2009.10.012.
- 229. Maugeri Z, Domínguez de María P. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. *RSC Adv*. 2012;2:421-425. doi:10.1039/c1ra00630d.
- 230. Gutiérrez MC, Ferrer ML, Mateo CR, Monte F Del. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. *Langmuir*. 2009;25:5509-5515. doi:10.1021/la900552b.
- 231. Davies DB, Matheson AJ. Viscosity of Liquids containing Spherical Molecules or Ions. *Trans Faraday Soc.* 1967;63:596-603.
- 232. Dutt NVK, Ravikumar YVL, Rani KY. Representation of Ionic Liquid Viscosity-Temperature Data By Generalized Correlations and an Artificial Neural Network (Ann) Model. *Chem Eng Commun.* 2013;200:1600-1622. doi:10.1080/00986445.2012.756396.
- 233. Matheson DBD and AJ. Viscosity of liquids containing spherical molecules or ion. *Trans Faraday Soc.* 1967;63:596-603.
- 234. Dai Y, Witkamp GJ, Verpoorte R, Choi YH. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. *Food Chem.* 2015;187:14-19. doi:10.1016/j.foodchem.2015.03.123.
- 235. Kolska Z, Dvorakova D, Mika J, Boublik T. Volumetric behavior of the binary systems benzenecyclohexane and benzene-2,2,4-trimethyl-pentane at temperatures 293.15-323.15K. *Fluid Phase Equilib*. 2011;303:157-161. doi:10.1016/j.fluid.2011.01.018.
- 236. Bhatia SC, Sangwan J, Bhatia R. Densities, speeds of sound and viscosities of binary liquid mixtures of octan-2-ol with benzene and halobenzenes at 298.15 and 303.15 K. *J Mol Liq.* 2011;161:95-101. doi:10.1016/j.molliq.2011.04.019.
- 237. Yu Y-X, Li Y-G. Excess molar volumes of sulfolane in binary mixtures with six aromatic hydrocarbons at 298.15 K. *Fluid Phase Equilib.* 1998;147:207-213. doi:http://dx.doi.org/10.1016/S0378-3812(98)00243-X.
- 238. Mutalik V, Manjeshwar LS, Sairam M, Aminabhavi TM. Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K. *J Chem Thermodyn.* 2006;38:1062-1071. doi:10.1016/j.jct.2005.10.022.
- 239. Oswal SL, Gardas RL, Phalak RP. Densities, speeds of sound, isentropic compressibilities, refractive indices and viscosities of binary mixtures of tetrahydrofuran with hydrocarbons at 303.15 K. *J Mol Liq.* 2005;116:109-118. doi:10.1016/j.molliq.2004.07.081.
- 240. Ali A, Nain AK, Chand D, Ahmad R. Volumetric, ultrasonic, viscometric and refractive index behavior of binary mixtures of 2,2,4-trimethylpentane with aromatic hydrocarbons: An experimental and theoretical study. *J Mol Liq.* 2006;128:32-41. doi:10.1016/j.molliq.2005.02.007.
- 241. Ottani S, Vitalini D, Comelli F, Castellari C. Densities , Viscosities , and Refractive Indices of Poly (ethylene glycol) 200 and 400 + Cyclic Ethers at 303.15 K. *J Chem Eng Data*. 2002;47:1197-1204.
- 242. Lee M, Lo C, Lin H. PVT Measurements for Mixtures of Poly(ethylene glycol methyl ether) with Poly(ethylene glycol) from 298 K to 338 K and Pressures up to 30 MPa. *J Chem Eng Data*. 1998;43:1076-1081.
- 243. Muller EA, Rasmussen P. Densities and Excess Volumes in Aqueous Poly(ethy1ene glycol) Solutions. *J Chem Eng Data*. 1991;36:214-217. doi:10.1021/je00002a019.
- 244. Aucouturier C, Roux-Desgranges G, Roux a. H. Excess molar volumes and excess molar heat capacities of (polyethylene glycols + water) at temperatures betweenT=278 K andT=328 K. *J Chem Thermodyn*. 1999;31(2):289-300. doi:10.1006/jcht.1998.0458.

- 245. Eliassi A, Modarress H, Mansoori GA. Densities of Poly (ethylene glycol) + Water Mixtures in the 298.1 328.15 K Temperature Range. *J Chem Eng Data*. 1998;43:719-721.
- 246. Yasmin M, Gupta M, Shukla JP. Molecular interactions and structural effects on mixing pentanol in polyethylene glycol diacrylate and polyethylene glycol dimethacrylate. *J Mol Liq.* 2011;164:212-217. doi:10.1016/j.molliq.2011.09.018.
- 247. Hou C, Jiang Z, Ren B. Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K. *J Chem Eng Data*. 2010;55:4943-4945. doi:10.1021/je1000796.
- 248. Urréjola S, Sánchez A, Hervello MF. Refractive Indices of Lithium, Magnesium, and Copper(II) Sulfates in Ethanol-Water Solutions. *J Chem Eng Data*. 2010;55:482-487. doi:10.1021/je100979d.
- 249. Kurnia KA, Mutalib MIA. Densities and Viscosities of Binary Mixture of the Ionic Liquid Bis (2hydroxyethyl) ammonium Propionate with Methanol , Ethanol , and 1-Propanol at T=(293.15 , 303.15 , 313.15 , and 323.15) K and at P=0.1 MPa. *J Chem Eng Data*. 2011;56:79-83.
- 250. Vijande J, Pineiro MM, Garcıa J, Valencia LJ, Legido LJ. Density and Surface Tension Variation with Temperature for Heptane + 1-Alkanol. *J Chem Eng Data*. 2006;51:1778-1782.
- 251. Sarkar L, Roy MN. Investigation on viscous synergism and antagonism prevailing in binary mixtures of cyclohexylamine with isomeric butanols by volumetric, viscometric, refractive index and ultrasonic speed measurements. *Phys Chem Liq.* 2011;49:219-236. doi:10.1080/00319100903538837.
- 252. İnce E. Liquid–liquid equilibria of the ternary system water+acetic acid+dimethyl adipate. *Fluid Phase Equilib*. 2005;230:58-63. doi:10.1016/j.fluid.2004.11.025.
- 253. Lide DR. Section 3. In: *Handbook of Chemistry and Physics*. Vol CRC Press Inc.: BocaRaton, FL; 2002.
- 254. Comunas MJP, Bazile JP, Lugo L, Baylaucq A, Fernandez J, Boned C. Influence of the Molecular Structure on the Volumetric Properties and Viscosities of Dialkyl Adipates (Dimethyl, Diethyl, and Diisobutyl Adipates). *J Chem Eng Data*. 2010;55:3697-3703. doi:10.1021/je100237h.
- 255. Rostami AA, Chaichi MJ, Sharifi M. Densities, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for Binary Mixtures of Dimethyl Phthalate (DMP) with 1-Pentanol, 1-Butanol, and 1-Propanol at Two Temperatures. *Monatshefte fur Chemie*. 2007;138:967-971. doi:10.1007/s00706-007-0691-5.
- 256. Svirbely WJ, Eareckson III WM, Matsuda K, Pickard HB, Solet IS, Tuemmler WB. Physical Properties of Some Organic Insect Repellents. *J Am Chem Soc.* 1949;71:507–509.
- 257. M. PE. Kirk-Othmer Encyclopedia of Chemical Technology. Interscience: NewYork; 1978.
- 258. Fröba AP, Kremer H, Leipertz A. Density, Refractive Index, Interfacial Tension, and Viscosity of Ionic Liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in Dependence on Temperature at Atmospheric Pressure. *J Phys Chem B*. 2008;112:12420-12430. doi:10.1021/jp804319a.
- 259. Jacquemin J, Nancarrow P, Rooney DW, et al. Prediction of Ionic Liquid Properties. I. Volumetric Properties as a Function of Temperature and Pressure at 0.1 MPa. *J Chem Eng Data*. 2008;53:716-726. doi:10.1021/je8002817.
- 260. Guillet E, Imbert D, Scopelliti R, Bunzli JCG. Tuning the Emission Color of Europium-Containing Ionic Liquid-Crystalline Phases. *Chem Mater*. 2004;16:4063-4070. doi:10.1021/cm049296o.
- 261. Crosthwaite JM, Muldoon MJ, Dixon JK, Anderson JL, Brennecke JF. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. *J Chem Thermodyn.* 2005;37:559-568. doi:10.1016/j.jct.2005.03.013.

- 262. Freire MG, Teles ARR, Rocha MAA, et al. Thermophysical Characterization of Ionic Liquids Able To Dissolve Biomass. *J Chem Eng Data*. 2011;56:4813-4822. doi:10.1021/je200790q.
- 263. Rodríguez H, Brennecke J. Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of Water + Ionic Liquid. *J Chem Eng Data*. 2006;51:2145-2155. doi:10.1021/je0602824.
- 264. Kijevčanin ML, Kostić VZ, Radović IR, Djordjević BD, Šerbanović SP. Viscosity of binary nonelectrolyte liquid mixtures: Prediction and correlation. *Chem Ind Chem Eng Q*. 2008;14:223-226. doi:10.2298/CICEQ0804223K.
- 265. Trevor LM, Nirmala D, Bathabile S, Deresh R. Ternary Liquid-Liquid Equilibria for Mixtures of 1-Methyl-3-octylimidazolium Chloride + an Alkanol + an Alkane at 298.2 K and 1 bar. *J Chem Eng Data*. 2003;48:904-907.
- 266. Marciniak A, Krolikowski M. Ternary liquid–liquid equilibria of bis(trifluoromethylsulfonyl)amide based ionic liquids + methanol + heptane. *Fluid Phase Equilib*. 2012;318:56-60. doi:10.1016/j.fluid.2012.01.018.
- 267. Rodriguez NR, Molina BS, Kroon MC. Aliphatic+ethanol separation via liquid-liquid extraction using low transition temperature mixtures as extracting agents. *Fluid Phase Equilib*. 2015;394:71-82. doi:10.1016/j.fluid.2015.03.017.
- 268. Pereiro a. B, Deive FJ, Esperança JMSS, Rodríguez a. Alkylsulfate-based ionic liquids to separate azeotropic mixtures. *Fluid Phase Equilib*. 2010;294(1-2):49-53. doi:10.1016/j.fluid.2010.05.006.
- 269. Pereiro AB, Rodríguez A. A study on the liquid-liquid equilibria of 1-alkyl-3-methylimidazolium hexafluorophosphate with ethanol and alkanes. *Fluid Phase Equilib.* 2008;270:23-29. doi:10.1016/j.fluid.2008.06.003.
- 270. Corderí S, González B, Calvar N, Gómez E. Ionic liquids as solvents to separate the azeotropic mixture hexane/ethanol. *Fluid Phase Equilib.* 2013;337:11-17. doi:10.1016/j.fluid.2012.10.004.
- 271. Pereiro AB, Rodriguez A. Purification of hexane with effective extraction using ionic liquid as solvent. *Green Chem*. 2009;11:346-350. doi:10.1039/b814032d.
- 272. Domanska U, Zolek-Tryznowska Z, Pobudkowska A. Separation of Hexane/Ethanol Mixtures. LLE of Ternary Systems (Ionic Liquid or Hyperbranched Polymer plus Ethanol plus Hexane) at T=298.15 K. J Chem Eng Data. 2009;54:972-976. doi:10.1021/je8007588.
- 273. Oliveira FS, Dohrn R, Rebelo LPN, Marrucho IM. Improving the Separation of n -Heptane + Ethanol Azeotropic Mixtures Combining Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate with Different Inorganic Salts. *Ind Eng Chem Res.* 2016;55:5965-5972. doi:10.1021/acs.iecr.6b00810.
- 274. Oliveira FS, Dohrn R, Pereiro AB, Araujo JMM, Rebelo LPN, Marrucho IM. Designing high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium ethyl sulphate for effective azeotrope breaking. *Fluid Phase Equilib*. 2016;419:57-66. doi:10.1016/j.fluid.2016.03.004.

Komponenta	Т/К	ρ/ 10	³ kg⋅m ⁻³	η/ m	ıPa∙s		nD
		Eksp.	Lit.	Eksp.	Lit.	Eksp.	Lit.
Benzen	293.15	0.878966	0.87898 ²³⁵	0.65764	0.603235	1.50044	1.5010^{235}
	298.15	0.873628	0.87365^{236}	0.61639	0.603236	1.49714	1.4969 ²³⁶
	303.15	0.868281	0.86829 ²³⁶	0.57771	0.557236	1.49382	1.4949^{236}
Toluen	298.15	0.862197	0.86198237	0.56861	0.559 ²³⁸	1.49317	1.4941237
	303.15	0.857528	0.85760 ²³⁹	0.54060	0.520239	1.49028	1.4910 ²³⁹
	308.15	0.852846	0.8530240	0.51366	0.5068^{240}	1.48740	1.4862^{240}
PEG200	288.15	1.12870		87.943			
	298.15	1.120343	1.12098^{241}	49.72400	48.157^{241}	1.45868	1.4585^{241}
	298.15	1.120856	1.12098^{241}	1.45832	1.458 ²⁴¹	49.610	48.157^{241}
	298.15	1.12074	1.12069^{17}	50.313	49.456 ²⁰⁸		
	303.15	1.116365	1.11701^{241}	38.91200	37.682241		
	303.15	1.116876	1.11701^{241}			38.801	37.682241
	308.15	1.11278		31.381			
	318.15	1.10483	1.10400^{242}	20.872			
PEG400	298.15	1.121984	1.12249241	90.70100	92.797 ²⁴¹	1.46515	1.4650241
			1.12230243		94.4 ⁴⁷		
			1.121847				
			1.12162^{244}				
	298.15	1.122120	1.12249^{241}	1.46508	1.4650241	91.024	92.797 ²⁴¹
			1.12230 ²⁴³				94.4 ⁴⁷
			1.121847				
			1.12162^{244}				
	303.15	1.117887	1.11831 ²⁴¹	70,20900	71.776 ²⁴¹	1.46333	1.4638 ²⁴¹
	000120	1111,007	1 118047		69 1 ⁴⁷	1110000	11000
	303 15	1 1 1 8 0 2 4	1 11831241	1 46328	1 4638 ²⁴¹	70 444	71 776241
	505.15	1.110021	1.11001 1.1180^{243}	1.10520	1.1050	, 0.111	69 1 ²⁴³
	313 15	1 109703	1 109747	44 48200	ΔΔ Δ 47		0,11
	515.15	1.107705	1 1102245	11.10200	1 1 1 1		
	212 15	1 109835	1.1102			44 674	AA A 243
	515.15	1.10,000	1 1102245			11.021	1 1. 1
PEGDA	293 15		11102			1 47012	1 470246
I LUDII	203.15					1.17012	1.170 1.465^{246}
	313 15					1.10010	1.460^{246}
Etanol	293.15	0 789547	0 7900247	1 1885	1 2097247	1.10220	1.100
Lanoi	298.15	0 785257	0 7857247	1 0838	1 0990247	1 35999	1 35922 48
	20215	0.780042	0.7800247	0 08000	0 0071247	1.00777	1.55722
	303.13 312 15	0.700942	0.7009-1	0.20222	0.7771-7		
	272 1E	0.772202	0.7733-**	0.02007	0.0200-17		
1 Duc 1	323.13	0.703270	0.7030219	0.09427	0./001217		
1-Propanol	200.15	0.80/931	U.80/49 ¹⁴				

Tabela P1 – Gustine ρ, dinamičke viskoznosti η i indeksi refrakcije n_D čistih komponenata, poređenje sa literaturom

	293.15	0.803946	0.80375^{14}				
	298.15	0.799932	0.79975^{14}	1.9222	1.943^{15}	1.38334	1.3837^{16}
	303.15			1.7158	1.725^{15}		
1-Butanol	293.15	0.810205	0.809714	2.9321	2.941 ¹⁶	1.39929	1.3992916
	298.15	0.806384	0.806014	2.5656	2.571^{16}	1.39725	1.3974^{16}
	303.15	0.802538	0.80191^{250}	2.2518	2.271^{16}	1.39519	1.3959^{251}
	308.15	0.798659	0.79807^{250}				
Dimetil adipat	293.15	1.061920	1.06190252	1.42876	1.4215^{252}	3.3132	3.36254
					1.4283^{253}		
Dimetil ftalat	298.15	1.186865	1.18657^{255}	1.51286	1.5137^{256}	13.928	13.76169 ²⁵
					1.513^{257}		5
[C ₂ mim][NTf ₂]	288.15	1.52851	1.52861^{258}	47.965	48.468 ⁷⁹		
	298.15	1.51838	1.51799 ²⁵⁹	32.507	33.001 ⁷⁹		
			1.51800^{260}		32.000^{261}		
			1.51845^{258}				
	308.15	1.50833	1.50839 ²⁵⁸	23.338	23.663 ⁷⁹		
	318.15	1.49836	1.49839^{258}	17.461	17.693 ⁷⁹		
[C ₂ mim][OTf]	288.15	1.39247	1.39450^{262}	67.658	63.507 ²⁶²		
			1.39204^{263}				
	298.15	1.38405	1.38590^{262}	45.118	42.936 ²⁶²		
			1.38360 ²⁶³				
	308.15	1.37568	1.37730^{262}	31.888	30.482^{262}		
			1.37522^{263}				
	318.15	1.36737	1.36890^{262}	23.396	22.527^{262}		
			1.36690^{263}				

<i>x</i> ₁	$ ho/10^3$ kg·m ⁻³	$V^{\rm E}/10^{-3}\mathrm{m}^{3}\cdot\mathrm{kmol}^{-1}$	n_{D}	$\Delta n_{ m D}$	η / mPa·s	<i>∆η/</i> mPa∙s
		Benzen (1)	+ PEG 200 (2)		
		28	8.15 K			
0	1.128294		1.46220		86.422	
0.0998	1.116500	-0.1479	1.46412	-0.0022	67.781	-10.086
0.2005	1.103035	-0.2668	1.46687	-0.0037	51.190	-18.045
0.3007	1.087823	-0.3578	1.46986	-0.0048	37.119	-23.527
0.3999	1.070584	-0.4126	1.47306	-0.0058	25.688	-26.455
0.5000	1.050767	-0.4580	1.47666	-0.0063	16.662	-26.900
0.6004	1.027647	-0.4608	1.48067	-0.0065	10.012	-24.944
0.7003	1.000766	-0.4297	1.48509	-0.0062	5.5362	-20.857
0.8001	0.968941	-0.3467	1.49037	-0.0051	2.8344	-15.004
0.8999	0.930817	-0.2087	1.49647	-0.0031	1.4223	-7.8609
1	0.884292		1.50376		0.70270	
		29	3.15 K			
0	1.124320		1.46043		64.815	
0.0998	1.112478	-0.1570	1.46232	-0.0021	51.182	-7.2305
0.2005	1.098942	-0.2822	1.46502	-0.0034	39.005	-12.946
0.3007	1.083642	-0.3776	1.46797	-0.0045	28.619	-16.904
0.3999	1.066303	-0.4354	1.47107	-0.0054	20.111	-19.047
0.5000	1.046366	-0.4823	1.47456	-0.0059	13.313	-19.423
0.6004	1.023108	-0.4850	1.47840	-0.0061	8.2153	-18.080
0.7003	0.996063	-0.4514	1.48261	-0.0058	4.6945	-15.191
0.8001	0.964074	-0.3663	1.48761	-0.0048	2.4857	-10.997
0.8999	0.925740	-0.2209	1.49352	-0.0029	1.2710	-5.8088
1	0.878966		1.50044		0.65764	
		29	8.15 K			
0	1.120343		1.45868		49.724	
0.0998	1.108428	-0.1628	1.46054	-0.0020	39.500	-5.3229
0.2005	1.094825	-0.2952	1.46321	-0.0032	30.365	-9.5129
0.3007	1.079452	-0.3973	1.46610	-0.0041	22.543	-12.415
0.3999	1.062020	-0.4594	1.46909	-0.0050	16.084	-14.001
0.5000	1.041973	-0.5092	1.47245	-0.0055	10.859	-14.311
0.6004	1.018561	-0.5100	1.47615	-0.0056	6.8656	-13.374
0.7003	0.991354	-0.4742	1.48017	-0.0054	4.0319	-11.302
0.8001	0.959161	-0.3825	1.48495	-0.0045	2.1861	-8.2469
0.8999	0.920610	-0.2292	1.49054	-0.0027	1.1290	-4.4030
1	0.873628		1.49714		0.61639	

Tabela P2 - Gustina ρ , dopunska molarna zapremina V^E, indeks refrakcije n_D, devijacija indeksa refrakcije Δn_D , viskoznost η i devijacija viskoznosti $\Delta \eta$ za četiri binarne smeše benzen (1) + PEG 200 (2), benzen (1) + PEG 400 (2), toluen (1) + PEG 200 (2) i toluen (1) + PEG 400 (2) na temperaturama (288.15 - 333.15) K i na atmosferskom pritisku

