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Abstract: 
 Adsorption of anthraquinone dye Acid Blue 111 by alumina-iron oxide doped 

particles prepared by sol-gel method from aqueous solutions was studied. The adsorbent 

morphology was revealed by FESEM and the crystallographic phase is analyzed by the XRD 

technique. The effect of adsorbate and adsorbent concentrations, pH value, type of adsorbent 
and thermodynamic parameters on dye removal by adsorption was studied. The change of dye 

concentration during the adsorbtion was followed using the UV-Visible spectrophotometer. 

The change of the adsorbent surface before and after dye removal was observed using the 

Fourier Transformation-infrared spectroscopy (FT-IR). The adsorption kinetics is in 

accordance with the pseudo-second-order kinetics model. The Langmuir and Freundlich 

adsorption isotherm models were used to describe the adsorption process. The 

thermodynamic study of dye adsorption proves the process is spontaneous with exothermic 
nature. 

Keywords: Textile industry wastewater; Alumina-iron oxide doped particles; Dye removal; 

Adsorbent characterization; Kinetics study. 

 
 

 

1. Introduction 
 
 With the rapid development of civilization, more demanding requirements in water 

quality have been set in the industry as well. Replacement of natural dyes with synthetic dyes 

in the processes of the textile industry gives positive characteristics as greater resistance to 

environmental influences, low production cost, a wider range of dyes and easy application on 

different materials [1]. Beside mentioned positive characteristics, synthetic dyes are highly 

toxic, non-biodegradable, mutagenic and carcinogenic substances witch presence in influent 

water can inhibit processes in their ecosystems [2-4]. Anthraquinone dyes are the second most 

used colorants with 15 % of all produced dyes and mostly used in the textile industry [5]. C. I. 
Acid Blue 111 (CAS 6420-90-4, C.I.62155, Fig. 1) is one of the colorants with anthraquinone 

chromophore in the structure. 
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Fig. 1. The structure of AB111. 
 

 Undoubtedly, due to the high toxicity and the ability to inhibit biological process 

which is conventional wastewater treatment, in recent years the research are directed to 

environmental-friendly removal methods for dye elimination from waste waters before 

releasing into the recipient as adsorption [6], electrochemical oxidation [7], and different 

advanced oxidation processes [8], etc. 

 Adsorption represents the mass transfer process between solid substances-adsorbent, 

which has characteristic to remove dissolved pollutant particles from wastewater by selective 
attracting of the pollutants on the adsorbent surface. Depending on the bonding between the 

adsorbent surface and molecules of pollutants, adsorption can be classified as chemical or 

physical. Dye adsorption is usually a physical method which is based on Vander Waals forces 

and dipole-dipole interactions etc. Characteristics that also affect the adsorption are the 

polarity of adsorbent surface, particle size, particle polarity and size, etc. [9]. 

 Alumina is a low-cost material and has a wide range of usage. Depending on the 

preparation method, this material can have adsorbent [10], direct current (DC) volume 
resistivity [11], antibacterial [12], good mechanical properties [13-14], etc. properties. The 

important advantage, besides the low-cost production, of alumina and alumina-based particles 

as adsorbent of pollutants from aqueous solutions is an eco-frendly and easy removal meterial 

[9, 15]. The previous examination of textile dye adsorptive decolourization, shows good 

adsorption characteristics for removal of azo dyes Reactive Orange 16 [16], Cibacron reactive 

yellow [17], anthraquinone dye Alizarin red S [18]. According to our knowledge, the 

adsorption of textile dye AB111 has not been examined using any adsorbent materials. 
 Alumina has one stable crystallographic phase that is known as corundum. This phase 

is obtained in various natural occurring crystals and is known for high strengths and hardness. 