303.15 K

0	1.116365		1.45693		38.912	
0.0998	1.104398	-0.1719	1.45878	-0.0018	31.106	-3.9804
0.2005	1.090728	-0.3119	1.46140	-0.0029	24.101	-7.1253
0.3007	1.075272	-0.4195	1.46421	-0.0038	18.067	-9.3175
0.3999	1.057732	-0.4839	1.46711	-0.0046	13.048	-10.534
0.5000	1.037567	-0.5358	1.47036	-0.0050	8.9465	-10.798
0.6004	1.014011	-0.5361	1.47393	-0.0051	5.7695	-10.127
0.7003	0.986635	-0.4973	1.47771	-0.0051	3.4727	-8.5938
0.8001	0.954239	-0.3991	1.48231	-0.0041	1.9382	-6.3025
0.8999	0.915499	-0.2407	1.48757	-0.0026	1.0294	-3.3856
1	0.868281		1.49382		0.57771	
		3	08.15 K			
0	1.112387		1.45519		31.006	
0.0998	1.100359	-0.1803	1.45702	-0.0017	24.932	-3.0337
0.2005	1.086614	-0.3269	1.45957	-0.0027	19.478	-5.4207
0.3007	1.071069	-0.4397	1.46227	-0.0035	14.758	-7.0875
0.3999	1.053436	-0.5091	1.46509	-0.0042	10.799	-8.0248
0.5000	1.033148	-0.5628	1.46826	-0.0046	7.5212	-8.2536
0.6004	1.009451	-0.5633	1.47172	-0.0047	4.9359	-7.7805
0.7003	0.981911	-0.5223	1.47535	-0.0046	3.0220	-6.6511
0.8001	0.949345	-0.4215	1.47965	-0.0038	1.7077	-4.9252
0.8999	0.910365	-0.2523	1.48460	-0.0024	0.91370	-2.6791
1	0.862911		1.49052		0.54354	
		3	13.15 K			
0	1.108402		1.45346		25.102	
0.0998	1.096312	-0.1887	1.45524	-0.0016	20.294	-2.3543
0.2005	1.082499	-0.3435	1.45772	-0.0025	15.974	-4.1980
0.3007	1.066874	-0.4630	1.46033	-0.0033	12.222	-5.4851
0.3999	1.049137	-0.5359	1.46306	-0.0039	9.0534	-6.2148
0.5000	1.028736	-0.5930	1.46619	-0.0041	6.4012	-6.4054
0.6004	1.004883	-0.5917	1.46950	-0.0042	4.2777	-6.0600
0.7003	0.977176	-0.5483	1.47297	-0.0041	2.6738	-5.2073
0.8001	0 944409	0 4 4 1 2	1 47(07		1 5 4 3 0	2 0020
0 8000	0.911109	-0.4412	1.4/69/	-0.0035	1.5439	-3.8829
0.0999	0.905208	-0.4412	1.47697 1.48161	-0.0035 -0.0022	1.5439 0.84156	-3.8829 -2.1312
1	0.905208 0.857527	-0.2632	1.47697 1.48161 1.48721	-0.0035 -0.0022	1.5439 0.84156 0.51118	-2.1312
1	0.905208 0.857527	-0.4412 -0.2632	1.47697 1.48161 1.48721 18.15 K	-0.0035 -0.0022	0.84156 0.51118	-2.1312
<u> </u>	0.905208 0.857527 1.104421	-0.4412 -0.2632	1.47697 1.48161 1.48721 18.15 K 1.45170	-0.0035 -0.0022	1.5439 0.84156 0.51118 20.602	-3.8829 -2.1312
0.0999 1 0 0.0998	0.905208 0.857527 1.104421 1.092272	-0.4412 -0.2632 3 -0.1981	1.47697 1.48161 1.48721 18.15 K 1.45170 1.45344	-0.0035 -0.0022 -0.0015	1.5439 0.84156 0.51118 20.602 16.758	-3.8829 -2.1312 -1.8357
0.0999 1 0 0.0998 0.2005	0.905208 0.857527 1.104421 1.092272 1.078381	-0.4412 -0.2632 -0.1981 -0.3601	1.47697 1.48161 1.48721 18.15 K 1.45170 1.45344 1.45586	-0.0035 -0.0022 -0.0015 -0.0023	1.5439 0.84156 0.51118 20.602 16.758 13.285	-3.8829 -2.1312 -1.8357 -3.2825
0.0999 1 0 0.0998 0.2005 0.3007	0.905208 0.857527 1.104421 1.092272 1.078381 1.062664	-0.4412 -0.2632 3 -0.1981 -0.3601 -0.4850	1.47697 1.48161 1.48721 18.15 K 1.45170 1.45344 1.45586 1.45842	-0.0035 -0.0022 -0.0015 -0.0023 -0.0030	1.5439 0.84156 0.51118 20.602 16.758 13.285 10.249	-3.8829 -2.1312 -1.8357 -3.2825 -4.3024
0.0999 1 0 0.0998 0.2005 0.3007 0.3999	0.905208 0.857527 1.104421 1.092272 1.078381 1.062664 1.044832	-0.4412 -0.2632 -0.1981 -0.3601 -0.4850 -0.5632	1.47697 1.48161 1.48721 18.15 K 1.45170 1.45344 1.45586 1.45586 1.45842 1.46105	-0.0035 -0.0022 -0.0015 -0.0023 -0.0030 -0.0035	1.5439 0.84156 0.51118 20.602 16.758 13.285 10.249 7.6639	-3.8829 -2.1312 -1.8357 -3.2825 -4.3024 -4.8916
0.0999 1 0 0.0998 0.2005 0.3007 0.3999 0.5000	0.905208 0.857527 1.104421 1.092272 1.078381 1.062664 1.044832 1.024294	-0.4412 -0.2632 3 -0.1981 -0.3601 -0.4850 -0.5632 -0.6209	1.47697 1.48161 1.48721 18.15 K 1.45170 1.45344 1.45586 1.45586 1.45842 1.46105 1.46411	-0.0035 -0.0022 -0.0015 -0.0023 -0.0030 -0.0035 -0.0037	1.5439 0.84156 0.51118 20.602 16.758 13.285 10.249 7.6639 5.4710	-3.8829 -2.1312 -1.8357 -3.2825 -4.3024 -4.8916 -5.0615
0.0999 1 0 0.0998 0.2005 0.3007 0.3999 0.5000 0.6004	0.905208 0.857527 1.104421 1.092272 1.078381 1.062664 1.044832 1.024294 1.000308	-0.4412 -0.2632 3 -0.1981 -0.3601 -0.4850 -0.5632 -0.6209 -0.6213	1.47697 1.48161 1.48721 18.15 K 1.45170 1.45344 1.45586 1.45842 1.46105 1.46411 1.46726	-0.0035 -0.0022 -0.0015 -0.0023 -0.0030 -0.0035 -0.0037 -0.0038	1.5439 0.84156 0.51118 20.602 16.758 13.285 10.249 7.6639 5.4710 3.7116	-3.8829 -2.1312 -1.8357 -3.2825 -4.3024 -4.8916 -5.0615 -4.8096
0.0999 1 0 0.0998 0.2005 0.3007 0.3999 0.5000 0.6004 0.7003	0.905208 0.857527 1.104421 1.092272 1.078381 1.062664 1.044832 1.024294 1.000308 0.972426	-0.4412 -0.2632 3 -0.1981 -0.3601 -0.4850 -0.5632 -0.6209 -0.6213 -0.5747	1.47697 1.48161 1.48721 18.15 K 1.45170 1.45344 1.45586 1.45842 1.46105 1.46105 1.46411 1.46726 1.47056	-0.0035 -0.0022 -0.0015 -0.0023 -0.0030 -0.0035 -0.0037 -0.0038 -0.0037	1.5439 0.84156 0.51118 20.602 16.758 13.285 10.249 7.6639 5.4710 3.7116 2.3580	-3.8829 -2.1312 -1.8357 -3.2825 -4.3024 -4.8916 -5.0615 -4.8096 -4.1532

0.8999	0.900050	-0.2765	1.47868	-0.0020	0.77520	-1.7198
1	0.852123		1.48391		0.48083	
		3	323.15 K			
0	1.100435		1.44998		17.136	
0.0998	1.088220	-0.2070	1.45162	-0.0014	14.014	-1.4572
0.2005	1.074255	-0.3771	1.45400	-0.0021	11.183	-2.6081
0.3007	1.058451	-0.5086	1.45647	-0.0027	8.6956	-3.4234
0.3999	1.040518	-0.5917	1.45904	-0.0032	6.5642	-3.8998
0.5000	1.019853	-0.6516	1.46198	-0.0033	4.7487	-4.0452
0.6004	0.995719	-0.6520	1.46498	-0.0034	3.2632	-3.8556
0.7003	0.967665	-0.6029	1.46814	-0.0033	2.1107	-3.3413
0.8001	0.934502	-0.4845	1.47171	-0.0028	1.2710	-2.5159
0.8999	0.894859	-0.2890	1.47577	-0.0018	0.72548	-1.3963
1	0.846694		1.48062		0.45170	
		3	328.15 K			
0	1.096443		1.44824		14.424	
0.0998	1.084180	-0.2191	1.44984	-0.0013	11.852	-1.1743
0.2005	1.070145	-0.3983	1.45216	-0.0019	9.5161	-2.1009
0.3007	1.054252	-0.5364	1.45455	-0.0024	7.4554	-2.7588
0.3999	1.036191	-0.6209	1.45705	-0.0028	5.6788	-3.1466
0.5000	1.015414	-0.6853	1.45988	-0.0029	4.1531	-3.2709
0.6004	0.991115	-0.6838	1.46277	-0.0029	2.8913	-3.1271
0.7003	0.962889	-0.6324	1.46573	-0.0029	1.8990	-2.7207
0.8001	0.929524	-0.5079	1.46904	-0.0024	1.1638	-2.0587
0.8999	0.889706	-0.3088	1.47281	-0.0016	0.67597	-1.1494
1	0.841241		1.47729		0.42394	
		3	333.15 K			
0	1.092444		1.44654		12.343	
0.0998	1.080126	-0.2308	1.44824	-0.0010	10.173	-0.9756
0.2005	1.066014	-0.4185	1.45033	-0.0017	8.2296	-1.7137
0.3007	1.050023	-0.5625	1.45283	-0.0020	6.5222	-2.2218
0.3999	1.031851	-0.6512	1.45536	-0.0022	5.0404	-2.5163
0.5000	1.010940	-0.7177	1.45806	-0.0022	3.7467	-2.6119
0.6004	0.986500	-0.7177	1.46086	-0.0022	2.6490	-2.5079
0.7003	0.958097	-0.6635	1.46367	-0.0021	1.7570	-2.2042
0.8001	0.924532	-0.5334	1.46672	-0.0018	1.0722	-1.6945
0.8999	0.884480	-0.3240	1.47010	-0.0012	0.60565	-0.9666
1	0.835759		1.47404		0.37416	
		Benzen (1) + PEG 400 (2)			
		2	288.15 K			
0	1.130170		1.46884		162.12	
0.1001	1.124063	-0.1556	1.46994	-0.0024	143.36	-2.6020
0.1998	1.116808	-0.2859	1.47124	-0.0046	120.98	-8.8939
0.3004	1.108043	-0.4140	1.47261	-0.0067	97.252	-16.378
0.4005	1.097393	-0.5323	1.47467	-0.0082	74.433	-23.039

0.5007	1.084117	-0.6451	1.47678	-0.0095	53.714	-27.585			
0.6005	1.066843	-0.6832	1.47948	-0.0103	36.036	-29.153			
0.7004	1.043722	-0.6675	1.48302	-0.0103	21.770	-27.293			
0.7999	1.011302	-0.5494	1.48784	-0.0089	11.164	-21.839			
0.9000	0.962862	-0.3371	1.49455	-0.0057	4.1370	-12.708			
1	0.884292		1.50376		0.70270				
		2	293.15 K						
0	1.126082		1.46700		119.76				
0.1001	1.119945	-0.1624	1.46808	-0.0023	106.34	-1.5028			
0.1998	1.112649	-0.2974	1.46936	-0.0043	90.194	-5.7698			
0.3004	1.103838	-0.4305	1.47070	-0.0063	73.015	-10.967			
0.4005	1.093136	-0.5549	1.47272	-0.0077	56.414	-15.645			
0.5007	1.079797	-0.6732	1.47480	-0.0089	41.234	-18.891			
0.6005	1.062445	-0.7159	1.47738	-0.0097	28.138	-20.102			
0.7004	1.039204	-0.7003	1.48081	-0.0096	17.386	-18.955			
0.7999	1.006614	-0.5783	1.48539	-0.0084	9.1904	-15.300			
0.9000	0.957919	-0.3562	1.49176	-0.0053	3.5630	-9.0048			
1	0.878966		1.50044		0.65764				
298.15 К									
0	1.121984		1.46515		90.701				
0.1001	1.115813	-0.1682	1.46625	-0.0021	80.515	-1.1690			
0.1998	1.108482	-0.3099	1.46750	-0.0040	68.686	-4.0161			
0.3004	1.099633	-0.4506	1.46880	-0.0060	56.082	-7.5579			
0.4005	1.088883	-0.5816	1.47076	-0.0072	43.735	-10.887			
0.5007	1.075482	-0.7055	1.47279	-0.0084	32.266	-13.330			
0.6005	1.058056	-0.7533	1.47531	-0.0090	22.246	-14.359			
0.7004	1.034687	-0.7360	1.47861	-0.0089	13.969	-13.637			
0.7999	1.001925	-0.6096	1.48302	-0.0077	7.6488	-10.994			
0.9000	0.952969	-0.3765	1.48903	-0.0049	3.2367	-6.3882			
1	0.873628		1.49714		0.61639				
		3	303.15 K						
0	1.117887		1.46333		70.209				
0.1001	1.111682	-0.1743	1.46441	-0.0020	62.732	-0.5067			
0.1998	1.104323	-0.3250	1.46562	-0.0038	53.707	-2.5894			
0.3004	1.095435	-0.4731	1.46690	-0.0056	44.055	-5.2367			
0.4005	1.084636	-0.6106	1.46881	-0.0067	34.646	-7.6755			
0.5007	1.071165	-0.7386	1.47077	-0.0078	25.917	-9.4279			
0.6005	1.053655	-0.7899	1.47323	-0.0084	18.215	-10.181			
0.7004	1.030170	-0.7734	1.47640	-0.0083	11.686	-9.7532			
0.7999	0.997232	-0.6421	1.48065	-0.0071	6.4870	-8.0240			
0.9000	0.948016	-0.3980	1.48629	-0.0045	2.7046	-4.8363			
1	0.868281		1.49382		0.57771				
		3	308.15 K						
0	1.113792		1.46152		55.401				
0.1001	1.107562	-0.1836	1.46257	-0.0019	49.501	-0.4089			

0.1998	1.100168	-0.3415	1.46376	-0.0036	42.596	-1.8450		
0.3004	1.091238	-0.4967	1.46498	-0.0053	35.200	-3.7216		
0.4005	1.080388	-0.6408	1.46685	-0.0063	27.904	-5.5265		
0.5007	1.066855	-0.7750	1.46868	-0.0074	21.042	-6.8920		
0.6005	1.049265	-0.8308	1.47113	-0.0078	14.926	-7.5336		
0 7004	1 025656	-0.8140	1 47419	-0.0076	97167	-7 2621		
0 7999	0.992544	-0.6781	1 47829	-0.0064	5 5612	-5 9594		
0.9000	0.992011	-0.4212	1.17029	-0.0040	2 4866	-3 5427		
1	0.862911	0.1212	1.10900	0.0010	0 54354	5.5127		
1	0.002711	3	13 15 K		0.01001			
0	1 109703		1 45973		44 482			
0 1001	1 103445	-0 1924	1 46073	-0.0017	39 989	-0.0917		
0.1998	1.096019	-0 3589	1.16675	-0.0033	34 527	-1 1691		
0.1990	1.090019	-0.5307	1.40107	-0.0033	28 654	-2.6188		
0.3004	1.007047	-0.3210	1.40307	-0.0049	20.034	-2.0100 2.000E		
0.4003	1.070130	-0.0730	1.40400	-0.0039	22.003	-3.9003		
0.5007	1.002555	-0.0139	1.40005	-0.0000	17.400	-5.0060		
0.6005	1.0448//	-0.8/33	1.46904	-0.0072	12.582	-5.4959		
0.7004	1.021143	-0.8564	1.47196	-0.0070	8.3318	-5.3531		
0.7999	0.987850	-0.7152	1.47591	-0.0058	4.8217	-4.4880		
0.9000	0.938083	-0.4453	1.48088	-0.0036	2.1410	-2.7673		
1	0.857527		1.48721		0.51118			
318.15 K								
0	1.105616		1.45794		36.266			
0.1001	1.099336	-0.2035	1.45889	-0.0017	32.626	-0.0578		
0.1998	1.091875	-0.3782	1.46001	-0.0031	28.262	-0.8544		
0.3004	1.082863	-0.5493	1.46118	-0.0046	23.590	-1.9259		
0.4005	1.071916	-0.7088	1.46292	-0.0054	18.994	-2.9400		
0.5007	1.058249	-0.8543	1.46464	-0.0063	14.646	-3.7028		
0.6005	1.040479	-0.9164	1.46693	-0.0066	10.686	-4.0913		
0.7004	1.016626	-0.9007	1.46975	-0.0064	7.1759	-4.0262		
0.7999	0.983151	-0.7543	1.47351	-0.0052	4.2165	-3.4249		
0.9000	0.933104	-0.4710	1.47805	-0.0033	1.9074	-2.1520		
1	0.852123		1.48391		0.48083			
		3	23.15 K					
0	1.101537		1.45614		29.984			
0.1001	1.095230	-0.2138	1.45706	-0.0015	27.104	0.0760		
0.1998	1.087732	-0.3966	1.45817	-0.0029	23.575	-0.5088		
0.3004	1.078684	-0.5778	1.45927	-0.0042	19.765	-1.3471		
0.4005	1.067683	-0.7447	1.46097	-0.0050	16.001	-2.1549		
0.5007	1.053949	-0.8968	1.46259	-0.0058	12.426	-2.7709		
0.6005	1.036086	-0.9623	1.46483	-0.0060	9.1522	-3.0976		
0.7004	1.012109	-0.9475	1.46755	-0.0057	6.2242	-3.0754		
0.7999	0.978448	-0.7958	1.47110	-0.0046	3.7217	-2.6394		
0.9000	0.928115	-0.4986	1.47532	-0.0029	1.7293	-1.6757		
1	0.846694		1.48062		0.45170			

		3	328.15 K						
0	1.097468		1.45435		25.104				
0.1001	1.091127	-0.2225	1.45527	-0.0014	22.722	0.0889			
0.1998	1.083596	-0.4155	1.45631	-0.0026	19.807	-0.3656			
0.3004	1.074501	-0.6047	1.45740	-0.0038	16.680	-1.0101			
0.4005	1.063452	-0.7812	1.45905	-0.0045	13.602	-1.6179			
0.5007	1.049646	-0.9394	1.46064	-0.0052	10.671	-2.0758			
0.6005	1.031696	-1.0102	1.46279	-0.0053	7.9569	-2.3267			
0.7004	1.007584	-0.9952	1.46536	-0.0051	5.4812	-2.3369			
0.7999	0.973736	-0.8387	1.46872	-0.0040	3.3119	-2.0505			
0.9000	0.923112	-0.5273	1.47253	-0.0025	1.5470	-1.3450			
1	0.841241		1.47729		0.42394				
333.15 К									
0	1.093396		1.45262		21.401				
0.1001	1.087028	-0.2339	1.45349	-0.0013	19.402	0.1055			
0.1998	1.079466	-0.4381	1.45443	-0.0025	16.955	-0.2447			
0.3004	1.070326	-0.6363	1.45554	-0.0035	14.341	-0.7439			
0.4005	1.059223	-0.8211	1.45693	-0.0043	11.772	-1.2079			
0.5007	1.045350	-0.9870	1.45868	-0.0047	9.3169	-1.5560			
0.6005	1.027298	-1.0606	1.46083	-0.0047	7.0184	-1.7560			
0.7004	1.003059	-1.0469	1.46337	-0.0043	4.8840	-1.7898			
0.7999	0.969015	-0.8844	1.46647	-0.0033	2.9730	-1.6086			
0.9000	0.918096	-0.5584	1.47004	-0.0019	1.3875	-1.0894			
1	0.835759		1.47404		0.37416				
		Toluen (1) + PEG 200 (2)						
		2	288.15 K						
0	1.128294		1.46220		86.422				
0.1002	1.113434	-0.1732	1.46467	-0.0012	62.795	-15.031			
0.2002	1.097006	-0.3076	1.46748	-0.0021	43.791	-25.455			
0.2997	1.078778	-0.3905	1.47054	-0.0027	29.592	-31.118			
0.3998	1.058343	-0.4306	1.47372	-0.0032	19.132	-32.990			
0.4996	1.035600	-0.4306	1.47700	-0.0036	12.151	-31.409			
0.6000	1.010001	-0.3947	1.48047	-0.0038	7.3758	-27.571			
1	0.871498		1.49899		0.62999				
		2	293.15 K						
0	1.124320		1.46043		64.815				
0.1002	1.109404	-0.1765	1.46319	-0.0008	47.679	-10.702			
0.2002	1.092930	-0.3155	1.46568	-0.0019	33.798	-18.161			
0.2997	1.074637	-0.4000	1.46873	-0.0024	23.266	-22.303			
0.3998	1.054131	-0.4407	1.47175	-0.0029	15.365	-23.776			
0.4996	1.031314	-0.4407	1.47488	-0.0034	9.9352	-22.797			
0.6000	1.005642	-0.4044	1.47824	-0.0036	6.1798	-20.105			
1	0.866856		1.49610		0.59856				
		2	298.15 K						
0	1.120343		1.45868		49.724				

0.1002	1.105377	-0.1809	1.46139	-0.0007	37.004	-7.7946
0.2002	1.088842	-0.3228	1.46391	-0.0017	26.440	-13.443
0.2997	1.070494	-0.4106	1.46682	-0.0022	18.545	-16.447
0.3998	1.049925	-0.4531	1.46976	-0.0027	12.497	-17.575
0.4996	1.027033	-0.4531	1.47281	-0.0031	8.2826	-16.883
0.6000	1.001274	-0.4148	1.47607	-0.0033	5.2455	-14.985
1	0.862197		1.49317		0.56861	
		3	303.15 K			
0	1.116365		1.45693		38.912	
0.1002	1.101346	-0.1852	1.45961	-0.0007	29.273	-5.7942
0.2002	1.084759	-0.3311	1.46214	-0.0015	21.355	-9.8751
0.2997	1.066347	-0.4212	1.46493	-0.0020	15.177	-12.235
0.3998	1.045707	-0.4648	1.46779	-0.0025	10.348	-13.223
0.4996	1.022739	-0.4648	1.47069	-0.0029	6.9873	-12.754
0.6000	0.996903	-0.4259	1.47384	-0.0031	4.5064	-11.383
1	0.857528		1.49028		0.54060	
		3	308.15 K			
0	1.112387		1.45519		31.006	
0.1002	1.097315	-0.1897	1.45779	-0.0006	23.558	-4.3927
0.2002	1.080668	-0.3391	1.46032	-0.0013	17.403	-7.4984
0.2997	1.062195	-0.4319	1.46304	-0.0018	12.541	-9.3265
0.3998	1.041485	-0.4771	1.46578	-0.0023	8.7130	-10.102
0.4996	1.018442	-0.4772	1.46865	-0.0026	5.9648	-9.8072
0.6000	0.992518	-0.4365	1.47172	-0.0028	3.9099	-8.8007
1	0.852846		1.48740		0.51366	
		3	313.15 K			
0	1.108402		1.45346		25.102	
0.1002	1.093279	-0.1947	1.45596	-0.0006	19.249	-3.3866
0.2002	1.076575	-0.3479	1.45849	-0.0012	14.388	-5.7862
0.2997	1.058038	-0.4434	1.46109	-0.0017	10.498	-7.2271
0.3998	1.037257	-0.4898	1.46375	-0.0021	7.4061	-7.8551
0.4996	1.014136	-0.4899	1.46655	-0.0024	5.1447	-7.6600
0.6000	0.988127	-0.4477	1.46950	-0.0026	3.4238	-6.9096
1	0.848158		1.48452		0.48767	
		3	318.15 K			
0	1.104421		1.45170		20.602	
0.1002	1.089244	-0.1997	1.45411	-0.0006	15.949	-2.6351
0.2002	1.072483	-0.3575	1.45661	-0.0011	12.047	-4.5233
0.2997	1.053878	-0.4553	1.45914	-0.0015	8.8920	-5.6745
0.3998	1.033021	-0.5027	1.46179	-0.0019	6.3598	-6.1909
0.4996	1.009816	-0.5024	1.46449	-0.0022	4.4775	-6.0634
0.6000	0.983724	-0.4595	1.46737	-0.0023	3.0210	-5.4980
1	0.843443		1.48165		0.46363	
		3	323.15 K			
0	1.100435		1.44998		17.136	