On the other hand, when alumina is prepared by the sol-gel technique the precursors are 

soluble compounds of aluminium and trough the series of hydroxide and oxide forms the 

structure can be optimized for the adsorption [16, 19] or another use. It is known that the 

metastable forms of alumina such as γ-alumina are used for their high adsorption capacity and 

the openness of their structure that enables the creation of particles having a high surface to 

mass ratios. Other forms of alumina such as κ and η could be potentially good for the removal 
of organic matter from solutions. Those structures are usually analyzed by X-ray diffraction 

(XRD) technique and the crystallographic structure as well as the size of crystallites can be 
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obtained this way. The morphological structure of the adsorbent is revealed by SEM imaging 

techniques and the size and form of the used adsorbent can be described using some shape 

factors. The characteristics of the surface, eventual presence of OH groups or other adsorbed 

materials can be identified using the FT-IR technique [20].  

 In our study of Fenton and electro Fenton reactions [21], an attempt was made to 
prepare a ferrous bearing catalyst. It turned out that the obtained materials are better 

adsorbents than catalysts. So in this study, we report an investigation of the adsorption 

capacity of alumina-iron oxide doped particles prepared by sol-gel method with different 

content of iron at different temperatures. The influence of different initial parameters such as 

dye and alumina particles concentration, pH and temperature, was studied. The Langmuir and 

Freundlich adsorption isotherm models and thermodynamic parameters were used to describe 

the adsorption process. Dye removal during the time using alumina-iron oxide doped particles 
as adsorbent was followed by ultraviolet-visible (UV/Vis) spectroscopy. 

 

 

2. Experimental Procedures 
2.1. Materials and characterization methods 

 
 The alumina-iron oxide doped particles were prepared from aluminum hydroxide 

chloride (Locron L; Al2(OH)5Cl·2.5 H2O) purchased from Clariant. The particles precursors 

were doped with FeCl3·6H2O purchased from Sigma-Aldrich.  

 The alumina-iron oxide doped particles were used as adsorbent of anthraquinone dye 

Acid Blue 111 produced by Hoechst A. G., Germany from aqueous solution. The 

crystallographic phases of sintered particles were determined by X-ray diffraction. The XRD 
sample was taken with Ital Structure APD2000 X-ray diffractometer in Bragg-Brentano 

geometry using CuKα radiation (λ = 1.5418 A) and scan mode (range: 20-75° 2θ, step: 0.50 s, 

step width: 0.02°).  

 Fourier-transfer infrared spectroscopy was used for structural analysis of particles. 

The analogs were fixed on a Nicolet 6700 spectrometer (Thermo Scientific) in attenuated total 

reflectance (ATR) mode using a one-way 45° F ATR accessory with diamond crystal and 

electronically cooled DTGS detector. The spectra were co-added to 64 scans at a spectral 
resolution of 4 cm

–1
 and corrected for ATR. The Nicolet 6700 FT-IR spectrometer was 

equipped with OMNIC software and recorded spectra in the wavelength range 2.5 to 20 µm 

(i.e. 4000 cm
–1

 to 500 cm
– 1

). 

 The morphologies of the alumina-iron oxide doped particles were examined using a 

field emission scanning electron microscope (FESEM), MIRA3 TESCAN, operated at 20 kV. 

 The adsorption method used comprised usage of the anthraquinone dye solution, Acid 

Blue 111 (Hoechst A. G., Germany) and the synthesized different alumina-iron oxide doped 

particles of known concentration in a thermostated glass reactor. Adjustment of the pH value 
of the solution was performed using 0.1 M sulfuric acid (Sigma-Aldrich (USA)). All the 

necessary chemicals used in the study were of analytical grade and used without further 

purification. Deionized water obtained from the Millipore Waters Milli-Q (USA) purification 

system was used. 