0.1002	1.085197	-0.2041	1.45226	-0.0006	13.376	-2.0872			
0.2002	1.068377	-0.3664	1.45476	-0.0010	10.190	-3.6037			
0.2997	1.049707	-0.4676	1.45723	-0.0014	7.6028	-4.5297			
0.3998	1.028778	-0.5169	1.45978	-0.0017	5.5135	-4.9478			
0.4996	1.005493	-0.5170	1.46245	-0.0019	3.9301	-4.8651			
0.6000	0.979309	-0.4722	1.46519	-0.0021	2.6847	-4.4343			
1	0.838704		1.47883		0.44094				
		3	328.15 K						
0	1.096443		1.44824		14.424				
0.1002	1.081149	-0.2095	1.45049	-0.0005	11.346	-1.6748			
0.2002	1.064268	-0.3764	1.45291	-0.0009	8.7176	-2.9027			
0.2997	1.045528	-0.4804	1.45531	-0.0012	6.5746	-3.6523			
0.3998	1.024521	-0.5311	1.45781	-0.0015	4.8209	-4.0041			
0.4996	1.001151	-0.5311	1.46037	-0.0017	3.4753	-3.9521			
0.6000	0.974880	-0.4855	1.46304	-0.0018	2.4018	-3.6195			
1	0.833944		1.47591		0.41956				
333.15 K									
0	1.092444		1.44654		12.343				
0.1002	1.077060	-0.2099	1.44891	-0.0003	9.7776	-1.3688			
0.2002	1.060116	-0.3816	1.45124	-0.0006	7.5639	-2.3882			
0.2997	1.041315	-0.4902	1.45360	-0.0009	5.7778	-2.9860			
0.3998	1.020242	-0.5446	1.45605	-0.0011	4.2781	-3.2903			
0.4996	0.996798	-0.5464	1.45860	-0.0012	3.1110	-3.2655			
0.6000	0.970437	-0.4998	1.46129	-0.0012	2.1769	-3.0006			
1	0.829160		1.47314		0.40046				
		Toluen (1) + PEG 400 (2))					
			288.15 K						
0	1.130170		1.46884		162.12				
0.1002	1.122548	-0.2069	1.46991	-0.0019	133.42	-12.519			
0.1999	1.113491	-0.3514	1.47131	-0.0036	106.16	-23.678			
0.3003	1.102595	-0.4611	1.47286	-0.0050	80.464	-33.161			
0.4000	1.089598	-0.5577	1.47478	-0.0061	58.584	-38.940			
0.5000	1.073593	-0.6252	1.47695	-0.0070	40.482	-40.893			
0.6000	1.053533	-0.6625	1.47959	-0.0073	24.849	-40.377			
0.7001	1.027437	-0.6209	1.48285	-0.0071	13.241	-35.820			
0.7999	0.992525	-0.4908	1.48697	-0.0060	6.6357	-26.308			
0.9000	0.943601	-0.2730	1.49230	-0.0037	2.4243	-14.355			
1	0.871498		1.49899		0.62999				
		2	293.15 K						
0	1.126082		1.46700		119.76				
0.1002	1.118429	-0.2086	1.46803	-0.0019	99.369	-8.4510			
0.1999	1.109342	-0.3559	1.46945	-0.0034	79.844	-16.096			
0.3003	1.098429	-0.4722	1.47098	-0.0048	61.263	-22.713			
0.4000	1.085397	-0.5718	1.47284	-0.0058	45.249	-26.846			
0.5000	1.069335	-0.6381	1.47489	-0.0067	31.808	-28.371			

0.6000	1.049217	-0.6755	1.47743	-0.0070	19.985	-28.278
0.7001	1.023060	-0.6345	1.48059	-0.0068	11.367	-24.968
0.7999	0.988095	-0.5063	1.48455	-0.0057	5.6507	-18.792
0.9000	0.939106	-0.2875	1.48992	-0.0033	2.1512	-10.364
1	0.866856		1.49610		0.59856	
		2	298.15 K			
0	1.121984		1.46515		90.701	
0.1002	1.114312	-0.2141	1.46626	-0.0017	75.796	-5.8737
0.1999	1.105202	-0.3657	1.46760	-0.0032	61.445	-11.239
0.3003	1.094245	-0.4820	1.46913	-0.0044	47.687	-15.947
0.4000	1.081179	-0.5847	1.47091	-0.0055	35.423	-19.225
0.5000	1.065081	-0.6549	1.47292	-0.0064	25.480	-20.155
0.6000	1.044923	-0.6959	1.47540	-0.0066	16.258	-20.364
0.7001	1.018691	-0.6523	1.47850	-0.0063	9.5214	-18.078
0.7999	0.983610	-0.5158	1.48232	-0.0052	4.8684	-13.736
0.9000	0.934487	-0.2871	1.48718	-0.0032	1.9241	-7.6578
1	0.862197		1.49317		0.56861	
		3	303.15 K			
0	1.117887		1.46333		70.209	
0.1002	1.110195	-0.2196	1.46440	-0.0016	59.047	-4.1812
0.1999	1.101060	-0.3754	1.46575	-0.0030	48.271	-8.0113
0.3003	1.090074	-0.4956	1.46728	-0.0041	37.849	-11.439
0.4000	1.076974	-0.6016	1.46898	-0.0051	28.675	-13.667
0.5000	1.060830	-0.6733	1.47096	-0.0058	20.757	-14.618
0.6000	1.040623	-0.7162	1.47333	-0.0062	13.573	-14.835
0.7001	1.014322	-0.6716	1.47642	-0.0058	8.0873	-13.347
0.7999	0.979153	-0.5313	1.47986	-0.0050	4.2354	-10.246
0.9000	0.929924	-0.2961	1.48449	-0.0031	1.7359	-5.7715
1	0.857528		1.49028		0.54060	
			308.15			
0	1.113792		1.46152		55.401	
0.1002	1.106083	-0.2262	1.46262	-0.0015	46.884	-3.0173
0.1999	1.096921	-0.3860	1.46388	-0.0028	38.627	-5.8020
0.3003	1.085908	-0.5106	1.46539	-0.0039	30.572	-8.3463
0.4000	1.072773	-0.6204	1.46703	-0.0048	23.414	-10.032
0.5000	1.056583	-0.6936	1.46900	-0.0055	17.167	-10.790
0.6000	1.036325	-0.7384	1.47125	-0.0058	11.387	-11.082
0.7001	1.009952	-0.6922	1.47410	-0.0055	6.9418	-10.033
0.7999	0.974692	-0.5476	1.47755	-0.0047	3.7297	-7.7669
0.9000	0.925352	-0.3054	1.48190	-0.0029	1.5748	-4.4276
1	0.852846		1.48740		0.51366	
		3	313.15 K			
0	1.109703		1.45973		44.482	
0.1002	1.101974	-0.2323	1.46067	-0.0015	37.854	-2.2198
0.1999	1.092789	-0.3975	1.46202	-0.0027	31.408	-4.2795

0.3003	1.081743	-0.5255	1.46349	-0.0037	25.077	-6.1935
0.4000	1.068573	-0.6388	1.46508	-0.0046	19.395	-7.4893
0.5000	1.052340	-0.7148	1.46678	-0.0053	14.387	-8.0978
0.6000	1.032030	-0.7615	1.46918	-0.0054	9.7153	-8.3701
0.7001	1.005585	-0.7139	1.47181	-0.0053	6.0158	-7.6658
0.7999	0.970228	-0.5644	1.47510	-0.0045	3.3053	-5.9856
0.9000	0.920770	-0.3141	1.47923	-0.0028	1.4363	-3.4508
1	0.848158		1.48452		0.48767	
		3	318.15 K			
0	1.105616		1.45794		36.266	
0.1002	1.097871	-0.2402	1.45888	-0.0014	31.027	-1.6516
0.1999	1.088659	-0.4101	1.46016	-0.0025	25.917	-3.1921
0.3003	1.077595	-0.5458	1.46160	-0.0035	20.854	-4.6606
0.4000	1.064384	-0.6614	1.46314	-0.0043	16.276	-5.6691
0.5000	1.048101	-0.7390	1.46494	-0.0049	12.200	-6.1648
0.6000	1.027712	-0.7823	1.46712	-0.0051	8.3470	-6.4376
0.7001	1.001209	-0.7370	1.46958	-0.0050	5.2623	-5.9385
0.7999	0.965808	-0.5916	1.47271	-0.0042	2.9520	-4.6757
0.9000	0.916278	-0.3394	1.47665	-0.0026	1.3170	-2.7269
1	0.843443		1.48165		0.46363	
		3	323.15 K			
0	1.101537		1.45614		29.984	
0.1002	1.093772	-0.2474	1.45704	-0.0014	25.778	-1.2458
0.1999	1.084537	-0.4238	1.45832	-0.0024	21.663	-2.4153
0.3003	1.073424	-0.5596	1.45970	-0.0032	17.555	-3.5572
0.4000	1.060176	-0.6799	1.46122	-0.0040	13.819	-4.3478
0.5000	1.043862	-0.7641	1.46296	-0.0045	10.456	-4.7565
0.6000	1.023426	-0.8114	1.46506	-0.0047	7.2531	-5.0051
0.7001	0.996832	-0.7619	1.46733	-0.0047	4.6397	-4.6612
0.7999	0.961280	-0.6037	1.47027	-0.0040	2.6547	-3.6978
0.9000	0.911577	-0.3371	1.47401	-0.0026	1.2127	-2.1826
1	0.838704		1.47883		0.44094	
		3	328.15 K			
0	1.097468		1.45435		25.104	
0.1002	1.089676	-0.2530	1.45527	-0.0012	21.678	-0.9526
0.1999	1.080415	-0.4357	1.45649	-0.0022	18.317	-1.8526
0.3003	1.069270	-0.5767	1.45784	-0.0030	14.947	-2.7443
0.4000	1.055984	-0.7018	1.45933	-0.0036	11.853	-3.3772
0.5000	1.039622	-0.7894	1.46101	-0.0041	9.0444	-3.7174
0.6000	1.019128	-0.8390	1.46303	-0.0043	6.3572	-3.9361
0.7001	0.992453	-0.7882	1.46514	-0.0043	4.1219	-3.7005
0.7999	0.956796	-0.6250	1.46788	-0.0037	2.4017	-2.9572
0.9000	0.906959	-0.3494	1.47139	-0.0024	1.1209	-1.7671
1	0.833944		1.47591		0.41956	

0	1.093396		1.45262		21.401	
0.1002	1.085590	-0.2632	1.45352	-0.0012	18.533	-0.7638
0.1999	1.076288	-0.4479	1.45471	-0.0020	15.746	-1.4570
0.3003	1.065126	-0.5990	1.45602	-0.0028	12.929	-2.1655
0.4000	1.051804	-0.7293	1.45750	-0.0033	10.329	-2.6718
0.5000	1.035381	-0.8173	1.45907	-0.0038	7.9565	-2.9442
0.6000	1.014820	-0.8677	1.46119	-0.0037	5.6457	-3.1550
0.7001	0.988078	-0.8184	1.46366	-0.0033	3.7089	-2.9896
0.7999	0.952354	-0.6571	1.46644	-0.0026	2.1858	-2.4169
0.9000	0.902416	-0.3766	1.46960	-0.0015	1.0430	-1.4575
1	0.829160		1.47314		0.40046	

Tabela P3 - Parametri A_p i odgovarajuća srednja kvadratna odstupanja Redlich-Kisterovog polinoma σ za binarne smeše benzen (1) + PEG 200 (2), benzen (1) + PEG 400 (2), toluen (1) + PEG 200 (2) i toluen (1) + PEG 400 (2) na temperaturi T i atmosferskom pritisku

Funkcija	Т/К	A_0	A_1	A_2	<i>A</i> ₃	σ			
Benzen (1) + PEG 200 (2)									
<i>V</i> ^E /10 ⁻³ m ³ ·kmol ⁻¹	288.15	-1.8318	-0.4194	-0.2337	-	0.0085			
	293.15	-1.9291	-0.4411	-0.2670	-	0.0087			
	298.15	-2.0367	-0.4581	-0.2213	-	0.0085			
	303.15	-2.1434	-0.4577	-0.2135	-	0.0085			
	308.15	-2.2513	-0.4965	-0.2383	-	0.0088			
	313.15	-2.3719	-0.5134	-0.2183	-	0.0088			
	318.15	-2.4836	-0.5401	-0.2404	-	0.0087			
	323.15	-2.6064	-0.5641	-0.2336	-	0.0087			
	328.15	-2.7414	-0.5759	-0.2464	-	0.0096			
	333.15	-2.8706	-0.6039	-0.2837	-	0.0099			
<i>∆η</i> / mPa∙s	288.15	-107.60	15.631	12.245	-	0.1120			
	293.15	-77.694	10.002	8.1433	-	0.1026			
	298.15	-57.245	6.4834	4.9726	-	0.0847			
	303.15	-43.194	4.2022	3.5145	-	0.0718			
	308.15	-33.014	2.5172	1.9687	-	0.0655			
	313.15	-25.621	1.5924	1.0775	-	0.0621			
	318.15	-20.246	0.8390	0.7555	-	0.0558			
	323.15	-16.181	0.4495	0.5006	-	0.0540			
	328.15	-13.083	0.1951	0.2625	-	0.0550			
	333.15	-10.447	0.0803	-0.5426	-	0.0441			
Δn_D	288.15	-0.0253	-0.0072	-0.0061	-	0.0001			
	293.15	-0.0235	-0.0072	-0.0067	-	0.0001			
	298.15	-0.0218	-0.0070	-0.0059	-	0.0001			
	303.15	-0.0200	-0.0062	-0.0057	-	0.0001			
	308.15	-0.0184	-0.0056	-0.0057	-	0.0001			

	313.15	-0.0166	-0.0048	-0.0065	-	0.0001
	318.15	-0.0148	-0.0042	-0.0063	-	0.0001
	323.15	-0.0133	-0.0032	-0.0062	-	0.0001
	328.15	-0.0115	-0.0024	-0.0064	-	0.0001
	333.15	-0.0089	-0.0005	-0.0059	-	0.0001
		Benzen (1) + PEG 400 (2	2)		
$V^{\rm E}/10^{-3}{\rm m}^3\cdot{\rm kmol}^{-1}$	288.15	-2.5182	-1.5928	-0.3412	0.5201	0.0099
,	293.15	-2.6308	-1.7026	-0.3852	0.5633	0.0101
	298.15	-2.7695	-1.7977	-0.3418	0.5909	0.0086
	303.15	-2.9020	-1.8811	-0.4145	0.5330	0.0088
	308.15	-3.0520	-1.9833	-0.4234	0.5638	0.0081
	313.15	-3.2051	-2.0938	-0.4739	0.5871	0.0084
	318.15	-3.3647	-2.1813	-0.5281	0.5596	0.0086
	323.15	-3.5289	-2.2889	-0.6458	0.4928	0.0096
	328.15	-3.7037	-2.4117	-0.6559	0.5031	0.0088
	333.15	-3.8877	-2.5236	-0.7386	0.4693	0.0097
<i>Δη</i> / mPa⋅s	288.15	-110.25	-63.571	39.414	-10.375	0.6503
	293.15	-75.501	-46.261	26.786	-9.1549	0.4648
	298.15	-53.269	-36.322	17.652	0.0974	0.3068
	303.15	-37.675	-25.937	12.501	-6.4685	0.2503
	308.15	-27.539	-20.929	8.7363	-1.3136	0.1738
	313.15	-20.002	-15.567	6.4420	-4.7166	0.1552
	318.15	-14.795	-11.864	3.9396	-4.1918	0.0999
	323.15	-11.070	-9.6952	3.4140	-3.8619	0.1005
	328.15	-8.2930	-7.2347	2.0564	-4.2564	0.0692
	333.15	-6.2161	-5.5522	1.1735	-4.2917	0.0633
Δn_D	288.15	-0.0381	-0.0223	-0.0117	-	0.0001
	293.15	-0.0358	-0.0211	-0.0104	-	0.0001
	298.15	-0.0335	-0.0192	-0.0089	-	0.0001
	303.15	-0.0313	-0.0171	-0.0075	-	0.0001
	308.15	-0.0294	-0.0149	-0.0051	-	0.0001
	313.15	-0.0273	-0.0128	-0.0035	-	0.0001
	318.15	-0.0252	-0.0112	-0.0033	-	0.0001
	323.15	-0.0232	-0.0092	-0.0017	-	0.0001
	328.15	-0.0208	-0.0077	-0.0009	-	0.0001
	333.15	-0.0186	-0.0042	0.0021	-	0.0001
		Toluen (1)) + PEG 200 (2	2)		
V ^E /10 ⁻³ m ³ ⋅kmol ⁻¹	288.15	-1.7221	0.3745	0.0713	-	0.0060
	293.15	-1.7624	0.3819	0.0586	-	0.0064
	298.15	-1.8120	0.4004	0.1012	-	0.0066
	303.15	-1.8589	0.4110	0.1036	-	0.0069
	308.15	-1.9087	0.4219	0.1222	-	0.0070
	313.15	-1.9594	0.4348	0.1311	-	0.0073
	318.15	-2.0092	0.4554	0.1383	-	0.0072
	323.15	-2.0675	0.4651	0.1624	-	0.0079

	328.15	-2.1239	0.4796	0.1682	-	0.0079
	333.15	-2.1851	0.4661	0.2256	-	0.0094
<i>∆η</i> / mPa·s	288.15	-126.39	56.466	5.6749	-	0.1504
	293.15	-91.605	38.333	4.3038	-	0.0847
	298.15	-67.880	26.918	2.0653	-	0.1185
	303.15	-51.344	18.920	3.3981	-	0.0560
	308.15	-39.463	13.511	2.2986	-	0.0376
	313.15	-30.805	9.7498	1.6139	-	0.0264
	318.15	-24.400	7.1724	1.4161	-	0.0228
	323.15	-19.578	5.3916	0.9937	-	0.0193
	328.15	-15.906	4.0372	0.7329	-	0.0165
	333.15	-13.101	2.9894	0.4390	-	0.0183
Δn_D	288.15	-0.0143	-0.0064	-0.0062	-	0.0001
	293.15	-0.0135	-0.0067	-0.0037	-	0.0001
	298.15	-0.0124	-0.0061	-0.0030	-	0.0001
	303.15	-0.0116	-0.0061	-0.0021	-	0.0001
	308.15	-0.0105	-0.0053	-0.0009	-	0.0001
	313.15	-0.0097	-0.0052	-0.0023	-	0.0000
	318.15	-0.0087	-0.0042	-0.0019	-	0.0000
	323.15	-0.0078	-0.0042	-0.0034	-	0.0000
	328.15	-0.0068	-0.0032	-0.0020	-	0.0000
	333.15	-0.0049	-0.0008	0.0015	-	0.0003
		Toluen (1)) + PEG 400 (2	2)		
<i>V</i> ^E /10 ⁻³ m ³ ⋅kmol ⁻¹	288.15	-2.5307	-1.1370	-0.2809	1.1463	0.0107
	293.15	-2.5867	-1.1171	-0.2985	0.9315	0.0127
	298.15	-2.6571	-1.2048	-0.2703	1.1786	0.0113
	303.15	-2.7346	-1.2421	-0.2738	1.1990	0.0117
	308.15	-2.8200	-1.2778	-0.2705	1.2153	0.0124
	313.15	-2.9061	-1.3298	-0.2773	1.2845	0.0128
	318.15	-2.9926	-1.2989	-0.3824	0.9878	0.0166
	323.15	-3.0937	-1.4243	-0.3253	1.3594	0.0137
	328.15	-3.1970	-1.4841	-0.3261	1.3886	0.0145
	333.15	-3.3112	-1.4865	-0.3936	1.1087	0.0181
<i>∆η</i> / mPa•s	288.15	-166.10	-13.435	26.592	-	0.4096
	293.15	-115.43	-14.295	17.126	-	0.2302
	298.15	-82.786	-12.674	12.326	-	0.2275
	303.15	-59.557	-11.522	6.7931	-	0.1313
	308.15	-44.053	-10.167	4.5188	-	0.1088
	313.15	-33.068	-8.8130	2.6100	-	0.0826
	318.15	-25.227	-7.6636	1.5946	-	0.0679
	323.15	-19.469	-6.6413	0.7129	-	0.0548
	328.15	-15.228	-5.7333	0.2828	-	0.0426
	333.15	-12.109	-4.9381	-0.2994	-	0.0386
Δn_D	288.15	-0.0279	-0.0125	-0.0058	-	0.0002
	293.15	-0.0266	-0.0118	-0.0058	-	0.0003

298.15	-0.0250	-0.0107	-0.0038	-	0.0003
303.15	-0.0234	-0.0104	-0.0049	-	0.0002
308.15	-0.0219	-0.0098	-0.0040	-	0.0001
313.15	-0.0208	-0.0092	-0.0043	-	0.0001
318.15	-0.0195	-0.0086	-0.0045	-	0.0001
323.15	-0.0181	-0.0084	-0.0055	-	0.0002
328.15	-0.0165	-0.0078	-0.0055	-	0.0003
 333.15	-0.0151	-0.0073	-0.0061	-	0.0005