 The changes in dye concentrations in the liquid phase were followed using a UV-Vis 

spectrophotometry (UV-Vis Shimadzu 1800 spectrophotometer, Japan). The pH 

measurements were performed using a Hanna pH Meter HI-2210 (Italy). The magnetic stirrer 
was produced by Heidolph (Germany). All samples after adsorption are centrifuged on 

centrifuge Mini Spin® (Eppendorf). The influence of temperature on adsorption efficiency 

was tested by adjusting the temperature in a Maple scientific circulating water bath SB-5 

(United Kingdom). 
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2.2. Synthesis of doped alumina particles 

 
 The synthesis of alumina-iron oxide doped particles using the sol-gel techniquehas 

been described in previous papers [22-24]. The alumina-iron oxide doped particles were 

synthesized by the sol-gel technique with the addition of different concentration of 
FeCl3∙6H2O varying the temperature of calcination. Aluminium hydroxide chloride and 

FeCl3∙6H2O were dissolved in water on a magnetic stirrer and then poured into a petri dish to 

dry. The gel was milled in a laboratory mortar and then the powder was calcinated at three 

different temperatures: 700, 800 and 900 °C for 2 h, to obtain different crystalline structures. 

Alumina particles doped with Fe2O3 were prepared with the addition of 4 wt.% and 13 wt.% 

of FeCl3∙6H2O. The alumina particles with 13 wt.% of FeCl3∙6H2O were calcinated only at 

800 
o
C. 

 All adsorption experiments were examined in a glass reactor containing 100 cm
3 

of 
dye solution and initial concentration of the adsorbent. The reaction solution was mixed by a 

magnetic stirrer at a rate of 750 rpm. Kinetics analysis was performed at room temperature 

(298 K) and investigation of temperature influence on dye adsorption was examined at 298, 

303, 308 and 318 K. All temperature adjustments were performed in a thermostatic bath. The 

solid adsorbent was separated after 60 minutes of adsorption processes by 120 seconds long 

centrifugation at 13500 rpm. The concentration of AB111 dye in these solutions was 

measured using UV-Vis spectroscopy at a wavelength of 634 nm. 
 The adsorption of AB111 can be described best by the pseudo-second-order kinetics 

model. Adsorption capacity qt (mgAB111/galumina) was calculated by using Equation 1 [1]: 

 𝑞t =  (C0−Ct)VW              (1) 

 

where C0 (mg/L) and Ct (mg/L) were the concentrations of AB111 dye at t=0 (initial) and at 

time t (min), V (L) was the volume of the sample solution and W (g) was the weight of the 

adsorbent. 

 In this study, the efficiency of anthraquinone dye adsorption is represented by the 

percentage of dye removal. The percentage of dye removal was calculated by using Equation 
2 [5]: 

 % 𝑜𝑓 𝑑𝑦𝑒 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =  𝐶0−𝐶𝑡𝐶0 𝑥100         (2) 

 

where C0 and Ct were described in explanation of Equation 1. 

 All the experiments were carried out under controlled conditions: the temperature in 

the thermostatic bath was maintained constant to within ± 0.1˚C, the adsorbent samples were 
weighed to four-digit accuracy, and the solution concentrations were determined with four-

digit accuracy. At least three measurements were done for each determination.  

 
 

3. Results and Discussion 

3.1. Characterization of alumina-iron oxide doped particles 
 
 The morphology of alumina-iron oxide doped particles was studied by SEM analysis. 

The SEM photographs obtained from Scanning Electron Microscopy analysis are presented in 

Figs. 2-4 shows the SEM photographs, Energy-dispersive X-ray spectroscopy and distribution 

of diameter of the alumina-iron oxide doped particles sintered at 800 
o
C with 4 wt.% (Fig. 3) 

and 13 (Fig. 4) wt.% of FeCl3∙6H2O. 
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Fig. 2. The SEM photographs of alumina-iron oxide doped particles sintered at (a) 700 ºC – 4 

wt% Fe, (b) 800 ºC – 4 wt.% Fe, (c) 900 
o
C – 4 wt.% Fe and (d) 800 

o
C – 13 wt% Fe. 

  

 
 
Fig. 3. a) SEM photograph and Energy-dispersive X-ray spectroscopy of alumina-iron oxide 

doped particles sintered at 800 °C with the addition of 4 wt.% of FeCl3∙6H2O and b) 

distribution of diameter of the particles. 
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Fig. 4. a) SEM photograph and Energy-dispersive X-ray spectroscopy of alumina-iron oxide 

doped particles sintered at 800 °C with the addition of 13 wt.% of FeCl3∙6H2O and b) 

distribution of diameter of the particles. 