	$lpha_{nm}$							
n/m	CH ₃	CH ₂	ОН	CH ₂ O	CH_{ar}	Car		
CH ₃	0	-709.5 ^a	594.4 ^a	-50.17 ^b	-119.5ª	-477.302 ^c		
CH_2	66.53ª	0	498.6 ^a	-319.93 ^b	406.7ª	-528.946 ^c		
OH	1209ª	-634.5 ^a	0	-619.36 ^b	197.7ª	-517.381°		
CH_2O	456.91 ^b	-340.25 ^b	25.34 ^b	0	-315.736 ^c	-530.478c		
CH_{ar}	237.2 ^a	-623.7ª	419.3 ^a	-696.072c	0	-446.993c		
Car	-371.255 c	-539.677°	-653.743°	-550.277°	-292.381°	0		

Tabela P4 - UNIFAC-VISCO interakcioni parametri dobijeni iz eksperimentalnih vrednosti viskoznosti za sisteme benzen (1) + PEG 200 (2), benzen (1) + PEG 400 (2), toluen (1) + PEG 200 (2), toluen (1) + PEG 400 (2)^{a,b,c}

^a originalni UNIFAC-VISCO parametri ^{173,174}

^b UNIFAC-VISCO parametri iz ¹⁸⁹

^c novi UNIFAC-VISCO parametri

Tabela P5 - ASOG-VISCO interakcioni parametri dobijeni iz eksperimentalnih vrednosti viskoznostiza sisteme benzen (1) + PEG 200 (2), benzen (1) + PEG 400 (2), toluen (1) + PEG 200 (2), toluen (1)+ PEG 400 (2) a,b

		m	kl		
k/l	CH ₂	ОН	CH ₂ O	CH _{ar}	Car
CH ₂	0	-0.357ª	-10.9924 ^b	0.2779ª	-1827.5232 ^b
OH	14.146ª	0	-2.2661 ^b	0 ^a	0.0006 ^b
CH_2O	-33.9591 ^b	1.5287 ^b	0	-1.5072 ^b	1.7373 ^b
CH_{ar}	1.2817ª	0 ^a	-0.6013b	0	0.6212 ^b
C_{ar}	0.4462 ^b	-9.2260b	-63.2064 ^b	-28.1545 ^b	0
		n	kl		
k/l	CH ₂	ОН	CH ₂ O	CHar	Car
CH ₂	0	469.65ª	-1.928 ^b	-418.5 ^a	-2.0608 ^b
OH	-61.37ª	0	-14.965 ^b	1247 ^a	-0.0001b
CH ₂ O	-8.176 ^b	-127.018 ^b	0	537.3024 ^b	-170.5928 ^b
CHar	-187.4ª	280.63ª	236.477 ^b	0	146.6703 ^b
Car	-70.060 ^b	7.877 ^b	23.285^{b}	-36.3902 ^b	0

^a originalni ASOG-VISCO parametri ¹⁷⁵

^b novi ASOG-VISCO parametri

	Prediktivn	i pristup		Korelativni pris	tup
Т / К	UNIFAC-VISCO	ASOG-VISCO	Teja-Rice	McAlister - 3	McAlister - 4
	PD _{max} (%)				
		Benzen (1) +	+ PEG 200 (2)		
288.15	4.69	1.21	2.06	0.33	0.23
293.15	3.86	1.06	2.00	0.34	0.24
298.15	3.10	0.98	2.00	0.35	0.23
303.15	2.33	0.90	1.98	0.36	0.23
308.15	1.73	0.93	4.96	0.63	0.52
313.15	1.16	0.98	1.82	0.40	0.25
318.15	0.73	1.03	1.88	0.42	0.58
323.15	0.57	1.13	1.84	0.45	0.30
328.15	1.06	1.27	1.79	0.50	0.33
333.15	0.38	2.52	1.46	0.41	0.39
		Benzen (1) -	+ PEG 400 (2)		
288.15	7.33	0.68	7.81	1.68	0.52
293.15	5.65	0.87	7.2	1.74	0.53
298.15	3.84	1.05	6.68	1.75	0.55
303.15	2.29	1.13	6.17	1.84	0.55
308.15	0.61	1.29	5.75	1.84	0.58
313.15	1.16	1.32	5.40	1.93	0.57
318.15	2.58	1.31	5.09	1.97	0.58
323.15	3.95	1.32	5.52	1.83	0.59
328.15	5.35	1.20	4.67	2.08	0.59
333.15	5.31	0.66	6.31	3.41	1.94
		Toluen (1) +	• PEG 200 (2)		
288.15	2.24	0.51	0.35	0.22	0.17
293.15	1.74	0.45	0.30	0.20	0.16
298.15	1.16	0.44	0.29	0.22	0.18
303.15	0.78	0.24	0.30	0.23	0.20
308.15	0.44	0.11	0.31	0.20	0.17
313.15	0.34	0.12	0.31	0.19	0.18
318.15	0.47	0.28	0.32	0.19	0.18
323.15	0.81	0.45	0.30	0.20	0.19
328.15	1.16	0.64	0.31	0.20	0.20
333.18	1.45	0.87	0.30	0.21	0.20
		Toluen (1) +	• PEG 400 (2)		
288.15	6.08	0.71	4.62	0.75	0.21
293.15	5.02	0.49	4.38	0.81	0.18
298.15	3.84	0.25	4.09	0.85	0.23

Tabela P6 – Rezultati predskazivanja (UNIFAC-VISCO i ASOG-VISCO) i korelisanja (Teja-Rice, McAllister – 3 i McAllister - 4) viskoznosti za za sisteme benzen (1) + PEG 200 (2), benzen (1) + PEG 400 (2), toluen (1) + PEG 200 (2), toluen (1) + PEG 400 (2) na temperatura (288.15 - 333.15) K i na atmosferskom pritisku

303.15	2.77	0.15	3.94	0.82	0.18
308.15	1.68	0.15	3.75	0.83	0.20
313.15	0.63	0.16	3.61	0.84	0.19
318.15	0.49	0.19	3.47	0.84	0.20
323.15	1.55	0.21	3.35	0.85	0.20
328.15	2.58	0.22	3.24	0.86	0.20
333.15	3.56	0.23	3.19	0.85	0.20

Tabela P7 - Rezultati (prikazani preko σ) predskazivanja indeksa refrakcije za sisteme benzen (1) + PEG 200 (2), benzen (1) + PEG 400 (2), toluen (1) + PEG 200 (2), toluen (1) + PEG 400 (2) na temperaturama (288.15 - 323.15) K i na atmosferskom pritisku, korišćenjem Lorentz-Lorenz (L-L), Dale-Gladstone (D-G), Eykman (Eyk), Arago-Biot (A-B), Newton (New), i Oster (Ost) modela

TT (12)	L-L	D-G	Eyk	A-B	New	Ost			
<i>I</i> (K)	σ	σ	σ	σ	σ	σ			
Benzen (1) + PEG 200 (2)									
288.15	0.00057	0.00046	0.00049	0.00046	0.00036	0.00040			
293.15	0.00066	0.00055	0.00058	0.00055	0.00046	0.00049			
298.15	0.00076	0.00066	0.00069	0.00066	0.00057	0.00061			
303.15	0.00088	0.00078	0.00081	0.00078	0.00070	0.00073			
308.15	0.00098	0.00089	0.00092	0.00089	0.00082	0.00084			
313.15	0.00108	0.00100	0.00102	0.00100	0.00093	0.00096			
318.15	0.00119	0.00112	0.00114	0.00112	0.00106	0.00108			
323.15	0.00127	0.00121	0.00123	0.00121	0.00115	0.00117			
328.15	0.00139	0.00133	0.00135	0.00133	0.00128	0.00130			
333.15	0.00172	0.00167	0.00168	0.00167	0.00162	0.00164			
	Benzen (1) + PEG 400 (2)								
288.15	0.00111	0.00104	0.00106	0.00104	0.00097	0.00100			
293.15	0.00120	0.00113	0.00115	0.00113	0.00107	0.00109			
298.15	0.00131	0.00125	0.00127	0.00125	0.00119	0.00121			
303.15	0.00141	0.00135	0.00137	0.00135	0.00130	0.00132			
308.15	0.00150	0.00145	0.00146	0.00145	0.00140	0.00142			
313.15	0.00157	0.00153	0.00154	0.00153	0.00148	0.00150			
318.15	0.00163	0.00159	0.00160	0.00159	0.00155	0.00157			
323.15	0.00171	0.00168	0.00169	0.00168	0.00164	0.00165			
328.15	0.00182	0.00178	0.00179	0.00178	0.00175	0.00176			
333.15	0.00195	0.00192	0.00193	0.00192	0.00190	0.00191			
		Tolue	en (1) + PEG 20	0 (2)					
288.15	0.00091	0.00083	0.00085	0.00083	0.00074	0.00077			
293.15	0.00103	0.00095	0.00097	0.00095	0.00087	0.00090			
298.15	0.00111	0.00103	0.00106	0.00103	0.00096	0.00099			
303.15	0.00118	0.00111	0.00113	0.00111	0.00104	0.00107			
308.15	0.00123	0.00116	0.00118	0.00116	0.00110	0.00112			
313.15	0.00126	0.00119	0.00121	0.00119	0.00113	0.00116			

0.00132	0.00126	0.00127	0.00126	0.00120	0.00122			
0.00134	0.00128	0.00130	0.00128	0.00123	0.00125			
0.00143	0.00138	0.00140	0.00138	0.00133	0.00135			
0.00171	0.00166	0.00168	0.00166	0.00162	0.00164			
Toluen (1) + PEG 400 (2)								
0.00123	0.00117	0.00119	0.00117	0.00112	0.00114			
0.00132	0.00126	0.00128	0.00126	0.00121	0.00123			
0.00137	0.00132	0.00134	0.00132	0.00128	0.00129			
0.00138	0.00133	0.00134	0.00133	0.00129	0.00131			
0.00139	0.00134	0.00136	0.00134	0.00130	0.00132			
0.00139	0.00135	0.00136	0.00135	0.00131	0.00132			
0.00137	0.00134	0.00135	0.00134	0.00130	0.00132			
0.00138	0.00135	0.00136	0.00135	0.00132	0.00133			
0.00144	0.00141	0.00142	0.00141	0.00138	0.00139			
0.00177	0.00175	0.00175	0.00175	0.00172	0.00173			
	0.00132 0.00134 0.00143 0.00171 0.00123 0.00132 0.00137 0.00138 0.00139 0.00139 0.00137 0.00138 0.00137 0.00138 0.00144 0.00177	0.00132 0.00126 0.00134 0.00128 0.00143 0.00138 0.00171 0.00166 Tolue 0.00123 0.00117 0.00132 0.00126 0.00137 0.00132 0.00138 0.00133 0.00139 0.00134 0.00137 0.00135 0.00138 0.00135 0.00138 0.00135 0.00138 0.00135 0.00144 0.00141 0.00177 0.00175	0.00132 0.00126 0.00127 0.00134 0.00128 0.00130 0.00143 0.00138 0.00140 0.00171 0.00166 0.00168 Toluen (1) + PEG 40 0.00132 0.00117 0.00119 0.00133 0.00126 0.00128 0.00137 0.00132 0.00134 0.00138 0.00133 0.00134 0.00139 0.00135 0.00136 0.00137 0.00134 0.00135 0.00137 0.00135 0.00136 0.00138 0.00135 0.00136 0.00137 0.00135 0.00136 0.00137 0.00135 0.00136 0.00137 0.00135 0.00136 0.00137 0.00135 0.00136 0.00137 0.00135 0.00136 0.00137 0.00135 0.00136 0.00144 0.00141 0.00142 0.00177 0.00175 0.00175	0.001320.001260.001270.001260.001340.001280.001300.001280.001430.001380.001400.001380.001710.001660.001680.00166Toluen (1) + PEG 400 (2)0.001230.001170.001190.001170.001320.001260.001280.001260.001370.001320.001340.001320.001380.001330.001340.001330.001390.001350.001360.001350.001370.001350.001360.001350.001380.001350.001360.001350.001370.001350.001360.001350.001380.001350.001360.001350.001440.001410.001420.001410.001770.001750.001750.00175	0.001320.001260.001270.001260.001200.001340.001280.001300.001280.001230.001430.001380.001400.001380.001330.001710.001660.001680.001660.00162Toluen (1) + PEG 400 (2)0.001320.001260.001280.001260.001210.001370.001320.001340.001320.001280.001380.001330.001340.001330.001290.001390.001350.001360.001350.001310.001370.001350.001360.001350.001310.001390.001350.001360.001350.001310.001370.001350.001360.001350.001320.001370.001350.001360.001350.001320.001440.001410.001420.001410.001380.001770.001750.001750.001750.00175			

Tabela P8 – Eksperimentalne vrednosti gustina ρ, viskoznosti η i indeksa refrakcije n_D PEGDA (1) + alkohol (2) binarnih smeša u temperaturnom opsegu (288.15 do 323.15) K i na atmosferskom pritisku

<i>X</i> 1	ho/ 10 ³ kg·m ⁻³	η/mPa∙s	nD	<i>X</i> 1	$ ho/10^3$ kg·m ⁻³	η/mPa∙s	nD		
PEGDA (1) + etanol (2)									
			<i>T</i> =288	.15 K					
0.0000	0.793813	1.3056	1.36397	0.5001	1.106579	87.166	1.46472		
0.0513	0.926776	5.8557	1.40385	0.6010	1.112252	106.30	1.46611		
0.1000	0.983459	10.549	1.41928	0.7000	1.115287	123.85	1.46785		
0.2000	1.045931	26.970	1.44576	0.8047	1.120624	141.33	1.46973		
0.3000	1.076323	46.252	1.45522	0.9000	1.123135	156.85	1.47038		
0.3987	1.096773	66.690	1.46170	1.0000	1.126811	173.59	1.47212		
<i>T</i> =293.15									
0.0000	0.789547	1.1885	1.36193	0.5001	1.102063	66.525	1.46273		
0.0513	0.922428	5.0933	1.40241	0.6010	1.104806	80.078	1.46414		
0.1000	0.979024	8.9407	1.41755	0.7000	1.110772	92.609	1.46586		
0.2000	1.041435	21.752	1.44371	0.8047	1.116127	104.99	1.46777		
0.3000	1.071807	36.608	1.45316	0.9000	1.118635	115.54	1.46841		
0.3987	1.092253	51.720	1.45971	1.0000	1.122337	127.08	1.47012		
			T=298	8.15					
0.0000	0.785257	1.0838	1.35999	0.5001	1.097558	51.880	1.46079		
0.0513	0.918001	4.5238	1.40010	0.6010	1.100298	61.948	1.46218		
0.1000	0.974586	7.6692	1.41581	0.7000	1.106269	71.074	1.46390		
0.2000	1.036939	18.299	1.44168	0.8047	1.111629	79.932	1.46582		
0.3000	1.067296	29.548	1.45114	0.9000	1.114147	87.385	1.46646		
0.3987	1.087741	40.997	1.45774	1.0000	1.117853	95.723	1.46814		

			T=30	3.15			
0.0000	0.780942	0.98999	1.35789	0.5001	1.093060	41.531	1.45886
0.0513	0.913586	3.9406	1.39785	0.6010	1.095805	49.098	1.46024
0.1000	0.970141	6.6501	1.41351	0.7000	1.101780	55.811	1.46198
0.2000	1.032449	15.069	1.43963	0.8047	1.107149	62.283	1.46390
0.3000	1.062797	24.263	1.44913	0.9000	1.109663	67.850	1.46454
0.3987	1.083240	33.127	1.45579	1.0000	1.113381	73.921	1.46618
			<i>T</i> =30	8.15			
0.0000	0.776592	0.90491	1.35581	0.5001	1.088575	33.790	1.45697
0.0513	0.909154	3.5103	1.39558	0.6010	1.091325	39.595	1.45834
0.1000	0.965685	5.8188	1.41166	0.7000	1.097304	44.693	1.46007
0.2000	1.027959	12.895	1.43761	0.8047	1.102683	49.630	1.46198
0.3000	1.058302	20.223	1.44719	0.9000	1.105191	53.833	1.46263
0.3987	1.078750	27.218	1.45385	1.0000	1.108930	58.351	1.46424
			<i>T</i> =31	3.15			
0.0000	0.772202	0.82807	1.35359	0.5001	1.084103	27.893	1.45506
0.0513	0.904645	3.1239	1.39380	0.6010	1.086860	32.496	1.45645
0.1000	0.961219	5.1336	1.40966	0.7000	1.092842	36.521	1.45818
0.2000	1.023472	11.052	1.43564	0.8047	1.098227	40.430	1.46005
0.3000	1.053814	17.079	1.44527	0.9000	1.100743	43.452	1.46070
0.3987	1.074270	22.701	1.45188	1.0000	1.104486	46.952	1.46228
			<i>T</i> =31	8.15			
0.0000	0.767765	0.75816	1.35137	0.5001	1.079643	23.316	1.45311
0.0513	0.900167	2.8255	1.39126	0.6010	1.082406	27.038	1.45452
0.1000	0.956736	4.5616	1.40763	0.7000	1.088392	30.252	1.45625
0.2000	1.018982	9.7554	1.43364	0.8047	1.093790	33.272	1.45810
0.3000	1.049334	14.592	1.44332	0.9000	1.096306	35.627	1.45875
0.3987	1.069794	19.179	1.44992	1.0000	1.100066	38.428	1.46031
			<i>T</i> =32	3.15			
0.0000	0.763276	0.69427	1.34857	0.5001	1.075189	19.865	1.45115
0.0513	0.895623	2.5022	1.38954	0.6010	1.077900	22.948	1.45255
0.1000	0.952239	4.0812	1.40565	0.7000	1.083956	25.534	1.45430
0.2000	1.014492	8.3221	1.43175	0.8047	1.089367	28.002	1.45616
0.3000	1.044856	12.573	1.44141	0.9000	1.091885	29.940	1.45679
0.3987	1.065333	16.414	1.44798	1.0000	1.095664	32.136	1.45839
		P	PEGDA (1) + 1	-propanol (2	2)		
			<i>T</i> =28	8.15			
0.0000	0.807931	2.4573	1.38736	0.4997	1.094608	83.644	1.46362
0.0508	0.910173	6.8564	1.41324	0.5994	1.106090	103.07	1.46616
0.1001	0.966543	11.958	1.42624	0.7004	1.113163	122.69	1.46781
0.1999	1.026686	26.654	1.44562	0.7993	1.118460	140.20	1.46984
0.2999	1.060564	43.501	1.45426	0.8997	1.123611	156.67	1.47074
0.3999	1.081882	63.061	1.45967	1.0000	1.126811	173.59	1.47212
			<i>T</i> =29	3.15			

0.0000	0.803946	2.1677	1.38537	0.4997	1.090116	63.947	1.46154			
0.0508	0.905986	5.8703	1.41132	0.5994	1.101596	77.818	1.46416			
0.1001	0.962254	9.9488	1.42455	0.7004	1.108661	91.694	1.46580			
0.1999	1.022280	21.508	1.44358	0.7993	1.113970	103.89	1.46780			
0.2999	1.056101	34.414	1.45224	0.8997	1.119120	115.28	1.46872			
0.3999	1.077403	48.937	1.45766	1.0000	1.122337	127.08	1.47012			
<i>T</i> =298.15										
0.0000	0.799932	1.9222	1.38334	0.4997	1.085631	50.051	1.45958			
0.0508	0.901723	5.1015	1.40923	0.5994	1.097111	60.253	1.46217			
0.1001	0.957954	8.4345	1.42243	0.7004	1.104169	70.063	1.46383			
0.1999	1.017874	17.773	1.44158	0.7993	1.109480	78.986	1.46578			
0.2999	1.051646	27.756	1.45022	0.8997	1.114632	87.332	1.46674			
0.3999	1.072926	38.983	1.45568	1.0000	1.117853	95.723	1.46814			
			<i>T</i> =30	3.15						
0.0000	0.795891	1.7158	1.38129	0.4997	1.081162	39.980	1.45755			
0.0508	0.897515	4.4556	1.40636	0.5994	1.092633	47.665	1.46017			
0.1001	0.953651	7.2395	1.41998	0.7004	1.099690	55.018	1.46183			
0.1999	1.013476	14.846	1.43958	0.7993	1.105010	61.588	1.46379			
0.2999	1.047200	22.769	1.44822	0.8997	1.110155	67.786	1.46478			
0.3999	1.068469	31.451	1.45369	1.0000	1.113381	73.921	1.46618			
<i>T</i> =308.15										
0.0000	0.791813	1.5385	1.37920	0.4997	1.076708	32.517	1.45552			
0.0508	0.893236	3.9118	1.40526	0.5994	1.088171	38.441	1.45818			
0.1001	0.949333	6.2755	1.41821	0.7004	1.095224	44.168	1.45985			
0.1999	1.009075	12.540	1.43754	0.7993	1.100550	49.114	1.46180			
0.2999	1.042761	18.960	1.44623	0.8997	1.105693	53.720	1.46280			
0.3999	1.064015	25.848	1.45170	1.0000	1.108930	58.351	1.46424			
			<i>T=</i> 31	3.15						
0.0000	0.787692	1.3883	1.37704	0.4997	1.072259	26.872	1.45352			
0.0508	0.888949	3.4626	1.40145	0.5994	1.083716	31.531	1.45618			
0.1001	0.945001	5.4866	1.41625	0.7004	1.090767	35.991	1.45787			
0.1999	1.004673	10.738	1.43557	0.7993	1.096100	39.818	1.45981			
0.2999	1.038323	15.999	1.44423	0.8997	1.101241	43.408	1.46083			
0.3999	1.059571	21.579	1.44972	1.0000	1.104486	46.952	1.46228			
			<i>T</i> =31	8.15						
0.0000	0.783522	1.2614	1.37488	0.4997	1.067823	22.516	1.45152			
0.0508	0.884636	3.0840	1.40099	0.5994	1.079281	26.251	1.45421			
0.1001	0.940651	4.8338	1.41433	0.7004	1.086327	29.806	1.45590			
0.1999	1.000264	9.2867	1.43345	0.7993	1.091670	32.821	1.45787			
0.2999	1.033890	13.657	1.44221	0.8997	1.096809	35.637	1.45886			
0.3999	1.055137	18.230	1.44773	1.0000	1.100066	38.428	1.46031			
			<i>T</i> =32	3.15						
0.0000	0.779300	1.1488	1.37278	0.4997	1.063402	19.229	1.44960			
0.0508	0.880283	2.7763	1.39895	0.5994	1.074854	22.290	1.45230			
0.1001	0.936280	4.3193	1.41215	0.7004	1.081897	25.165	1.45397			