 

 Energy-dispersive X-ray spectroscopy of the marked area of SEM photograph shows 

the weight percent (wt.%) of different mass fraction of alumina-iron oxide doped particles. In 
alumina-iron oxide doped partices with addition of 4 wt.% of FeCl3∙6H2O the presence of 

aluminium, oxygen, iron and chlorine were 56.52, 37.90, 4.63 and 0.95 wt.%, respectively. In 

η–Al2O3 800 °C-13 wt.% Fe presence of same elements are presented in Fig. 4 were 46.07, 

44.12, 9.44, 0.23 wt.%, respectively. The presence of chlorine is caused by impurities 

remaining after the synthesis process, originates from precursors, Al2(OH)5Cl·2.5 H2O and 

FeCl3·6H2O. Other elements represent the desired chemical composition of the synthesized 

powder. From the EDS data the exact weight percent of Fe2O3 in the first specimen was 4.01 

wt.% and in the second specimen it was 13.05 wt.%. Those compositions are in accordance 
with the XRD data where in the first specimen the presence of the hematite is less visible as 

the alumina structures dominante the crystal structure. The corresponding mol fractions of 

Fe2O3 in the two particle systems are 3.69 wt.% of Fe2O3 and 8.7 wt.% of Fe2O3. Comparing 

to the calculated phase diagram of Al2O3-Fe2O3 system those two compositions correspond to 

two different situations of oxide solubilites. The concentration of 3.69 mol.% correspond to 

the structure where the hematite is dissolved in alumina and thus the dominate structure is 

alumina and the presence of the hematite is less visible. The role of the present hematite is 
mostly to ease the formation of corundum structure in the system. On the other hand superior 

concentrations of Fe2O3 correspond to the two phase area in the phase diagram where the 

hematite and alumina are present separately and this is visible from the XRD. In the specimen 

having 8.7 wt.% of the Fe2O3 the presence of the hematite structure is obvious [25]. 

 The distribution of particle size was done using the images where individual particles 

were distinguishable and their diameters were measured using the image analysis software. 

The large particles visible in SEM images are mostly agglomerates and they are mostly 
dispersed in the process. According to Figs 3 and 4, the alumina-iron oxide doped particles 

sintered at the same temperature with 4 wt.% of FeCl3∙6H2O is mostly in the range 0.5-0.7 
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µm. Unlike the previous specimen, alumina-iron oxide doped particles with 13 wt.% of 

FeCl3∙6H2O is mostly in the range 0.1-0.2 µm. 

 The values of point of zero charge for alumina-iron oxide doped particles with 4 wt.% 

of FeCl3∙6H2O sintered at 700, 800, and 900 °C and alumina-iron oxide doped particles with 

13 wt.% of FeCl3∙6H2O sintered at 800 °C particles used as adsorbent are 5.87, 5.82, 6.36, and 
5.85, respectively. 

 The XRD diffractograms of the synthesized alumina-iron oxide doped particles after 

heat treatment at different temperatures are shown in Fig. 5 and characteristic phases are 

marked. The dominant structure in the synthetized  alumina-iron oxide doped particles, with 

the adition of 4 wt.% of FeCl3∙6H2O, sintered at 700 and 800 °C is η – Al2O3 (PDF-1 77-

0396) and for sintered at 900 °C, the dominant phases are η – Al2O3 (PDF-1 80-0955) and α – 

Al2O3 (PDF-1 75-1862). The ferrous oxide was added in 4 wt.% to alumina to ease the 
formation of corundum structure and this is visible from diffractograms where with the 

addition of ferrous oxide the temperature transformation lowers. On the other hand for 

adsorption, the structure having less crystallized structure could be more attractive. The 

addition of 13 wt.% in our experiments, gives the structure where hematite appears 

independently, as visible in Fig. 5. So in the specimen having 13 wt.% of added iron salt 

sintered at 800 °C, it is obvious that the hematite structure dominates and alumina is visible 

only as η alumina and the dominant structure is hematite that forms on lower temperatures. 
This material should have better properties in adsorption since this is a promising structure to 
be used in dye removal systems [26, 27].  

 

 
 

Fig. 5. XRD diffractogram of the synthesized alumina-iron oxide doped particles (with the 

adition of 4 wt.% of FeCl3∙6H2O) particles after heat treatment at different temperatures. 

 

 Fig. 6 shows the XRD diffraction patterns of alumina-iron oxide doped particles 
synthesized via heat treatment at 800 °C with 13 wt.% of FeCl3∙6H2O. The dominant phases 

in these particles are η – Al2O3 (PDF-177-0396) and α – Fe2O3 (PDF-164-0307). 
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Fig. 6. XRD diffractogram of the synthesized η Al2O3 - α Fe2O3 particle after heat treatment at 

800 °C showing the hematite structure that dominates. 

 

3.2. Optimization of adsorption conditions 

 
 Many factors affect dye adsorption processes such as the initial concentration of 

adsorbent and dye, solution pH and temperature. Optimization of the mentioned conditions 

will greatly help in the development of dye removal from wastewater. In the further section, 

factors affecting dye adsorption are discussed. 
 The results of this study obtained by kinetics experiments were analyzed using the 

pseudo-first-order, pseudo-second-order adsorption rate model and intra-particle diffusion 

model since these models have been found to describe the sorption kinetics in anthraquinone 

dye sorption studies. The used kinetic models as presented by Equations 3-5, and summarized 

in Table I [28-30]. 

 

Tab. I Kinetics models for the description of the sorption kinetics in anthraquinone dye 

sorption studies. 

model Equation Plot 

Pseudo-first-order ln(𝑞𝑒 − 𝑞𝑡) = 𝑙𝑛𝑞𝑒 − 𝑘12.303 𝑡 (3) ln(𝑞𝑒 − 𝑞𝑡) 𝑣𝑠 𝑡 

Pseudo-second-order 
𝑡𝑞𝑡 = 1𝑘2𝑞𝑒2 + 1𝑞𝑒 𝑡 (4) 

1𝑞𝑡  𝑣𝑠 𝑡 

Intra-particle diffusion − ln (1 − 𝑞𝑡𝑞𝑒) = 𝑘𝑑𝑖𝑓𝑡 (5) 𝑞𝑡  𝑣𝑠 𝑡0.5 

 
where k1 (1/min), k2 (g/(mg min)) and k dif are the rates of constant of the pseudo-first-order, 

pseudo-second-order and intra-particle diffusion rate constant, respectively. Parameters qt and 
qe are adsorbed amount of dye during time and at equilibrium, respectively. 

 The obtained kinetics parameters for anthraquinone dye AB111 using the pseudo-

first-order, pseudo-first-order kinetics model, and intra-particle diffusion model are presented 

in Table IIa-b, and kinetics plots for all three kinetics models are presented in the 

supplementary material (Figs S1-S10). 
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Tab. IIa The kinetics parameters for the AB111 adsorption using alumina-iron oxide doped 

particles sintered at 800 °C with addition of 4 wt.% of FeCl3∙6H2O 

 

[Adsorbent] 

g/L 

 

[AB111] 

mg/L 

 

 

pH 

 

Pseudo-first order 

 

Pseudo-second order 

qe 

mg/g 

k1 

1/min 
R

2 qe 

mg/g 

k2 

g/(mg 

min) 

R
2
 

0.5  

 

100 

 

 

3 

2.58 0.011 0.9627 15.89 0.009 0.9987 

0.75 1.98 0.016 0.9787 11.29 0.034 0.9996 

1.0 1.53 0.015 0.9818 8.62 0.059 0.9998 

1.25 1.30 0.013 0.9949 7.09 0.079 0.9999 

1.5 1.16 0.016 0.9802 5.97 0.126 1 

 

1.0 

25  

 