0.1999	0.995856	8.1572	1.43161	0.7993	1.087250	27.604	1.45593		
0.2999	1.029459	11.865	1.44037	0.8997	1.092388	29.862	1.45695		
0.3999	1.050706	15.672	1.44579	1.0000	1.095664	32.136	1.45839		
			PEGDA (1) + 1	l-butanol (2)				
			<i>T</i> =28	8.15					
0.0000	0.814002	3.3696	1.40128	0.5001	1.089122	77.514	1.46339		
0.0539	0.903840	7.4289	1.42152	0.5996	1.100203	97.184	1.46579		
0.1001	0.951448	11.632	1.43202	0.6994	1.109189	116.70	1.46774		
0.2001	1.013127	24.426	1.44631	0.7993	1.116370	136.23	1.46956		
0.2998	1.052143	40.317	1.45495	0.8999	1.122425	155.26	1.47075		
0.4004	1.071754	58.088	1.45951	1.0000	1.126811	173.59	1.47212		
			T=29	3.15					
0.0000	0.810205	2.9321	1.39929	0.5001	1.084661	59.498	1.46135		
0.0539	0.899778	6.3500	1.41946	0.5996	1.095730	73.674	1.46380		
0.1001	0.947302	9.6960	1.42996	0.6994	1.104713	87.498	1.46574		
0.2001	1.008822	19.843	1.44429	0.7993	1.111886	101.16	1.46756		
0.2998	1.047757	31.996	1.45293	0.8999	1.117939	114.38	1.46875		
0.4004	1.067325	45.291	1.45747	1.0000	1.122337	127.08	1.47012		
<i>T</i> =298.15									
0.0000	0.806384	2.5656	1.39725	0.5001	1.080219	46.442	1.45931		
0.0539	0.895739	5.4714	1.41745	0.5996	1.091271	57.220	1.46181		
0.1001	0.943150	8.1956	1.42805	0.6994	1.100243	67.356	1.46376		
0.2001	1.004523	16.358	1.44230	0.7993	1.107405	77.233	1.46557		
0.2998	1.043376	25.815	1.45090	0.8999	1.113458	86.707	1.46679		
0.4004	1.062912	35.881	1.45545	1.0000	1.117853	95.723	1.46814		
			<i>T</i> =30	3.15					
0.0000	0.802538	2.2518	1.39519	0.5001	1.075785	37.439	1.45727		
0.0539	0.891646	4.7591	1.41549	0.5996	1.086830	45.133	1.45986		
0.1001	0.938991	7.0189	1.42615	0.6994	1.095781	53.032	1.46183		
0.2001	1.000228	13.723	1.44034	0.7993	1.102943	60.318	1.46360		
0.2998	1.039005	21.259	1.44887	0.8999	1.108986	67.299	1.46484		
0.4004	1.058505	29.260	1.45346	1.0000	1.113381	73.921	1.46618		
			<i>T</i> =30	8.15					
0.0000	0.798659	1.9916	1.39313	0.5001	1.071366	30.535	1.45531		
0.0539	0.887569	4.1658	1.41344	0.5996	1.082394	36.714	1.45794		
0.1001	0.934817	6.0799	1.42421	0.6994	1.091340	42.535	1.45994		
0.2001	0.995932	11.646	1.43839	0.7993	1.098489	48.162	1.46164		
0.2998	1.034639	17.787	1.44686	0.8999	1.104531	53.427	1.46292		
0.4004	1.054110	24.131	1.45150	1.0000	1.108930	58.351	1.46424		
			T=31	3.15					
0.0000	0.794741	1.7672	1.39101	0.5001	1.066960	25.296	1.45332		
0.0539	0.883452	3.6706	1.41141	0.5996	1.077973	30.180	1.45600		
0.1001	0.930633	5.3106	1.42224	0.6994	1.086915	34.775	1.45805		
0.2001	0.991636	9.9944	1.43639	0.7993	1.094056	39.138	1.45967		
0.2998	1.030279	15.050	1.44486	0.8999	1.100089	43.191	1.46097		

0.4004	1.049725	20.185	1.44956	1.0000	1.104486	46.952	1.46228		
<i>T</i> =318.15									
0.0000	0.790780	1.5735	1.38890	0.5001	1.062560	21.251	1.45134		
0.0539	0.879316	3.2526	1.40939	0.5996	1.073564	25.181	1.45404		
0.1001	0.926432	4.6740	1.42023	0.6994	1.082498	28.828	1.45610		
0.2001	0.987335	8.6592	1.43438	0.7993	1.089636	32.293	1.45771		
0.2998	1.025922	12.883	1.44288	0.8999	1.095662	35.484	1.45900		
0.4004	1.045348	17.097	1.44760	1.0000	1.100066	38.428	1.46031		
			<i>T</i> =32	3.15					
0.0000	0.786774	1.4177	1.38683	0.5001	1.058173	18.188	1.44940		
0.0539	0.875197	2.9182	1.40739	0.5996	1.069171	21.403	1.45217		
0.1001	0.922213	4.1743	1.41831	0.6994	1.078100	24.385	1.45423		
0.2001	0.983035	7.6158	1.43251	0.7993	1.085230	27.144	1.45578		
0.2998	1.021567	11.202	1.44095	0.8999	1.091254	29.678	1.45708		
0.4004	1.040982	14.756	1.44572	1.0000	1.095664	32.136	1.45839		

Tabela P9 - Parametri fitovanja ρ i n_D i srednje kvadratno odstupanje (rmsd) σ za PEGDA (1) + etanol (2), PEGDA (1) + 1-propanol (2) i PEGDA (1) + 1-butanol (2) binarne smeše na temperaturama (288.15 do 323.15) K i na atmosferskom prirtisku

Veličina	A_{00}	A01/ K ⁻¹	A_{10}	A11/ K ⁻¹	A_{20}	A21/ K ⁻¹	σ			
PEGDA (1) + etanol (2)										
$ ho / 10^3 \text{kg} \cdot \text{m}^{-3}$	0.370515	-0.000778	-0.020648	-0.000024	0.073749	-0.000001	0.0023			
n_D	0.48360	-0.00031	-0.01491	0.00002	0.18838	-0.00030	0.0016			
PEGDA (1) + 1-propanol (2)										
$\rho/10^{3}$ kg·m ⁻³	0.375663	-0.000765	-0.028148	-0.000038	0.098665	0.000026	0.0006			
nD	0.47056	-0.00026	-0.00713	-0.00001	0.12950	0.00001	0.0007			
		PE	EGDA (1) + 1-b	utanol (2)						
ρ / 10 ³ kg·m ⁻³	0.388889	-0.000780	-0.042574	-0.000027	0.135574	0.000002	0.0008			
nD	0.47126	-0.00027	-0.00867	0.00000	0.17556	-0.00005	0.0002			

Veličina	<i>T /</i> K	B_0	<i>B</i> ₁	<i>B</i> ₂	<i>B</i> ₃	σ
	1	PEGD	A (1) + etano	- l (2)	~	
η/mPa·s	288.15	-0.64267	118.80	158.92	-105.14	1.4619
	293.15	-0.31062	100.60	96.008	-70.420	1.0931
	298.15	-0.07072	86.966	52.898	-44.968	0.8104
	303.15	0.05082	74.390	29.523	-30.759	0.6683
	308.15	0.16603	64.579	12.939	-19.859	0.5122
	313.15	0.25578	55.716	4.4642	-13.902	0.3930
	318.15	0.30445	49.361	-3.8550	-7.7126	0.3054
	323.15	0.32762	42.666	-5.0895	-6.0363	0.2528
		PEGDA	(1) + 1-propa	nol (2)		
η∕ mPa∙s	288.15	1.6415	92.930	197.51	-119.60	0.7883
	293.15	1.4509	80.832	125.50	-81.588	0.6454
	298.15	1.2877	71.334	76.395	-53.944	0.5262
	303.15	1.2081	61.561	48.481	-37.827	0.4125
	308.15	1.1356	53.139	31.148	-27.473	0.3246
	313.15	1.0551	46.504	18.475	-19.395	0.2627
	318.15	0.98725	40.787	10.293	-13.894	0.2144
	323.15	0.91941	36.353	4.4007	-9.7536	0.1796
		PEGDA	(1) + 1-butar	10l (2)		
η∕ mPa∙s	288.15	2.8354	74.864	197.69	-102.30	0.4282
	293.15	2.4309	65.883	130.57	-72.254	0.3856
	298.15	2.1826	56.316	90.060	-53.174	0.2883
	303.15	1.8880	50.197	58.993	-37.427	0.2595
	308.15	1.6853	43.916	40.558	-28.029	0.2149
	313.15	1.5151	38.557	27.738	-21.034	0.1731
	318.15	1.3601	34.166	18.396	-15.637	0.1455
	323.15	1.2259	30.820	11.304	-11.366	0.1351
Veličina	<i>X</i> 1	C_0	C_1			σ
		PEGD	A (1) + etano	l (2)		
ln(η/ mPa⋅s)	0.0000	-5.5483	1677.4			0.0042
	0.0513	-6.0329	2246.8			0.0050
	0.1000	-6.4100	2521.1			0.0097
	0.2000	-7.4548	3089.9			0.0159
	0.3000	-8.1825	3453.8			0.0177
	0.3987	-8.7488	3720.9			0.0209
	0.5001	-9.1953	3925.5			0.0233
	0.6010	-9.5023	4070.0			0.0257
	0.7000	-9.7806	4193.9			0.0268
	0.8047	-10.022	4301.2			0.0280
	0.9000	-10.269	4402.0			0.0287

Tabela P10 - Parametri fitovanja η i srednje kvadratno odstupanje (rmsd) σ za PEGDA (1) +etanol (2), PEGDA (1) + 1-propanol (2) i PEGDA (1) + 1-butanol (2) binarne smeše natemperaturama (288.15 do 323.15) K i na atmosferskom pritisku

	1.0000	-10.446	4481.6	0.0294
		PEGDA	(1) + 1-propanol	(2)
$\ln(\eta/\text{mPa}\cdot\text{s})$	0.0000	-6.1308	2023.7	0.0045
	0.0508	-6.4396	2407.0	0.0068
	0.1001	-6.9256	2704.0	0.0130
	0.1999	-7.6696	3148.1	0.0160
	0.2999	-8.2524	3455.9	0.0191
	0.3999	-8.7353	3701.1	0.0210
	0.4997	-9.1750	3907.9	0.0236
	0.5994	-9.5310	4069.8	0.0254
	0.7004	-9.8371	4207.2	0.0275
	0.7993	-10.085	4316.6	0.0282
	0.8997	-10.271	4401.9	0.0285
	1.0000	-10.446	4481.6	0.0294
		PEGDA	(1) + 1-butanol (2)
$\ln(\eta/\text{mPa}\cdot\text{s})$	0.0000	-6.8094	2311.3	0.0028
	0.0539	-6.6488	2490.7	0.0068
	0.1001	-7.0270	2725.6	0.0130
	0.2001	-7.5850	3098.9	0.0157
	0.2998	-8.1438	3402.5	0.0193
	0.4004	-8.6100	3640.9	0.0217
	0.5001	-9.0514	3850.2	0.0238
	0.5996	-9.4165	4019.9	0.0255
	0.6994	-9.7206	4159.8	0.0261
	0.7993	-9.9938	4282.4	0.0273
	0.8999	-10.243	4391.6	0.0281
	1.0000	-10.446	4481.6	0.0294

			$lpha_{ m nm}$			
n/m	CH ₃	CH ₂	CH ₂ =CH	OH	CH ₂ O	C00
CH3	0	-709.5ª	-570.861 ^d	594.4ª	-50.17 ^b	-172.4ª
CH ₂	66.53ª	0	1161.742 ^d	498.6ª	-319.930 ^b	1172ª
CH ₂ =CH	-872.856 ^d	1489.036^{d}	0	-869.851 ^d	-2243.897d	-57.440 ^d
OH	1209ª	-634.5ª	-549.041 ^d	0	-619.360 ^b	68.35ª
CH ₂ O	456.91 ^b	-340.250 ^b	248.157 ^d	25.340 ^b	0	-56.95°
C00	-44.25 ^a	541.6ª	-445.344 ^d	186.8ª	-137.945°	0

Tabela P11 - UNIFAC-VISCO interakcioni parametri dobijeni iz eksperimentalnih vrednosti viskoznosti za sisteme PEGDA (1) + etanol (2), PEGDA (1) + 1-propanol (2) i PEGDA (1) + 1-butanol (2)

^a originalni UNIFAC-VISCO parametri ¹⁷⁴,²⁶⁴

^b UNIFAC-VISCO parametri iz ¹⁸⁹

 $^{\rm c}$ UNIFAC-VISCO parametri iz $^{\rm 207}$

^d novi UNIFAC-VISCO parametri

Tabela P12 - ASOG-VISCO interakcioni parametri dobijeni iz eksperimentalnih vrednosti viskoznosti za sisteme PEGDA (1) + etanol (2), PEGDA (1) + 1-propanol (2) i PEGDA (1) + 1-butanol (2)

		n	$n_{ m kl}$		
k/l	CH ₂	CH ₂ =CH	ОН	CH ₂ O	C00
CH ₂	0	0.2428 ^d	-0.3570ª	-10.9924 ^b	0.3682ª
CH ₂ =CH	1.7603 ^d	0	1.6245 ^d	-6.3287 ^d	-2.5891 ^d
OH	14.1460ª	-0.3330 ^d	0	-2.2661 ^b	-40.2000 ^a
CH ₂ O	-33.9591 ^b	-173.2012 ^d	1.5287 ^b	0	-2.9720 ^c
C00	0.0952 ^a	197.1496 ^d	19.1310 ^a	-4.7468 ^c	0
		ו	1 _{kl}		
k/l	CH ₂	CH ₂ =CH	ОН	CH ₂ O	C00
CH ₂	0	356.102 ^d	469.650ª	-1.928 ^b	112.590ª
CH ₂ =CH	187.229 ^d	0	413.379 ^d	299.095 ^d	298.614 ^d
OH	-6137.000 ^a	476.584 ^d	0	-14.965 ^b	11583.000ª
CH ₂ O	-8.176 ^b	298.966 ^d	-127.018 ^b	0	-835.188°
C00	-383.600ª	300.577 ^d	-5747.000 ^a	-433.643 ^c	0

^a originalni ASOG-VISCO parametri ¹⁷⁵

^b ASOG-VISCO parametri iz ¹⁶⁷

c ASOG-VISCO parametri iz 207

^d novi ASOG-VISCO parametri

	Prediktivn	i modeli		Korelatini mod	eli			
Т/ К	UNIFAC-VISCO	ASOG-VISCO	Teja-Rice	McAllister - 3	McAllister - 4			
	PD _{max} / %							
		PEGDA (1)) + etanol (2)					
288.15	7.62	2.16	11.03	4.46	1.59			
293.15	5.79	2.65	10.48	4.66	1.67			
298.15	4.08	2.40	10.10	4.88	1.84			
303.15	2.82	1.76	9.70	4.97	1.84			
308.15	2.20	1.08	9.38	5.15	1.92			
313.15	2.19	0.66	9.04	5.32	2.05			
318.15	2.95	1.17	8.88	5.49	2.20			
323.15	3.74	1.57	8.51	5.50	2.15			
PEGDA (1) + 1-propanol (2)								
288.15	4.66	1.54	5.96	3.01	1.11			
293.15	3.14	0.77	5.68	3.13	1.15			
298.15	1.76	0.50	5.52	3.30	1.15			
303.15	0.87	0.84	5.29	3.40	1.20			
308.15	1.39	1.34	5.07	3.49	1.27			
313.15	2.78	1.95	4.90	3.59	1.31			
318.15	4.17	2.61	4.72	3.66	1.36			
323.15	5.32	3.07	4.65	3.73	1.42			
		PEGDA (1) +	+ 1-butanol (2	2)				
288.15	4.56	1.56	3.89	2.13	0.65			
293.15	3.46	0.78	3.79	2.22	0.68			
298.15	2.47	0.66	3.63	2.32	0.78			
303.15	1.69	0.51	3.57	2.45	0.72			
308.15	1.04	0.47	3.49	2.54	0.78			
313.15	0.72	0.44	3.41	2.64	0.82			
318.15	1.25	0.44	3.35	2.74	0.86			
323.15	1.98	0.45	3.35	2.78	0.92			

Tabela P13 – Rezultati predskazivanja i korelisanja viskoznosti za sisteme PEGDA (1) + etanol (2), PEGDA (1) + 1-propanol (2) i PEGDA (1) + 1-butanol (2) na temperaturama (288.15 do 323.15) K i na atmosferskom pritisku

<i>x</i> ₁	ho/ 10 ³ kg·m ⁻³	<i>V</i> ^E /10 ⁻³ m ³ ⋅kmol ⁻¹	n _D	$\Delta n_{ m D}$	η/ mPa∙s	∆η/ mPa·s
		Dimetil adipat ((1) + PEG 200	(2)		
		288	8.15 K			
0	1.128814		1.46180		86.351	
0.1001	1.122666	0.0596	1.45877	0.0001	63.529	-14.556
0.2001	1.116544	0.1014	1.45612	0.0005	45.940	-23.888
0.2997	1.110369	0.1404	1.45296	0.0004	33.206	-28.398
0.4001	1.104079	0.1746	1.44946	0.0001	23.649	-29.640
0.4999	1.097779	0.2006	1.44660	0.0003	17.170	-27.903
0.6000	1.091466	0.2100	1.44334	0.0001	12.388	-24.419
0.6999	1.085135	0.2081	1.44041	0.0003	8.9998	-19.558
0.7999	1.078887	0.1761	1.43686	-0.0002	6.5240	-13.785
0.8996	1.072764	0.1114	1.43378	-0.0002	4.9204	-7.1477
1	1.066790		1.43082		3.7777	
		293	8.15 K			
0	1.124834		1.46007		64.712	
0.1001	1.118599	0.0598	1.45702	0.0001	48.239	-10.327
0.2001	1.112382	0.1030	1.45428	0.0005	35.438	-16.988
0.2997	1.106108	0.1440	1.45111	0.0004	26.003	-20.308
0.4001	1.099737	0.1772	1.44757	0.0000	18.843	-21.285
0.4999	1.093335	0.2055	1.44466	0.0002	13.899	-20.120
0.6000	1.086927	0.2159	1.44139	0.0001	10.198	-17.675
0.6999	1.080508	0.2138	1.43841	0.0003	7.5248	-14.214
0.7999	1.074151	0.1846	1.43485	-0.0002	5.5600	-10.045
0.8996	1.067945	0.1184	1.43175	-0.0002	4.2592	-5.2184
1	1.061920		1.42876		3.3132	
		298	3.15 K			
0	1.120856		1.45832		49.610	
0.1001	1.114529	0.0608	1.45530	0.0001	37.480	-7.4580
0.2001	1.108212	0.1060	1.45246	0.0005	27.843	-12.428
0.2997	1.101847	0.1476	1.44924	0.0004	20.630	-14.992
0.4001	1.095388	0.1808	1.44567	0.0000	15.225	-15.697
0.4999	1.088886	0.2111	1.44276	0.0002	11.409	-14.869
0.6000	1.082388	0.2217	1.43943	0.0001	8.5350	-13.071
0.6999	1.075880	0.2195	1.43642	0.0002	6.3903	-10.553
0.7999	1.069422	0.1918	1.43284	-0.0002	4.7929	-7.4880
0.8996	1.063141	0.1228	1.42969	-0.0002	3.7272	-3.8958

Tabela P14 - Gustine ρ , dopunske molarne zapremine V^E, indeksi refrakcije n_D, devijacije indeksa refrakcije Δn_D , viskoznosti η i devijacije viskoznosti $\Delta \eta$ sistema dimetil adipat (1) + PEG 200, dimetil adipat (1) + PEG 400 (2), dimetil ftalat (1) + PEG 200 i dimetil ftalat (1) + PEG 400 (2) na T = (288.15 do 323.15) K i na atmosferskom pritisku

1	1.057047		1.42669		2.9370	
		3(03.15 K			
0	1.116876		1.45661		38.801	
0.1001	1.110454	0.0622	1.45359	0.0002	29.639	-5.5412
0.2001	1.104043	0.1086	1.45063	0.0004	22.370	-9.1930
0.2997	1.097588	0.1508	1.44735	0.0003	16.794	-11.1662
0.4001	1.091037	0.1848	1.44380	0.0000	12.561	-11.757
0.4999	1.084441	0.2160	1.44082	0.0002	9.5311	-11.187
0.6000	1.077849	0.2275	1.43745	0.0000	7.3267	-9.7710
0.6999	1.071250	0.2256	1.43444	0.0002	5.5314	-7.9528
0.7999	1.064704	0.1975	1.43083	-0.0002	4.1813	-5.6893
0.8996	1.058336	0.1276	1.42764	-0.0002	3.2997	-2.9609
1	1.052176		1.42463		2.6289	
		30	08.15 K			
0	1.112888		1.45488		30.902	
0.1001	1.106383	0.0616	1.45188	0.0002	23.870	-4.1756
0.2001	1.099875	0.1097	1.44881	0.0004	18.249	-6.9430
0.2997	1.093325	0.1532	1.44548	0.0003	13.880	-8.4698
0.4001	1.086673	0.1893	1.44199	0.0000	10.501	-8.9752
0.4999	1.079989	0.2206	1.43888	0.0002	8.0862	-8.5507
0.6000	1.073305	0.2326	1.43543	0.0000	6.2903	-7.4901
0.6999	1.066617	0.2307	1.43241	0.0002	4.8220	-6.1077
0.7999	1.059988	0.2014	1.42877	-0.0003	3.6785	-4.4004
0.8996	1.053543	0.1290	1.42559	-0.0002	2.9430	-2.2880
1	1.047295		1.42255		2.3660	
		31	13.15 K			
0	1.108901		1.45317		25.011	
0.1001	1.102306	0.0621	1.45013	0.0002	19.518	-3.2040
0.2001	1.095704	0.1112	1.44700	0.0004	15.116	-5.3192
0.2997	1.089063	0.1553	1.44365	0.0003	11.593	-6.5646
0.4001	1.082314	0.1927	1.44020	0.0001	8.8956	-6.9592
0.4999	1.075539	0.2246	1.43693	0.0001	6.9251	-6.6544
0.6000	1.068760	0.2375	1.43356	0.0000	5.4610	-5.8294
0.6999	1.061981	0.2359	1.43038	0.0001	4.2019	-4.8041
0.7999	1.055277	0.2040	1.42681	-0.0002	3.2679	-3.4536
0.8996	1.048743	0.1309	1.42354	-0.0002	2.6439	-1.7954
1	1.042410		1.42048		2.1434	
		31	18.15 K			
0	1.104912		1.45150		20.532	
0.1001	1.098224	0.0630	1.44836	0.0002	16.184	-2.4883
0.2001	1.091531	0.1125	1.44521	0.0003	12.661	-4.1534
0.2997	1.084795	0.1578	1.44184	0.0003	9.8187	-5.1452
0.4001	1.077943	0.1976	1.43833	0.0001	7.6175	-5.4756
0.4999	1.071086	0.2284	1.43502	0.0001	5.9922	-5.2523
0.6000	1.064214	0.2419	1.43162	0.0000	4.8432	-4.5415