3 

1.09 0.002 0.8852 2.31 0.260 0.9999 

50 1.15 0.009 0.9472 4.56 0.160 0.9997 

75 1.26 0.010 0.9931 6.25 0.078 0.9997 

100 1.53 0.015 0.9818 8.62 0.059 0.9999 

 

 

1.0 

 

 

100 

2.5 1.45 0.013 0.9846 8.33 0.059 0.9998 

3.0 1.53 0.015 0.9818 8.62 0.060 0.9999 

3.5 1.75 0.008 0.9940 6.58 0.018 0.9945 

4.0 0.85 0.008 0.9614 6.37 0.011 0.9903 

6.8 1.72 0.010 0.9887 4.92 0.010 0.9907 

 
Tab. IIb The kinetics parameters for the AB111 adsorption using alumina-iron oxide doped 

particles sintered at 800 °C with addition of 4 wt.% of FeCl3∙6H2O 

 

[Adsorbent] 

g/L 

 

[AB111] 

mg/L 

 

 

pH 

Interparticle diffusion 

k1 C1 R
2
 k2 C2

 
R

2
 

0.5  
 

100 

 
 

3 

2.793 0.096 0.9871 0.581 9.726 0.9999 

0.75 0.739 6.510 0.9868 0.217 9.184 0.9143 

1.0 0.672 4.947 0.9936 0.142 7.288 0.9472 

1.25 0.427 4.604 0.9985 0.113 6.046 0.9764 

1.5 0.350 4.087 0.9465 0.074 5.286 0.9359 

 

1.0 

25  

 

3 

0.107 1.646 0.9837 0.039 1.959 0.9634 

50 0.208 3.350 0.9699 0.069 3.943 0.9828 

75 0.337 4.077 0.9366 0.160 4.928 0.9998 

100 0.672 4.947 0.9936 0.142 7.288 0.9475 

 

 

1.0 

 

 

100 

2.5 0.552 5.091 0.9903 0.115 7.167 0.9943 

3.0 0.672 4.947 0.9936 0.142 7.288 0.9472 

3.5 0.746 1.197 0.9909 0.449 2.440 0.9944 

4.0 0.740 0.228 0.9956 0.361 2.399 0.9415 

6.8 0.660 0.454 0.9559 0.351 1.014 0.9989 

 

 Analyzing the results of kinetics study for all initial conditions and comparison of 

pseudo-first-order and pseudo-second-order kinetics model experimental data shows a good 

fitting with the pseudo-second-order kinetics model with a high value of R
2
 (>0.99). The 

experimental data obtained by the intra-particle diffusion model confirm the multi-step 
mechanism of AB111 adsorption. The intra-particles diffusion plot (Figs S3, S6, and S9, 

Supplementary material) shows two steps of dye adsorption. In the first 20 minutes of 

adsorption, the process has a higher value of kdif1 which corresponds to superficial 

adsorption, after 20 minutes of the dye adsorption process, the values of kdif2 are decreased 

which corresponds to subsequent intraparticle or pore diffusion. The value of C1 and C2 
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shows that the plots do not pass through origin which contributes to the intra-particle is not 

the singular determining step. 

 

3.2.1. The influence of the initial adsorbent concentration  
 

 The effect of the initial alumina-iron oxide doped particles sintered at 800 °C with 4 

wt.% of iron salt, concentration was studied at a constant dye concentration, temperature, and 

pH value. In this part of the experiment, the initial adsorbent concentration was in the range 

0.5-1.5 g/L. Fig. 7 shows the percentage of dye removal versus time for different initial 
adsorbent concentration and the red scale shows the dependence of adsorption capacity from 

initial adsorbent concentration. 

 
 
Fig. 7. The percentage of dye removal versus time for different initial adsorbent concentration 

(black scale) and the dependence of adsorption capacity from initial adsorbent concentration 

(red scale). Initial conditions: CAB111= 100 mg/L, pH= 3, T= 293.15 K, ω= 750 rpm. Alumina-

iron oxide doped particles sintered at 800 °C with 4 wt.% of iron salt were used. 

 

As can be seen from Fig. 7 the adsorption capacity and dye removal depend on the initial 

concentration of the alumina-iron oxide doped particles sintered at 800 °C with 4 wt.% of 

FeCl3∙6H2O. The increasing of the adsorbent concentration initiates the decrease of the 
adsorption capacity and increasing the percentage of dye removal. In the system in which was 

used the lowest concentration of adsorbent (0.5 g/L), obtained adsorption capacity was 14.22 

mg/g and after 60 minutes was removed 73.9 % of dye. Opposite the system with the lowest 

initial adsorbent concentration, increasing the adsorbent concentration to 1.5 g/L, adsorption 

capacity is decreased to 5.85 mg/g and the percentage of dye removal is increased to 88.3 %. 

The adsorption rate in the system with the lowest adsorption concentration was k 2= 0.009 

g/(mg min). The increase in adsorbent concentration, increase the adsorption rate. Thus, in the 
system with the highest concentration, the adsorption rate was k 2= 0.126 g/(mg min) (Table II, 

and Figure S2, Supplementary material). The explanation for this phenomenon is that increase 

in the amount of adsorbent initiate the increase in the quantity of sorption sites at the 

adsorbent surface and enable the higher percentage of dye removal. From an economical point 

of view, the basic idea is to use the smallest amount of adsorbent for decreasing dye 
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concentration to lower concentration than those prescribed by law which describes pollutant 

concentration in water [31]. 

 

3.2.2. The influence of the initial dye concentration  

 
The percent of dye removal is highly dependent on the initial dye concentration. The 

effect of initial dye concentration depends on the immediate relation between the 

concentration of the dye and the available sites on an adsorbent surface [2]. The influence of 

the initial dye concentration was investigated in the range 25-100 mg/L under the same 

conditions, and as an adsorbent was used alumina-iron oxide doped particles with 4 wt.% of 

FeCl3∙6H2O sintered at 800 °C. The percentage of dye removal versus time for different initial 

dye concentration is shown in Figure 8, and the red scale of the same figure donates the 

dependence of adsorption capacity at different initial dye concentrations. 
 

 
 

Fig. 8. The the percentage of dye removal versus time for different initial dye concentration 

(black scale) and the dependence of adsorption capacity from initial dye concentration (red 

scale). Initial conditions: Cads= 1g/L, pH= 3, T= 293.15 K, ω= 750 rpm. Alumina-iron oxide 

doped particles sintered at 800 °C with 4 wt.% of iron salt were used. 

 
According to the results presented in Fig. 8, it can be concluded that the increase of the initial 

dye concentration causes the decrease of dye removal, which may be due to the saturation of 

adsorption sites on the adsorbent surface. Also, the increase of the initial dye concentration 

will cause an increase in the capacity of the adsorbent and this may be due to the high driving 

force for mass transfer at a high initial dye concentration [32]. In the system with initial dye 

concentration 25 mg/L 89.2 % of dye was removed, adsorption constant was 2.27 mg/g and 

the adsorption rate was k2= 0.26 g/(mg min) (Table II, and Fig. S5, Supplementary material). 
An increase of the initial dye concentration to 100 mg/L decreases the percentage of dye 

degradation to 85.1 %, adsorption constant was 8.36 mg/g and the adsorption rate was k2= 

0.059 g/(mg min) (Table II., and Fig. S5, Supplementary material). 

 Mahapatra et al. [26] studied the adsorption of Congo Red by iron oxide – alumina 

nanocomposites and they found that when the Congo Red concentration increased from 20 
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mg/L to 1000 mg/L using α-Fe2O3–Al2O3 and γ-Fe2O3–Al2O3 almost 100 % of dye was 

adsorbed [27]. Banerjee et al. [33] studied the removal of Orange G from aqueous solution by 

adsorption process using alumina nanoparticles. They showed that increasing dye 

concentration decreases the percentage of removal. In the system where the dye concentration 

was 50 mg/L cca. 95 % was removed while increase of initial dye concentration to 125 mg/L 
decreases the percentage of dye removal after 120 minutes to cca. 75 %. 