0.6999	1.057344	0.2405	1.42833	0.0000	3.7171	-3.8116						
0.7999	1.050569	0.2053	1.42482	-0.0002	2.9248	-2.7479						
0.8996	1.043951	0.1306	1.42146	-0.0002	2.3917	-1.4268						
1	1.037519		1.41835		1.9532							
323.15 К												
0	1.100921		1.44985		17.079	-						
0.1001	1.094140	0.0637	1.44662	0.0001	13.598	-1.9510						
0.2001	1.087354	0.1140	1.44340	0.0003	10.700	-3.3205						
0.2997	1.080526	0.1598	1.44002	0.0002	8.4067	-4.0914						
0.4001	1.073605	0.1963	1.43640	0.0000	6.5895	-4.3694						
0.4999	1.066624	0.2330	1.43312	0.0000	5.2343	-4.2037						
0.6000	1.059661	0.2467	1.42961	-0.0001	4.2747	-3.6332						
0.6999	1.052697	0.2459	1.42634	0.0000	3.3135	-3.0675						
0.7999	1.045861	0.2056	1.42278	-0.0002	2.6369	-2.2171						
0.8996	1.039096	0.1398	1.41940	-0.0003	2.1771	-1.1514						
1	1.032622		1.41631		1.7939							
		Dimetil adipa	t (1) + PEG 400	(2)								
		2	88.15 K									
0	1.130306		1.46869		162.62							
0.1005	1.127155	0.0110	1.46646	0.0016	135.70	-10.955						
0.2005	1.123646	0.0205	1.46430	0.0032	110.84	-19.932						
0.3001	1.119697	0.0313	1.46202	0.0047	84.741	-30.210						
0.4002	1.115171	0.0458	1.45933	0.0058	65.206	-33.845						
0.5002	1.109974	0.0622	1.45633	0.0066	47.197	-35.970						
0.6000	1.103969	0.0776	1.45291	0.0069	32.588	-34.727						
0.7001	1.096911	0.0920	1.44871	0.0065	21.523	-29.892						
0.7999	1.088655	0.0860	1.44391	0.0055	13.041	-22.521						
0.8992	1.078846	0.0608	1.43800	0.0034	7.3661	-12.423						
1	1.066790		1.43082		3.7777							
		2	93.15 K									
0	1.126215		1.46687		120.17							
0.1005	1.123020	0.0120	1.46467	0.0016	100.42	-8.0072						
0.2005	1.119454	0.0246	1.46251	0.0033	81.760	-14.9802						
0.3001	1.115440	0.0393	1.46018	0.0048	65.402	-19.699						
0.4002	1.110844	0.0566	1.45745	0.0058	49.690	-23.713						
0.5002	1.105571	0.0752	1.45440	0.0066	36.639	-25.079						
0.6000	1.099507	0.0865	1.45094	0.0069	25.681	-24.375						
0.7001	1.092366	0.0998	1.44674	0.0066	17.310	-21.049						
0.7999	1.084009	0.0934	1.44192	0.0055	10.802	-15.894						
0.8992	1.074101	0.0642	1.43597	0.0034	6.2675	-8.8249						
1	1.061920		1.42876		3.3132	-						
		2	98.15 K		-							
0	1.122120	_	1.46508		91.024							
0.1005	1.118876	0.0145	1.46287	0.0017	76.538	-5.6331						
0.2005	1.115260	0.0285	1.46079	0,0034	62.869	-10.494						

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3001	1.111192	0.0439	1.45838	0.0048	50.938	-13.651		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.4002	1.106537	0.0615	1.45559	0.0059	38.971	-16.801		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5002	1.101198	0.0802	1.45250	0.0066	29.113	-17.850		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.6000	1.095057	0.0919	1.44896	0.0069	20.882	-17.290		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 0.7001	1.087829	0.1053	1.44473	0.0065	14.296	-15.058		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.7999	1.079379	0.0973	1.43992	0.0055	9.0848	-11.478		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0.8992	1.069359	0.0669	1.43395	0.0034	5.4022	-6.4140		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1.057047		1.42669		2.9370			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 303.15 K								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 0	1.118024		1.46328		70.444			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1005	1.114742	0.0137	1.46111	0.0017	59.655	-3.9733		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.2005	1.111080	0.0280	1.45896	0.0034	49.350	-7.4971		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3001	1.106958	0.0447	1.45658	0.0049	40.000	-10.093		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4002	1.102241	0.0634	1.45375	0.0059	31.281	-12.023		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5002	1.096834	0.0830	1.45064	0.0067	23.682	-12.841		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6000	1.090621	0.0943	1.44705	0.0070	17.154	-12.601		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7001	1.083311	0.1070	1.44273	0.0065	11.935	-11.032		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.7999	1.074760	0.0992	1.43788	0.0055	7.7343	-8.4644		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.8992	1.064628	0.0676	1.43188	0.0034	4.7000	-4.7647		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1.052176		1.42463		2.6289			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 		30	08.15 K					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 0	1.113925		1.46150		55.592			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1005	1.110605	0.0127	1.45938	0.0018	47.386	-2.8571		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2005	1.106899	0.0265	1.45714	0.0035	39.464	-5.4562		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3001	1.102729	0.0424	1.45480	0.0050	32.269	-7.3499		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4002	1.097958	0.0608	1.45194	0.0060	25.442	-8.8488		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5002	1.092488	0.0802	1.44880	0.0068	19.480	-9.4884		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6000	1.086198	0.0924	1.44518	0.0071	14.300	-9.3564		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7001	1.078801	0.1056	1.44080	0.0066	10.094	-8.2345		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7999	1.070151	0.0977	1.43585	0.0055	6.7244	-6.2921		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.8992	1.059897	0.0668	1.42984	0.0034	4.1310	-3.6002		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 1	1.047295		1.42255		2.3660			
0 1.109835 1.45971 44.624 0.1005 1.106478 0.0112 1.45764 0.0019 38.228 -2.124 0.2005 1.102730 0.0239 1.45540 0.0036 32.061 -4.044 0.3001 1.098511 0.0392 1.45300 0.0051 26.458 -5.417 0.4002 1.093684 0.0572 1.45009 0.0061 21.000 -6.623 0.5002 1.088150 0.0763 1.44693 0.0068 16.248 -7.123 0.6000 1.081787 0.0883 1.44332 0.0072 12.074 -7.063 0.7001 1.074304 0.1017 1.43891 0.0067 8.6454 -6.233 0.7999 1.065552 0.0942 1.43391 0.0056 5.8537 -4.799	 313.15 К								
0.10051.1064780.01121.457640.001938.228-2.1260.20051.1027300.02391.455400.003632.061-4.0490.30011.0985110.03921.453000.005126.458-5.4170.40021.0936840.05721.450090.006121.000-6.6230.50021.0881500.07631.446930.006816.248-7.1230.60001.0817870.08831.443320.007212.074-7.0630.70011.0743040.10171.438910.00678.6454-6.2330.79991.0655520.09421.433910.00565.8537-4.790	0	1.109835		1.45971		44.624			
0.20051.1027300.02391.455400.003632.061-4.0440.30011.0985110.03921.453000.005126.458-5.4170.40021.0936840.05721.450090.006121.000-6.6230.50021.0881500.07631.446930.006816.248-7.1270.60001.0817870.08831.443320.007212.074-7.0630.70011.0743040.10171.438910.00678.6454-6.2370.79991.0655520.09421.433910.00565.8537-4.790	0.1005	1.106478	0.0112	1.45764	0.0019	38.228	-2.1268		
0.30011.0985110.03921.453000.005126.458-5.410.40021.0936840.05721.450090.006121.000-6.620.50021.0881500.07631.446930.006816.248-7.120.60001.0817870.08831.443320.007212.074-7.0630.70011.0743040.10171.438910.00678.6454-6.230.79991.0655520.09421.433910.00565.8537-4.790	0.2005	1.102730	0.0239	1.45540	0.0036	32.061	-4.0456		
0.40021.0936840.05721.450090.006121.000-6.620.50021.0881500.07631.446930.006816.248-7.120.60001.0817870.08831.443320.007212.074-7.060.70011.0743040.10171.438910.00678.6454-6.230.79991.0655520.09421.433910.00565.8537-4.790	0.3001	1.098511	0.0392	1.45300	0.0051	26.458	-5.4176		
0.50021.0881500.07631.446930.006816.248-7.120.60001.0817870.08831.443320.007212.074-7.0630.70011.0743040.10171.438910.00678.6454-6.2330.79991.0655520.09421.433910.00565.8537-4.790	0.4002	1.093684	0.0572	1.45009	0.0061	21.000	-6.6234		
0.60001.0817870.08831.443320.007212.074-7.060.70011.0743040.10171.438910.00678.6454-6.230.79991.0655520.09421.433910.00565.8537-4.796	0.5002	1.088150	0.0763	1.44693	0.0068	16.248	-7.1272		
0.70011.0743040.10171.438910.00678.6454-6.230.79991.0655520.09421.433910.00565.8537-4.790	0.6000	1.081787	0.0883	1.44332	0.0072	12.074	-7.0616		
0.7999 1.065552 0.0942 1.43391 0.0056 5.8537 -4.790	0.7001	1.074304	0.1017	1.43891	0.0067	8.6454	-6.2379		
	0.7999	1.065552	0.0942	1.43391	0.0056	5.8537	-4.7901		
0.8992 1.055172 0.0647 1.42786 0.0034 3.6645 -2.760	0.8992	1.055172	0.0647	1.42786	0.0034	3.6645	-2.7609		
1 1.042410 1.42048 2.1434	 1	1.042410		1.42048		2.1434			
0	1.105750		1.45791		36.381				
--------	----------------------------------	---------	---------	---------	--------	---------	--	--	
0.1005	1.102352	0.0107	1.45591	0.0020	31.310	-1.6109			
0.2005	1.098564	0.0213	1.45364	0.0037	26.438	-3.0402			
0.3001	1.094302	0.0343	1.45115	0.0051	22.142	-3.9072			
0.4002	1.089424	0.0503	1.44822	0.0061	17.582	-5.0208			
0.5002	1.083831	0.0681	1.44504	0.0069	13.738	-5.4222			
0.6000	1.077387	0.0817	1.44142	0.0073	10.317	-5.4073			
0.7001	1.069814	0.0959	1.43697	0.0068	7.4853	-4.7928			
0.7999	1.060961	0.0885	1.43192	0.0057	5.1430	-3.6992			
0.8992	1.050448	0.0615	1.42581	0.0035	3.2728	-2.1507			
1	1.037519		1.41835		1.9532				
		32	23.15 K						
0	1.101669		1.45612		30.073				
0.1005	1.098231	0.0096	1.45412	0.0020	25.993	-1.2378			
0.2005	1.094406	0.0172	1.45185	0.0037	22.084	-2.3190			
0.3001	1.090104	0.0267	1.44933	0.0052	18.374	-3.2124			
0.4002	1.085179	0.0397	1.44635	0.0062	14.935	-3.8202			
0.5002	1.079526	0.0563	1.44315	0.0069	11.826	-4.1018			
0.6000	1.072997	0.0724	1.43944	0.0072	8.9738	-4.1317			
0.7001	1.065337	0.0869	1.43497	0.0067	6.5914	-3.6834			
0.7999	1.056375	0.0811	1.42989	0.0056	4.6047	-2.8479			
0.8992	1.045717	0.0587	1.42377	0.0035	2.9652	-1.6792			
1	1.032622		1.41631		1.7939				
	Dimetil ftalat (1) + PEG 200 (2)								
		28	38.15 K						
0	1.128814		1.46180		86.351				
0.1001	1.135357	-0.0476	1.46734	0.0000	83.525	3.4631			
0.2002	1.141982	-0.0901	1.47275	-0.0001	77.094	3.3206			
0.3000	1.148514	-0.1039	1.47807	-0.0003	69.131	1.6278			
0.4000	1.154946	-0.0840	1.48341	-0.0005	60.797	-0.4242			
0.5000	1.161309	-0.0378	1.48869	-0.0008	52.717	-2.2213			
0.5993	1.167663	0.0184	1.49403	-0.0009	45.174	-3.5260			
0.7000	1.174282	0.0661	1.49957	-0.0009	38.091	-4.2823			
0.7995	1.181134	0.0857	1.50518	-0.0008	31.562	-4.5604			
0.8997	1.188452	0.0646	1.51101	-0.0005	26.607	-3.2204			
1	1.196234		1.51708		23.526				
		29	93.15 K						
0	1.124834		1.46007		64.712				
0.1001	1.131282	-0.0430	1.46554	-0.0000	62.132	2.1252			
0.2002	1.137815	-0.0817	1.47091	-0.0001	57.014	1.7130			
0.3000	1.144264	-0.0933	1.4762	-0.0003	50.897	0.2877			
0.4000	1.15062	-0.0723	1.48151	-0.0005	44.643	-1.2659			
0.5000	1.156914	-0.0261	1.48676	-0.0007	38.701	-2.5067			
0.5993	1.163203	0.0295	1.49207	-0.0009	33.258	-3.2821			
0.7000	1.169758	0.0761	1.49756	-0.0009	28.210	-3.5965			

0.7995	1.176541	0.0947	1.50312	-0.0008	23.520	-3.6091
0.8997	1.183806	0.0699	1.50891	-0.0005	20.033	-2.3859
1	1.191543		1.51494		17.704	
		2	98.15 K			
0	1.120856		1.45832		49.610	
0.1001	1.127203	-0.0373	1.46376	-0.0000	46.722	0.6834
0.2002	1.133649	-0.0729	1.46910	-0.0001	42.768	0.30154
0.3000	1.140019	-0.0826	1.47436	-0.0003	38.315	-0.5903
0.4000	1.146300	-0.0604	1.47963	-0.0005	33.724	-1.6137
0.5000	1.152521	-0.0134	1.48487	-0.0007	29.255	-2.5140
0.5993	1.158740	0.0424	1.49014	-0.0009	25.104	-3.1218
0.7000	1.165226	0.0886	1.49558	-0.0009	21.311	-3.3213
0.7995	1.171953	0.1046	1.50110	-0.0008	18.080	-3.0022
0.8997	1.179164	0.0764	1.50685	-0.0005	15.545	-1.9619
1	1.186865		1.51286		13.928	
		3	03.15 K			
0	1.116876		1.45661		38.801	
0.1001	1.123134	-0.0331	1.46200	-0.0000	36.774	0.7408
0.2002	1.129492	-0.0651	1.46731	-0.0002	33.472	0.2063
0.3000	1.135780	-0.0723	1.47256	-0.0003	29.762	-0.7448
0.4000	1.141985	-0.0485	1.47778	-0.0005	26.113	-1.6285
0.5000	1.148135	-0.0007	1.48302	-0.0007	22.738	-2.2383
0.5993	1.154287	0.0551	1.48825	-0.0009	19.694	-2.5370
0.7000	1.160709	0.1004	1.49366	-0.0009	16.892	-2.5549
0.7995	1.167373	0.1151	1.49914	-0.0008	14.261	-2.4346
0.8997	1.174535	0.0830	1.50485	-0.0005	12.370	-1.5552
1	1.182202		1.51083		11.152	
		3	08.15 K			
0	1.112888		1.45488		30.902	
0.1001	1.119066	-0.0301	1.46023	-0.0001	29.207	0.48468
0.2002	1.125339	-0.0586	1.46551	-0.0002	26.485	-0.0568
0.3000	1.131544	-0.0627	1.47074	-0.0003	23.508	-0.8604
0.4000	1.13767	-0.0367	1.47599	-0.0005	20.645	-1.5454
0.5000	1.143748	0.0122	1.48116	-0.0007	18.053	-1.9595
0.5993	1.149835	0.0680	1.48638	-0.0008	15.744	-2.1059
0.7000	1.156197	0.1122	1.49177	-0.0009	13.603	-2.0538
0.7995	1.162800	0.1255	1.49722	-0.0008	11.498	-1.9917
0.8997	1.169918	0.0888	1.50290	-0.0005	10.057	-1.2504
1	1.177547		1.50885		9.1230	
		3	13.15 K			
0	1.108901		1.45317		25.001	
0.1001	1.114997	-0.0265	1.45844	-0.0001	23.536	0.2761
0.2002	1.121187	-0.0517	1.46369	-0.0002	21.351	-0.1687
0.3000	1.127312	-0.0530	1.46890	-0.0004	18.974	-0.8105
0.4000	1.133364	-0.0251	1.47415	-0.0005	16.667	-1.3780

0.5000	1.139372	0.0248	1.47931	-0.0007	14.562	-1.7444
0.5993	1.145394	0.0810	1.48451	-0.0009	12.693	-1.8867
0.7000	1.151692	0.1247	1.48986	-0.0009	11.000	-1.8282
0.7995	1.158235	0.1367	1.49528	-0.0008	9.4493	-1.6490
0.8997	1.165308	0.0960	1.50095	-0.0006	8.3302	-1.0257
1	1.172909		1.50693		7.6118	
		3	18.15 K			
0	1.104912		1.45150		20.532	
0.1001	1.110939	-0.0250	1.45667	-0.0002	19.424	0.3015
0.2002	1.117044	-0.0461	1.46187	-0.0004	17.591	-0.1224
0.3000	1.123084	-0.0436	1.46705	-0.0005	15.572	-0.7360
0.4000	1.129058	-0.0131	1.47225	-0.0007	13.652	-1.2488
0.5000	1.134997	0.0379	1.47739	-0.0009	11.947	-1.5457
0.5993	1.140957	0.0939	1.48254	-0.0011	10.472	-1.6225
0.7000	1.147197	0.1365	1.48785	-0.0012	9.1460	-1.5308
0.7995	1.153674	0.1482	1.49326	-0.0011	7.8928	-1.3830
0.8997	1.160707	0.1026	1.49896	-0.0007	7.0109	-0.8542
1	1.168277		1.50507		6.4530	
		32	23.15 K			
0	1.100921		1.44985		17.079	
0.1001	1.106873	-0.0222	1.45491	-0.0003	15.901	-0.0269
0.2002	1.112901	-0.0405	1.46006	-0.0004	14.449	-0.3276
0.3000	1.118864	-0.0351	1.46521	-0.0006	12.926	-0.7029
0.4000	1.124761	-0.0021	1.47038	-0.0007	11.447	-1.0315
0.5000	1.130627	0.0509	1.47549	-0.0009	10.073	-1.2554
0.5993	1.13652	0.1076	1.48062	-0.0011	8.8346	-1.3520
0.7000	1.142701	0.1494	1.48588	-0.0012	7.7150	-1.3135
0.7995	1.149123	0.1593	1.49123	-0.0011	6.7412	-1.1430
0.8997	1.156121	0.1083	1.49692	-0.0008	6.0286	-0.7032
1	1.163654		1.50303		5.5783	
		Dimetil ftalat	t (1) + PEG 400	(2)		
		23	88.15 K			
0	1.130306		1.46869		162.62	
0.1000	1.134035	-0.1568	1.47114	-0.0024	155.51	6.7992
0.2005	1.138020	-0.2529	1.47427	-0.0041	149.57	14.835
0.2997	1.142420	-0.3362	1.47739	-0.0058	142.52	21.586
0.4004	1.147300	-0.3707	1.48094	-0.0071	132.55	25.623
0.5000	1.152786	-0.3915	1.48515	-0.0077	119.05	25.978
0.5997	1.158974	-0.3743	1.48969	-0.0080	101.88	22.675
0.7002	1.166147	-0.3282	1.49484	-0.0077	81.744	16.518
0.7999	1.174202	-0.2108	1.50088	-0.0065	60.849	9.4903
0.8999	1.183993	-0.0959	1.50805	-0.0042	39.830	2.3807
1	1.196234		1.51708		23.526	
		29	93.15 K			
0	1.126215		1.46687		120.17	

0.1000	1.129891	-0.1508	1.46930	-0.0024	114.46	4.5336
0.2005	1.133831	-0.2442	1.47240	-0.0041	109.42	9.7959
0.2997	1.138186	-0.3263	1.47550	-0.0058	103.61	14.149
0.4004	1.143020	-0.3609	1.47904	-0.0071	95.828	16.685
0.5000	1.148482	-0.3879	1.48325	-0.0077	85.706	16.769
0.5997	1.154571	-0.3621	1.48775	-0.0080	73.182	14.461
0.7002	1.161686	-0.3184	1.49288	-0.0076	58.782	10.359
0.7999	1.169677	-0.2038	1.49888	-0.0064	44.055	5.8476
0.8999	1.179338	-0.0836	1.50599	-0.0041	29.141	1.1802
1	1.191543		1.51494		17.704	
		29	98.15 K			
0	1.12212		1.46508		91.024	
0.1000	1.125741	-0.1435	1.46749	-0.0024	86.449	3.1348
0.2005	1.129642	-0.2360	1.47055	-0.0041	82.223	6.6565
0.2997	1.133954	-0.3172	1.47365	-0.0058	77.421	9.5027
0.4004	1.138735	-0.3497	1.47717	-0.0070	71.277	11.122
0.5000	1.144137	-0.3746	1.48129	-0.0077	63.528	11.052
0.5997	1.150178	-0.3512	1.48583	-0.0079	54.001	9.2115
0.7002	1.157229	-0.3084	1.49096	-0.0076	43.668	6.6266
0.7999	1.165151	-0.1953	1.49692	-0.0064	32,974	3.6191
0.8999	1.174776	-0.0843	1.50398	-0.0041	22.181	0.5357
1	1.186865		1.51286		13.928	
		3	03.15 K			
0	1.118024		1.46328		70.444	
0.1000	1.121614	-0.1432	1.46565	-0.0024	66.759	2.2444
0.2005	1.125456	-0.2283	1.46869	-0.0041	63.243	4.6875
0.2997	1.129724	-0.3080	1.47178	-0.0058	59.267	6.5928
0.4004	1.134459	-0.3399	1.47530	-0.0070	54.401	7.6975
0.5000	1.139778	-0.3572	1.47945	-0.0076	48.371	7.5731
0.5997	1.145793	-0.3408	1.48393	-0.0079	41.280	6.3934
0.7002	1.152775	-0.2974	1.48907	-0.0075	33.364	4.4363
0.7999	1.160638	-0.1873	1.49497	-0.0063	25.397	2.3807
0.8999	1.170223	-0.0843	1.50202	-0.0040	17.462	0.3749
1	1.182202		1.51083		11.152	
		30	08.15 K			
0	1.113925		1.46150		55.592	
0.1000	1.117485	-0.1432	1.46382	-0.0024	52.581	1.6356
0.2005	1.121285	-0.2254	1.46684	-0.0042	49.648	3.3734
0.2997	1.125510	-0.3034	1.46990	-0.0058	46.357	4.6918
0.4004	1.130191	-0.3321	1.47344	-0.0070	42.482	5.4962
0.5000	1.135456	-0.3479	1.47758	-0.0076	37.690	5.3322
0.5997	1.141418	-0.3320	1.48202	-0.0079	32.205	4.4805
0.7002	1.148335	-0.2885	1.48720	-0.0075	26.121	3.0666
0.7999	1.156133	-0.1800	1.49302	-0.0064	20.043	1.6216
0.8999	1.165648	-0.0801	1.50011	-0.0040	13.976	0.2015

PRILOG - Tabele

1	1.177547	1.50885			9.1230				
	313.15 К								
0	1.109835		1.45971		44.624				
0.1000	1.113360	-0.1414	1.46201	-0.0024	42.101	1.1782			
0.2005	1.117122	-0.2219	1.46497	-0.0042	39.653	2.4501			
0.2997	1.121301	-0.2972	1.46803	-0.0058	36.963	3.4316			
0.4004	1.125937	-0.3250	1.47154	-0.0071	33.815	4.0107			
0.5000	1.131148	-0.3391	1.47563	-0.0077	29.998	3.8800			
0.5997	1.137050	-0.3219	1.48008	-0.0079	25.657	3.2292			
0.7002	1.143904	-0.2787	1.48530	-0.0075	20.885	2.1769			
0.7999	1.151639	-0.1719	1.49116	-0.0063	16.153	1.1351			
0.8999	1.161085	-0.0751	1.49821	-0.0040	11.414	0.0973			
1	1.172909		1.50693		7.6118				
		31	l8.15 K						
0	1.10575		1.45791		36.381				
0.1000	1.109255	-0.1442	1.46018	-0.0025	34.260	0.8722			
0.2005	1.112976	-0.2218	1.46314	-0.0042	32.206	1.8257			
0.2997	1.117101	-0.2920	1.46617	-0.0059	29.974	2.5624			
0.4004	1.121689	-0.3179	1.46964	-0.0072	27.404	3.0062			
0.5000	1.126853	-0.3320	1.47372	-0.0078	24.311	2.8936			
0.5997	1.132695	-0.3134	1.47814	-0.0081	20.820	2.3868			
0.7002	1.139484	-0.2698	1.48332	-0.0076	17.011	1.5856			
0.7999	1.147152	-0.1640	1.48916	-0.0065	13.264	0.8224			
0.8999	1.156511	-0.0676	1.49621	-0.0041	9.4857	0.0369			
1	1.168277		1.50507		6.4530				
		32	23.15 K						
0	1.101669		1.45612		30.073				
0.1000	1.105135	-0.1412	1.45841	-0.0024	28.427	0.8034			
0.2005	1.108837	-0.2224	1.46132	-0.0042	26.741	1.5795			
0.2997	1.112919	-0.2903	1.46433	-0.0059	24.859	2.1271			
0.4004	1.117455	-0.3130	1.46775	-0.0072	22.704	2.4387			
0.5000	1.122572	-0.3270	1.47177	-0.0078	20.136	2.3103			
0.5997	1.128348	-0.3051	1.47620	-0.0081	17.282	1.8985			
0.7002	1.135077	-0.2620	1.48134	-0.0076	14.172	1.2502			
0.7999	1.142675	-0.1565	1.48720	-0.0065	11.122	0.6423			
0.8999	1.151958	-0.0618	1.49418	-0.0042	8.0590	0.0288			
1	1.163654		1.50303		5.5783				

	Т/К	Ao	A_1	<i>A</i> ₂	Аз	$10^2 \cdot \sigma$
		Dimetil adipa	at (1) + PEG 20	0 (2)		
$V^{\rm E}/10^{-3}{\rm m}^3\cdot{\rm kmol}^{-1}$	288.15	0.7974	0.3891	0.1950	-	0.0027
	293.15	0.8105	0.4151	0.2636	-	0.0020
	298.15	0.8271	0.4281	0.2985	-	0.0026
	303.15	0.8473	0.4513	0.3199	-	0.0025
	308.15	0.8698	0.4651	0.2927	-	0.0020
	313.15	0.8874	0.4793	0.2807	-	0.0017
	318.15	0.9106	0.4844	0.2328	-	0.0017
	323.15	0.9316	0.4756	0.1902	-	0.0028
Δη/ mPa·s	288.15	-111.66	52.735	-15.872	-	0.1147
	293.15	-80.595	36.366	-10.041	-	0.0734
	298.15	-59.567	26.005	-6.8603	-	0.0906
	303.15	-44.753	18.623	-4.4319	-	0.0772
	308.15	-34.192	13.682	-3.0782	-	0.0659
	313.15	-26.601	9.9943	-1.8959	-	0.0622
	318.15	-20.978	7.5365	-1.3177	-	0.0720
	323.15	-16.834	5.9330	-0.9809	-	0.0618
		Dimetil adipa	at (1) + PEG 40	0 (2)		
$V^{\rm E}/10^{-3}{ m m}^3\cdot{ m kmol}^{-1}$	288.15	0.2478	0.3419	0.2342	-	0.0024
	293.15	0.2999	0.3595	0.1894	-	0.0033
	298.15	0.3197	0.3599	0.2035	-	0.0030
	303.15	0.3312	0.3717	0.1830	-	0.0034
	308.15	0.3199	0.3716	0.1875	-	0.0030
	313.15	0.3043	0.3678	0.1794	-	0.0030
	318.15	0.2713	0.3507	0.1982	-	0.0025
	323.15	0.2240	0.3393	0.2384	-	0.0025
$\Delta n_{ m D}$	288.15	0.0264	0.0119	0.0018	-	0.0001
	293.15	0.0265	0.0115	0.0024	-	0.0001
	298.15	0.0265	0.0109	0.0035	-	0.0001
	303.15	0.0268	0.0106	0.0027	-	0.0001
	308.15	0.0272	0.0107	0.0023	-	0.0001
	313.15	0.0274	0.0106	0.0031	-	0.0001
	318.15	0.0277	0.0104	0.0038	-	0.0001
	323.15	0.0277	0.0099	0.0038	-	0.0001
∆η/mPa·s	288.15	-143.77	-9.1248	23.966	-	0.9118
	293.15	-100.33	-5.4104	11.646	-	0.2811
	298.15	-71.329	-5.1715	7.6490	-	0.3236
	303.15	-51.360	-5.4082	4.8342	-	0.0625

Tabela P15 - Parameteri A_p fitovanja (jednačina 2.4) i odgovarajuće rmsd σ (jednačina 2.5) za binarne smeše dimetil adipat (1) + PEG 200, dimetil adipat (1) + PEG 400 (2), dimetil ftalat (1) + PEG 200, dimetil ftalat (1) + PEG 400 (2) na temperaturi T

	308.15	-37.971	-4.7396	4.0388	-	0.0655
	313.15	-28.528	-4.1634	2.6231	-	0.0747
	318.15	-21.683	-3.5087	1.6596	-	0.1513
	323.15	-16.524	-2.8871	0.8211	-	0.0292
		Dimetil ftala	nt (1) + PEG 200	0 (2)		
$V^{\rm E}/10^{-3}{ m m}^3\cdot{ m kmol}^{-1}$	288.15	-0.1512	1.0908	0.3824	-0.4904	0.0001
	293.15	-0.1042	1.0834	0.3957	-0.4701	0.0008
	298.15	-0.0535	1.0951	0.4235	-0.4783	0.0002
	303.15	-0.0029	1.1019	0.4368	-0.4640	0.0006
	308.15	0.0487	1.1128	0.4323	-0.4509	0.0015
	313.15	0.0994	1.1267	0.4464	-0.4336	0.0019
	318.15	0.1516	1.1343	0.4356	-0.3906	0.0034
	323.15	0.2035	1.1628	0.4280	-0.4034	0.0043
$\Delta n_{\rm D}$	288.15	-0.0030	-0.0036	0.0003	-	0.0000
	293.15	-0.0030	-0.0035	0.0000	-	0.0000
	298.15	-0.0029	-0.0036	-0.0004	-	0.0000
	303.15	-0.0028	-0.0035	-0.0006	-	0.0000
	308.15	-0.0028	-0.0033	-0.0007	-	0.0000
	313.15	-0.0030	-0.0033	-0.0014	-	0.0001
	318.15	-0.0036	-0.0038	-0.0025	-	0.0000
	323.15	-0.0038	-0.0036	-0.0031	-	0.0000
Δη/mPa·s	288.15	-8.8854	-31.451	16.032	-23.301	0.2356
	293.15	-10.027	-20.393	13.429	-17.040	0.2290
	298.15	-10.056	-15.558	4.6407	-4.3594	0.0132
	303.15	-8.9534	-9.0338	6.8556	-10.881	0.1518
	308.15	-7.8379	-5.4597	5.6217	-10.273	0.1807
	313.15	-6.9976	-5.0438	4.3193	-6.1872	0.0796
	318.15	-6.1828	-3.6441	4.9109	-6.7905	0.0906
	323.15	-5.0215	-3.2450	1.3792	-2.4343	0.0276
		Dimetil ftala	it (1) + PEG 40	0 (2)		
<i>V</i> ^E /10 ⁻³ m ³ ·kmol ⁻¹	288.15	-1.5658	-0.0337	0.2534	0.7149	0.0108
	293.15	-1.5516	-0.0738	0.3903	0.8454	0.0104
	298.15	-1.4985	-0.0443	0.3650	0.7134	0.0103
	303.15	-1.4290	-0.0400	0.2587	0.7025	0.0107
	308.15	-1.3918	-0.0235	0.2372	0.7234	0.0110
	313.15	-1.3566	-0.0006	0.2411	0.7208	0.0107
	318.15	-1.3281	-0.0028	0.2374	0.8367	0.0097
	323.15	-1.3078	0.0821	0.2813	0.7342	0.0101
$\Delta n_{ m D}$	288.15	-0.0309	-0.0117	-0.0078	-	0.0001
	293.15	-0.0306	-0.0115	-0.0077	-	0.0001
	298.15	-0.0307	-0.0111	-0.0069	-	0.0001
	303.15	-0.0304	-0.0109	-0.0074	-	0.0001
	308.15	-0.0304	-0.0108	-0.0079	-	0.0001
	313.15	-0.0308	-0.0103	-0.0070	-	0.0001
	318.15	-0.0311	-0.0110	-0.0076	-	0.0001

	323.15	-0.0312	-0.0111	-0.0067	-	0.0001
∆η/mPa·s	288.15	103.91	-30.124	-81.977	-	0.2776
	293.15	67.076	-22.577	-54.318	-	0.2441
	298.15	44.210	-17.101	-36.031	-	0.2197
	303.15	30.292	-12.971	-24.581	-	0.1155
	308.15	21.329	-9.8629	-17.259	-	0.0966
	313.15	15.520	-7.4840	-13.150	-	0.0799
	318.15	11.574	-5.7852	-10.174	-	0.0714
	323.15	9.2410	-5.2380	-7.0383	-	0.0492

Tabela P16 - Gustina ρ , dopunska molarna zapremina V^E , viskoznost η , devijacija viskoznosti $\Delta \eta$ i energija aktivacije viskoznog toka ΔG^{*E} za binarne smeše PEG 200 (1) + [C2mim][NTf2] (2) i PEG 200 (1) + [C2mim][OTf] (2) u temperaturnom opsegu (288.15 K - 318.15 K) i na atmosferskom pritisku 0.1 MPa

<i>X</i> 1	$ ho$ / $10^3{ m kg}\cdot{ m m}^{-3}$	<i>V</i> ^E /10 ⁻³ m ³ ·kmol ⁻¹	<i>X</i> 1	$ ho$ / 10^3 kg·m ⁻³	V ^E /10 ⁻³ m ³ ⋅kmol ⁻¹
		PEG200 (1) +[C	2mim][NTf2] (2	2)	
	288.15 K			298.15 K	
0.0000	1.52851	0.0000	0.0000	1.51838	0.0000
0.0955	1.50041	0.1432	0.0955	1.49055	0.1220
0.1998	1.46860	0.1648	0.1998	1.45887	0.1422
0.3219	1.42913	0.0790	0.3219	1.41956	0.0722
0.4998	1.36561	-0.0894	0.4998	1.35632	-0.0896
0.5995	1.32619	-0.1784	0.5995	1.31703	-0.1655
0.6885	1.28815	-0.2208	0.6885	1.27927	-0.2208
0.7991	1.23653	-0.2016	0.7991	1.22808	-0.2241
0.8983	1.18580	-0.1421	0.8983	1.17759	-0.1558
0.9397	1.16311	-0.0790	0.9397	1.15515	-0.1120
1.0000	1.12870	0.0000	1.0000	1.12074	0.0000
	308.15			318.15 K	
0.0000	1.50833	0.0000	0.0000	1.49836	0.0000
0.0955	1.48074	0.1056	0.0955	1.47098	0.0930
0.1998	1.44924	0.1289	0.1998	1.43959	0.1214
0.3219	1.41003	0.0656	0.3219	1.40054	0.0638
0.4998	1.34706	-0.0872	0.4998	1.33787	-0.0890
0.5995	1.30801	-0.1705	0.5995	1.29912	-0.1899
0.6885	1.27050	-0.2331	0.6885	1.26184	-0.2596
0.7991	1.21963	-0.2441	0.7991	1.21129	-0.2792
0.8983	1.16955	-0.1958	0.8983	1.16144	-0.2226
0.9397	1.14704	-0.1212	0.9397	1.13898	-0.1359
1.0000	1.11278	0.0000	1.0000	1.10483	0.0000
		PEG200 (1) + [(2)	

	288.15 K			298.15 K	
0.0000	1.39247	0.0000	0.0000	1.38405	0.0000
0.1999	1.34253	-0.0802	0.1999	1.33432	-0.1035
0.2903	1.31975	-0.1396	0.2903	1.31160	-0.1681
0.4009	1.29174	-0.2312	0.4009	1.28363	-0.2673
0.5026	1.26587	-0.3517	0.5026	1.25782	-0.3877
0.6608	1.22460	-0.4794	0.6608	1.21663	-0.5181
0.8003	1.18689	-0.4865	0.8003	1.17895	-0.5172
0.8610	1.16981	-0.4179	0.8610	1.16193	-0.4511
0.8990	1.15891	-0.3481	0.8990	1.15100	-0.3722
0.9454	1.14523	-0.2155	0.9454	1.13726	-0.2232
1.0000	1.12870	0.0000	1.0000	1.12074	0.0000
	308.15 K			318.15 K	
0.0000	1.37568	0.0000	0.0000	1.36737	0.0000
0.1999	1.32617	-0.1319	0.1999	1.31804	-0.1546
0.2903	1.30351	-0.2031	0.2903	1.29545	-0.2359
0.4009	1.27561	-0.3092	0.4009	1.26765	-0.3536
0.5026	1.24985	-0.4314	0.5026	1.24194	-0.4816
0.6608	1.20869	-0.5592	0.6608	1.20088	-0.6180
0.8003	1.17106	-0.5569	0.8003	1.16321	-0.5987
0.8610	1.15398	-0.4740	0.8610	1.14614	-0.5121
0.8990	1.14306	-0.3907	0.8990	1.13523	-0.4266
	1 1 2 0 4 0	0.2485	0 9454	1 1 2 1 4 6	-0 2595
0.9454	1.12940	-0.2405	0.7434	1.12140	0.2375

Tabela P17 - Parameteri A_p fitovanja (jednačina 2.4) i odgovarajuće rmsd σ (jednačina 2.5) za binarne smeše za PEG 200 (1) + [C₂mim][NTf₂](2) i PEG 200 (1) + [C₂mim][OTf](2)

Funkcija	<i>T/</i> K	A_0	A_1	<i>A</i> ₂	<i>A</i> ₃	σ			
PEG200 (1) + [C ₂ mim][NTf ₂] (2)									
V^{E}	288.15	-0.3850	-1.9218	0.7058	0.0000	0.0064			
	298.15	-0.3483	-1.9019	0.2413	0.0000	0.0065			
	308.15	-0.3361	-1.9157	-0.2222	0.0000	0.0067			
	318.15	-0.3641	-2.0892	-0.4249	0.0000	0.0072			
		PEG200	$(1) + [C_2 mim]$	[OTf] (2)					
V^{E}	288.15	-1.3605	-2.1224	-1.1542	0.0000	0.0051			
	298.15	-1.5088	-2.1748	-1.2416	0.0000	0.0059			
	308.15	-1.6810	-2.2092	-1.3239	0.0000	0.0065			
	318.15	-1.8880	-2.3339	-1.3484	0.0000	0.0062			

Model	k _{ij,1}	lij,1	m _{ij,1}	$\Delta g_{12,1}$ / kJ·kmol ⁻¹	$\Delta g_{21,1}$ / kJ·kmol ⁻¹	PDmax/%
			PEG 200 (1	1) + $[C_2 min][NTf_2](2)$		
				28 <mark>8.15</mark> K		
vdW1-2	0.1215		-0.0082			4.09
vdW1-3	0.0904	-0.0172	-0.0104			0.29
TCBT-2				$0.931888 \cdot 10^4$	-0.154854·10 ³	3.79
TCBT-3	0.0587			0.136724·10 ⁵	$0.174210 \cdot 10^4$	0.37
				298.15 K		
vdW1-2	0.1181		-0.0073			1.14
vdW1-3	0.1249	0.0035	-0.0068			0.59
TCBT-2				$0.885173 \cdot 10^4$	$-0.578391 \cdot 10^{3}$	1.41
TCBT-3	-0.0064			$0.828672 \cdot 10^4$	-0.665244·10 ³	1.42
				308.15 K		
vdW1-2	0.1155		-0.0063			5.97
vdW1-3	0.1597	0.0213	-0.0026			1.05
TCBT-2				0.834733·10 ⁴	-0.919325·10 ³	6.48
TCBT-3	-0.2399			$0.440567 \cdot 10^{4}$	-0.157391·10 ⁵	0.53
				318.15 K		
vdW1-2	-0.1633		-0.0165			7.20
vdW1-3	0.1752	0.0240	0.0002			1.15
TCBT-2				$0.758116 \cdot 10^4$	-0.988107·10 ³	8.04
TCBT-3	-0.2688			$0.286251 \cdot 10^4$	-0.168860·10 ⁵	0.44
			PEG 200 (1) + [C ₂ min][OTf] (2)		
				288.15 K		
vdW1-2	0.3459		0.0247			2.08
vdW1-3	0.3282	-0.0073	0.0234			1.68
TCBT-2				-0.126463·10 ⁵	0.173317·10 ⁵	11.31
TCBT-3	-0.2101			$-0.104001 \cdot 10^{5}$	-0.101072·10 ⁵	0.53
				298.15 K		
vdW1-2	0.3482		0.0267			2.14
vdW1-3	-0.3258	-0.1735	-0.0140			4.29
TCBT-2				-0.130195·10 ⁵	0.176628·10 ⁵	10.85
TCBT-3	-0.2245			-0.109848·10 ⁵	-0.104999·10 ⁵	0.40
				308.15 K		
vdW1-2	0.3531		0.0290			2.19
vdW1-3	-0.4097	-0.1856	-0.0184			2.49
TCBT-2				-0.136775·10 ⁵	0.185372·10 ⁵	10.80
TCBT-3	-0.2301			-0.111321·10 ⁵	-0.105251·10 ⁵	0.50
				318.15 K		
vdW1-2	0.3611		0.0318			2.68
vdW1-3	-0.3924	-0.1736	-0.0183			2.26

Tabela P18 – Rezultati korelisanja dopunske molarne zapremine za binarne smeše za PEG 200 (1) + [C2mim][NTf2] (2) i PEG 200 (1) + [C2mim][OTf] (2)

179

TCBT-2		$-0.138432 \cdot 10^{5}$	$0.184663 \cdot 10^5$	10.40
TCBT-3	-0.2382	-0.113395·10 ⁵	-0.106848·10 ⁵	0.53

Tabela P19 – Rezultati korelisanja viskoznosti za binarne smeše za PEG 200 (1) + [C2mim][NTf2]
(2) i PEG 200 (1) + [C₂mim][OTf] (2) na atmosferskom pritisku

	Korelativni pristup						
Т / К	Teja - Rice	McAlister - 3	McAlister - 4				
	PD _{max} (%)	PD _{max} (%)	PD _{max} (%)				
	PEG 200	$(1) + [C_2 min][OTf](2)$					
288.15	5.76	1.26	0.31				
298.15	5.35	1.27	0.28				
308.15	5.12	1.29	0.30				
318.15	4.85	1.32	0.32				
	PEG 200	$(1) + [C_2 min][NTf_2] (2)$					
288.15	5.73	0.73	0.50				
298.15	5.50	0.79	0.49				
308.15	5.23	0.70	0.47				
318.15	5.00	0.89	0.49				

Tabela P20 – Najveće postignute vrednosti selektivnosti i distribucionog koeficijenta za jonske tečnosti ispitivane u literaturi za sistem heptan + metanol^a

IL	Najbolja S	Najbolja β
Heptan + Metanol		
4-(2-metoksietil)-4-metilmorfolinijum ²²	2021	44.9
1-(2-metojsietil)-1-metilpiperidinijum ²²	686	36.2
1-(2-metoksietil)-1-metilpirolidinijum ²²	800	38.0
1-metil-3-oktilimidazolijum hlorid ²⁶⁵	8200	
(4-(2-metoksietil)-4-metilmorfolinijum	3201	45.2
bis(trifluorometilsulfonil)-amid ²⁶⁶		
1-(2-metoksietil)-1-metilpiperidinijum	1094	35.5
bis(trifluorometilsulfonil)-amid ²⁶⁶		
1-(2-metoksietil)-1-metilpirolidinijum	1154	30.5
bis(trifluorometilsulfonil)-amid ²⁶⁶		
1,3-dimetilimidazolijum dimeilfosfat ²⁶⁶	5988	54.0
1-etil-3-metilimidazolijum dietilfosfat ²⁶⁶	2839.9	31.3
1-butil-3-metilimidazolijum dibutilfosfat ²⁶⁶	896.3	29.7

^a S i β označavaju selektivnost i distribucioni koeficijent definisane jednačinama (2.6) i (2.7).

i	j	A _{ij} / K	Aji/ K	α_{ij}	<i>a_{ij}/</i> K	<i>a_{ji}/</i> K	σ(%)
Heptan	Metanol	957.2361	1000	0.200	497.601	426.143	
Heptan	DES	600.4378	958.9947	0.200	-14.823	455.532	0.5492ª
Metanol	DES	-978.777	358.9334	0.200	-486.665	-797.657	0.2768^{b}
Toluen	Metanol	66.384	485.424	0.200	606.365	-1.944	
Toluen	DES	663.5102	825.515	0.200	2.070	528.376	0.9395ª
Metanol	DES	-890.103	-993.024	0.200	-159.789	287.702	1.2306 ^b
• ND7	זי						

Tabela P21 - Binarni interakcioni parametri dobijeni za NRTL i UNIQUAC modele za dve ternarnesmeše heptan (1) + metanol (2) + DES1 (3) i toluen (1) + metanol (2) + DES1 (3)

^a NRTL ^b UNIQUAC

Tabela P22 – Eksperimentalne gustine, viskoznosti i indeksi refrakcije za binarnu smešu DES1 (1) + metanol (2) u opsegu temperature između 298.15 K i 323.15 K i na atmosferskom pritisku

<i>X</i> 1	ho/ 10 ³ kg·m ⁻³	η∕ mPa∙s	n _D	<i>X</i> 1	ho/10 ³ kg·m ⁻³	η/mPa∙s	n_D		
	<i>Т</i> =298.15 К								
0	0.787068	0.55577	-	0.6005	1.207312	775.01	1.46761		
0.0996	0.922937	1.9947	1.37308	0.7001	1.225883	1585.5	1.47543		
0.1999	1.018942	6.8703	1.40535	0.7990	1.241360	4682.3	1.48272		
0.3001	1.094695	22.644	1.42847	0.8954	1.256641	11213	1.48808		
0.3996	1.150458	96.521	1.44760	1	1.275061	22091	1.49378		
0.4953	1.182521	246.24	1.45849						
			<i>T</i> =303	15 K					
0	0.782343	0.52224	-	0.6005	1.203896	538.74	1.46632		
0.0996	0.918439	1.8046	1.37152	0.7001	1.222609	1076.8	1.47414		
0.1999	1.015164	5.998	1.40372	0.7990	1.238216	3027.7	1.48146		
0.3001	1.090789	18.713	1.42697	0.8954	1.253599	6825.2	1.48684		
0.3996	1.147090	74.434	1.44629	1	1.272033	13393	1.49256		
0.4953	1.179176	181.13	1.45711						
			<i>T</i> =308	15 K					
0	0.777601	0.48385	-	0.6005	1.200955	383.72	1.46504		
0.0996	0.913966	1.6389	1.36978	0.7001	1.219912	752.6	1.47287		
0.1999	1.011388	5.2275	1.40208	0.7990	1.235763	2012.4	1.48021		
0.3001	1.087060	15.653	1.42548	0.8954	1.251382	4378.4	1.48560		
0.3996	1.143721	58.429	1.44502	1	1.269028	8995	1.49134		
0.4953	1.175968	135.98	1.45573						
			T=313	15 K					
0	0.772836	0.44514	-	0.6005	1.198299	279.56	1.46379		
0.0996	0.910175	1.5016	1.36791	0.7001	1.217459	536.62	1.47160		
0.1999	1.007611	4.573	1.40043	0.7990	1.233491	1372.1	1.47896		
0.3001	1.083723	13.147	1.42402	0.8954	1.249263	2909.6	1.48438		
0.3996	1.140361	46.505	1.44375	1	1.266047	5858.8	1.49012		

0.4953	1.172761	104.1	1.45429						
	<i>Т=</i> 318.15 К								
0	0.768039	0.41030		0.6005	1.194398	208.12	1.46253		
0.0996	0.905188	1.3649	1.36621	0.7001	1.213636	390.96	1.47036		
0.1999	1.003255	4.1027	1.39885	0.7990	1.229662	960.47	1.47772		
0.3001	1.079164	11.318	1.42251	0.8954	1.245364	1973.8	1.48317		
0.3996	1.137015	37.714	1.44245	1	1.263089	4120.7	1.48892		
0.4953	1.169545	81.18	1.45288						
			T=323.	15 K					
0	0.763201	0.37457		0.6005	1.191126	158.78	1.46127		
0.0996	0.899933	1.2724	1.36603	0.7001	1.210487	290.48	1.46921		
0.1999	0.997821	3.6997	1.39691	0.7990	1.226518	690.72	1.47649		
0.3001	1.074627	9.7934	1.42087	0.8954	1.242213	1381.4	1.48197		
0.3996	1.133692	31.069	1.44120	1	1.260153	2923.8	1.48764		
0.4953	1.166317	64.745	1.45159						

<i>X</i> 1	$ ho / 10^3 \text{kg} \cdot \text{m}^{-3}$	η∕ mPa∙s	n_D	$\rho/10^{3}$ kg·m ⁻³	η∕ mPa∙s	n _D	$ ho / 10^{3} \text{kg} \cdot \text{m}^{-3}$	η∕ mPa∙s	n_D
	T=298	.15 K			<i>T</i> =303.15 K			<i>T</i> =308.15 K	
0	1.275061	22091		1.272033	13393		1.269028	8995	
0.1930	1.267518	8100.0	1.48865	1.264472	5343.7	1.48742	1.261449	3454.4	1.48620
0.2956	1.260061	3713.0	1.48440	1.256997	2261.8	1.48317	1.253954	1510.5	1.48195
0.3983	1.252732	1247.7	1.47943	1.249662	848.10	1.47820	1.246609	591.76	1.47697
0.4585	1.247395	695.01	1.47604	1.244312	486.27	1.47480	1.241233	349.13	1.47359
0.5142	1.240114	397.76	1.47156	1.236999	286.67	1.47034	1.233883	210.99	1.46913
0.5751	1.231732	233.95	1.46711	1.228575	185.03	1.46587	1.225548	154.05	1.46463
	T=313	.15 K			<i>T=</i> 318.15 K			<i>T=</i> 323.15 K	
0	1.266047	5858.8		1.263089	4120.7		1.260153	2923.8	
0.1930	1.258448	2293.9	1.48499	1.255468	1565.4	1.48378	1.252506	1094.9	1.48258
0.2956	1.250925	1035.4	1.48073	1.247912	727.96	1.47951	1.244905	523.54	1.47830
0.3983	1.243561	423.15	1.47576	1.240514	309.51	1.47453	1.237467	230.93	1.47333
0.4585	1.238154	256.59	1.47236	1.235072	191.98	1.47116	1.232108	146.47	1.46995
0.5142	1.230874	159.20	1.46790	1.227897	122.92	1.46670	1.224906	96.029	1.46549
0.5751	1.222542	115.04	1.46339	1.219511	87.671	1.46214	1.21647	68.028	1.46089
	T=328	.15 K			<i>Т=</i> 333.15 К			<i>T=</i> 338.15 K	
0	1.257025	2024.4		1.254030	1486.1		1.251035	1070.9	
0.1930	1.249562	782.49	1.48139	1.246632	571.46	1.48022	1.243709	425.43	1.47906
0.2956	1.241906	384.62	1.47709	1.23891	288.37	1.47591	1.235908	220.12	1.47472
0.3983	1.234435	175.52	1.47211	1.231526	135.65	1.47094	1.228609	106.55	1.46977
0.4585	1.229171	113.66	1.46877	1.226218	89.807	1.46756	1.223258	71.800	1.46639
0.5142	1.221912	76.184	1.46428	1.21892	61.294	1.46307	1.215921	50.154	1.46187
0.5751	1.213409	53.875	1.45966	1.210316	43.390	1.45845	1.207159	35.474	1.45725
	T=343	.15 K			<i>T=</i> 348.15 K			<i>T=</i> 353.15 K	
0	1.248040	813.29		1.245045	613.83		1.242050	482.51	
0.1930	1.240790	321.82	1.47793	1.237871	247.37		1.234950	193.02	

Tabela P23 – Eksperimentalne gustine, viskoznosti i indeksi refrakcije za binarnu smešu voda (1) + DES1 (2) u opsegu temperature između 298.15 K i 363.15 K i na atmosferskom pritisku

0.2956	1.232907	170.54	1.47361	1.229908	134.081	1.226909 106.84
0.3983	1.225680	84.797	1.46892	1.222756	68.382	1.219824 55.778
0.4585	1.220300	58.108	1.46530	1.217341	47.570	1.214383 39.214
0.5142	1.212911	41.156	1.46071	1.209891	34.263	1.206861 28.774
0.5751	1.203804	29.320	1.45610	1.200556	24.490	1.197423 20.652
	<i>T</i> =358	.15 K			<i>T=</i> 363.15 K	
0	1.239055	375.58		1.236060	300.95	
0.1930	1.232047	152.78		1.229219	123.34	
0.2956	1.223903	86.213		1.220891	70.321	
0.3983	1.216887	46.015		1.213944	38.628	
0.4585	1.211409	32.522		1.208444	27.120	
0.5142	1.203826	24.234		1.200823	19.286	
0.5751	1.194302	17.547		1.191271	14.635	

T/K	η∕ mPa·s
298.15	10271
303.15	6351.6
308.15	4032.7
313.15	2668.2
318.15	1801.7
323.15	1247.7
328.15	884.36
333.15	640.31
338.15	472.54
343.15	355.17
348.15	271.39
353.15	210.66
358.15	165.85
363.15	133.12

Tabela P24 – Eksperimentalne viskoznosti za smešu DES1 (1) + glicerol (2) (holin hlorid:dljabučna kiselina:glicerol u molskom odnosu 1:1:0.5) u opsegu temperature između 298.15 K i 363.15 K i na atmosferskom pritisku

Tabela P25 – Parametri fitovanja viskoznosti primenom Vogel-Fulcher-Tamman modela (jednačina 5.10), kvalitet fitovanja R² i energija aktivacije viskoznog toka E_{a,η} za sistem DES (1) + glicerol (2) (holin hlorid:dl-jabučna kiselina:glicerol u molskom odnosu 1:1:0.5)

	Α	В	<i>T</i> ₀ / K	R^2
	-3.5330	1612.0000	172.0000	0.9998
<i>T/</i> K		$E_{a,\eta}/\mathrm{k}$	·mol⁻¹	
298.15	74.87	338.15	55.52	
303.15	71.61	343.15	53.88	
308.15	68.66	348.15	52.36	
313.15	65.97	353.15	50.94	
318.15	63.51	358.15	49.61	
323.15	61.26	363.15	48.38	
328.15	59.19			

Tabela P26 – Eksperimentalne gustine, indeksi refrakcije, viskoznosti i brzine zvuka u temperaturnom opsegu (288.15 – 333.15) K za dva ispitivana eutektika holin hlorid (1) + 1,2propandiol (2) (molarni odnos 1:3) i holin hlorid (1) + 1,2-propandiol (2) + H₂O (3) (molarni odnos 1:1:2). Vrednosti pH i provodljivosti na sobnoj temperaturi su takođe prijavljene za dva ispitivana eutektika

<i>T/</i> K	ho / 10 ³ kg·m ⁻³	n _D	η/ mPa·s	<i>u</i> / m·s ⁻¹
	Holin h	lorid + 1,2-propand	diol (1:3)	
288.15	1.074780	1.462777	119.12	1751.70
293.15	1.071695	1.461370	89.383	1738.87
298.15	1.068615	1.459949	68.432	1726.10
303.15	1.065539	1.458529	53.339	1713.41
308.15	1.062465	1.457078	42.261	1700.79
313.15	1.059391	1.455614	33.925	1688.14
318.15	1.056315	1.454178	27.714	1675.51
323.15	1.053239	1.452753	22.880	1662.90
328.15	1.050159	1.451311	19.111	1650.28
333.15	1.047070	1.450124	16.179	1637.74
DES2	pH ^a	Provodljivost ^a		
	7.22	3.203 mS⋅cm ⁻¹	_	
	Holin hlorid	d + 1,2-propandiol ·	+ H ₂ O (1:1:2)	
288.15	1.092048	1.463325	59.473	1960.88
293.15	1.089286	1.462116	46.151	1949.88
298.15	1.086523	1.460900	36.815	1938.88
303.15	1.083758	1.459666	29.502	1927.83
308.15	1.080989	1.458426	24.254	1916.68
313.15	1.078214	1.457167	20.014	1905.46
318.15	1.075429	1.455912	16.820	1894.16
323.15	1.072638	1.454654	14.237	1882.76
328.15	1.069838	1.453427	12.169	1871.22
333.15	1.067026	1.452383	10.524	1859.62
РСН	pH ^a	Provodljivost ^a		
	8.45	11.12 mS·cm ⁻¹	-	

^a Merenja pH i provodljivosti izvedena su na temperaturi 300.15 K.

Ekstraktant	Najbolja S	Najbolje β
Heksan + Etanol		
L-lactic acid + Choline chloride 2:1 ²⁶⁷	2756.171	8.813
Glycolic acid + Choline chloride 1:1 ²⁶⁷		13.033
EMIM EtSO4 ²⁶⁸		
HMIM PF6 ²⁶⁹	331	10.5
OMIM PF6 ²⁶⁹	203.5	1546
[HMim][TfO] ²⁷⁰		
[HMim][N(CN)2] ²⁷⁰		
[HMim][NTf2] ²⁷⁰		
[PMim][NTf2] ²⁷⁰		
[BMIM][MeSO4] 271	432.0	5.51
B-U3000 ²⁷²	0.38	0.12
C6BF4 ²⁷²		
Heptan + Etanol		
[C ₂ MIM][Ac] ²⁷³		
0.67[C ₂ MIM][Ac] + 0.33[NH ₄][Ac] (IL-33AC) ²⁷³		
0.67[C ₂ MIM][Ac] + 0.33[NH ₄]Cl (IL-33CL) ²⁷³		
0.67[C ₂ MIM][Ac] + 0.33[NH ₄][SCN] (IL-33SCN) ²⁷³		
[C ₂ MIM] [C ₂ SO ₄] + [NH ₄][SCN] (HIIL17) ²⁷⁴		
[C ₂ MIM] [C ₂ SO ₄] + [NH ₄][SCN] (HIIL33) ²⁷⁴		
[C2SO4] þ [NH4][SCN] (HIIL45) ²⁷⁴		
L-lactic acid + Choline chloride 2:1 ²⁶⁷	19 690.927	29.430
Glycolic acid + Choline chloride 1:1 ²⁶⁷	27 060.983	15.488
Choline chloride + Glycerol ²²⁷	780 534.10	10.21
Choline chloride + Levulic acid ²²⁷	292 189.77	135.73
Choline chloride + Ethylene glycol ²²⁷	1 334 203.35	21.51
EMIM EtSO4 ²⁶⁸		11.85
OMIM PF6 ²⁶⁹	230	22.9
HMImPF6 ²⁶⁹	25 349	25.6
[BMIM] [MeSO4] ²⁷¹	26 795	19.10

Tabela P27 - Najveće postignute vrednosti selektivnosti i distribucionog koeficijenta za jonske tečnosti i eutektičke smeše ispitivane u literaturi heksan + etanol i heptan + etanol^a

^a S i β označavaju selektivnost i distribucioni koeficijent definisane jednačinama (2.6) i (2.7).

i	j	Aij	Aji	$lpha_{ij}$	aij	<i>a</i> _{ji}	σ (%)
Heksan	Etanol	34.29	383.34	0.200	9586.22	4658.73	
Heksan	DES2	1000	1000	0.200	270.61	-4669.05	0.9671 ^a
Etanol	DES2	954.83	-1000	0.200	-5350.06	-8968.32	0.1005^{b}
Heksan	Etanol	427.74	544.55	0.200	-1257.16	5181.46	
Heksan	РСН	836.42	490.67	0.200	-5138.47	-9362.19	2.6967 ^a
Etanol	РСН	-328.59	228.23	0.200	-5421.46	-6081.53	0.0014^{b}
Heptan	Etanol	183.02	560.93	0.200	-717.26	-7401.88	
Heptan	DES2	820.71	829.47	0.200	1529.93	1007.07	1.3420 ^a
Etanol	DES2	-113.48	-155.64	0.200	-7969.92	-9072.17	0.0017^{b}
Heptan	Etanol	33.64	465.24	0.200	579.07	-197.21	
Heptan	РСН	643.51	818.09	0.200	148.59	905.11	1.5871ª
Etanol	РСН	-885.75	-984.62	0.200	-325.24	611.64	1.3736 ^b

Tabela P28 - Binarni interakcioni parametri dobijeni za NRTL i UNIQUAC modele za četiri ispitivana ternarna sistema heksan (1) + etanol (2) + DES2, heksan (1) + etanol (2) + PCH, heptan (1) + etanol (2) + DES2 i heptan (1) + etanol (2) + PCH (3) i vrednosti devijacije σ

^a NRTL ^b UNIQUAC

Biografija autora

Jelena Vuksanović, master inž. tehnologije, rođena je 01.03.1987. godine u Baru. Završila je osnovnu školu i gimnaziju u Beogradu. Osnovne studije na Tehnološkometalurškom fakultetu u Beogradu započela je 2005/2006 školske godine, a završila u oktobru 2009. godine sa prosečnom ocenom 8,13 na Odseku za Hemijsko Inženjerstvo. Završni rad pod nazivom *"Energetska integracija i optimizacija rada destilacionih kolona"* odbranila je sa ocenom 10. Master studije na Tehnološkometalurškom fakultetu u Beogradu započela je 2009/2010 školske godine, a završila u oktobru 2010. godine sa prosečnom ocenom 10 na Odseku za Hemijsko Inženjerstvo. Master rad pod nazivom *"Energetska analiza i integracija procesa industrijske površinske obrade metala"* odbranila je sa ocenom 10 na studijskom programu Hemijsko Inženjerstvo. Školske 2010/2011 upisala je doktorske studije na matičnom fakultetu, na studijskom programu Hemijsko Inženjerstvo. Položila je sve predviđene ispite na doktorskim studijama, kao i završni ispit, sa prosečnom ocenom 10.

Od februara 2011. zaposlena je na Tehnološko-metalurškom fakultetu u zvanju istraživač-pripravnik na projektu ON172063 pod nazivom "Novi industrijski i ekološki aspekti primene hemijske termodinamike na unapređenje hemijskih procesa sa višefaznim i višekomponentnim sistemima". U aprilu 2013. izabrana je u istraživača saradnika. Govori engleski jezik. Dosadašnje aktivnosti doktoranta vezane su za eksperimentalna merenja ravnoteže čvrsto-tečno organskih rastvarača sa polietilen glikolima; ravnoteže tečno-tečno jonskih tečnosti sa polietilen glikolima; gustina, indeksa refrakcije i viskoznosti binarnih smeša na atmosferskom pritisku i u temperaturnom intervalu; korelisanje termodinamičkih podataka binarnih smeša Redlich-Kister polinomom i modelovanje istih UNIFAC-VISCO, ASOG-VISCO, Teja-Rice, McAllister jednačinama, i korišćenjem Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton, i Oster pravila mešanja. Eksperimentalna merenja su rađena i u oblasti ravnoteža tečno-tečno ternarnih sistema i ispitivanja selektivnosti novih netoksičnih rastvarača - eutektičkih smeša za razdvajanje azeotropa primenom ekstrakcije tečno-tečno. Modelovanje ravnotežnih podataka je vršeno NRTL i UNIQUAC korelativnim modelima.

Od letnjeg semestra 2011/2012 do 2015/2016 godine angažovana je u izvođenju računskih vežbi iz predmeta Programiranje i u zimskom semestru 2015/2016 na vežbama iz predmeta Hemijsko-inženjerska termodinamika i Energetska intergracija procesa.

U oblasti naučnog rada autor je i koautor devet radova u međunarodnim časopisima, kao i radove sa nacionalnih i međunarodnih skupova. Tokom doktorskih studija učestvovala je na treninzima u Japanu – Tehnologije korišćenja biomase i Koreji – Emisije gasova staklene bašte. Прилог 1.

Изјава о ауторству

Потписани-а <u>Јелена Вуксановић</u>

број индекса _____4074/2010 ______

Изјављујем

да је докторска дисертација под насловом

Одређивање равнотежних и термодинамичких параметара нове генерације

зелених растварача у циљу индустријске примене

- резултат сопственог истраживачког рада,
- да предложена дисертација у целини ни у деловима није била предложена за добијање било које дипломе према студијским програмима других високошколских установа,
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

Потпис докторанда

У Београду, __29.09.2016._____

Јелена Вуксановић

Прилог 2.

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора	Јелена Вуксановић
Број индекса 4074/2010	
Студијски програм Хе	емијско инжењерство
Наслов рада Одређивање равно нове генерације зелених растварача у	отежних и термодинамичких параметара циљу индустријске примене
Ментор Др Ивона Радовић, в металуршког факултета, Универзитета	анредни професор Технолошко- i у Београду

Потписани/а _____Јелена Вуксановић_____

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла за објављивање на порталу **Дигиталног репозиторијума Универзитета у Београду.**

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис докторанда

У Београду, ____29.09.2016._____

___ Јелена Вуксановић ___

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

Одређивање равнотежних и термодинамичких параметара нове генерације

зелених растварача у циљу индустријске примене

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

- 1. Ауторство
- 2. Ауторство некомерцијално
- 3. Ауторство некомерцијално без прераде
- 4. Ауторство некомерцијално делити под истим условима
- 5. Ауторство без прераде
- 6. Ауторство делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис лиценци дат је на полеђини листа).

Потпис доктор

У Београду, ____29.09.2016._____

_Јелена Вуксановић