 

3.2.3. The effect of the initial pH value  

 
 Besides the effect of the initial dye and adsorbent concentration and temperature, the 

pH value of the solution is very important for the adsorption. The influence of initial pH value 

was investigated in the range 2.5 – 7.4 (pH value of dye solution) pH value. The alumina-iron 

oxide doped particles with 4 wt.% of FeCl3∙6H2O sintered at 800 °C were used as adsorbent. 
The percentage of dye removal efficiency versus time for different pH values (black scale) 

and the dependence of adsorption capacity from initial pH value (red scale) are presented in 

Fig. 9. 

 
 

Fig. 9. The percentage of dye removal versus time for different pH values (black scale) and 

the dependence of adsorption capacity from initial pH value (red scale). Initial conditions: 

CAB111= 100 mg/L, Cads= 1 g/L, T= 293.15 K, ω= 750 rpm. Alumina-iron oxide doped 

particles sintered at 800 °C with 4 wt.% of iron salt were used. 

 
 The results presented in Fig. 9 prove that the pH value is important for effective 

adsorption of AB111. At pH range 2.5-3 adsorption capacities are higher than in the near-

neutral state. The highest values of adsorption capacity (qt = 8.36 mg/g) and the percentage of 

dye removal (85.4 %) obtained at pH 3. Further increasing of pH value causes the decrease of 

adsorption capacity and the percentage of dye removal, at dye pH value (pH 6.8) adsorption 

capacity and the percentage of dye removal were decreased to qt = 3.73 mg/g and 37.7 % of 

removed dye. Adsorption rates are in agreement with the adsorption capacity and the dye 

removal efficiency trends. Thus, the adsorption rate in the most effective system (pH 3) was 
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k2= 0.60 g/(mg min) while at pH value of dye, the adsorption rate was k2= 0.010 g/(mg min). 

The pseudo-second-order kinetics plot is presented in Table IIa-b, and Supplementary 

material, Fig. S8. The adsorbent surface in the neutral and basic medium becomes negatively 

charged due to the deprotonation and the adsorption of anionic dye ions gets severely 

hindered as a result of columbic repulsion. In acidic pH conditions, when the pH value is 
lower than pHzpc, the alumina surface contains a large number of positively charged 

electrostatically binding sites and attracted the anionic AB111 species and leads to the higher 

efficiency of the dye adsorption [33]. Hence, the system with pH 2.5 was more effective for 

AB111 removal than the system without adjusting pH value (pH 6.8). A similar observation 

has been reported for adsorption of acid dyes Methyl Orange [34] and Orange G [35]. 

 

3.2.4. The comparison of adsorbents efficiency 

 
 The temperature of sintering is an important parameter for alumina-iron oxide doped 

particle preparation since it can affect the particles structure. The dye adsorption effectiveness 

of alumina-iron oxide doped particles with 4 wt.% of FeCl3∙6H2O synthesized at three 

different temperatures (700, 800 and 900 °C) with the addition of 4 wt.% of FeCl3∙6H2O and 

alumina particles doped with Fe2O3 at 800 °C of heating temperature with addition of 13 wt.% 

of FeCl3∙6H2O. Fig. 10 shows the adsorption capacities and dye removal efficiency for 

different type’s alumina-iron oxide doped particles. 
 

 
 
Fig. 10. The dependence of adsorption capacity from the type of adsorbent particles (a) and 

the percentage of dye removal versus time for a different type of adsorbent (b). Initial 
conditions: CAB111= 100 mg/L,Cads= 1 g/L, T= 293.15 K, ω= 750 rpm. 

 

 The obtained results (Fig. 10) shows that the alumina-iron oxide doped particles 

synthesized at 700 °C with lower iron salt concentration have the highest adsorption capacity 

(8.45 mg/g). After 60 minutes, using the same adsorbent, 87.5 % of dye was absorbed. 

Increase of sintering temperature up to 900 °C, causes the decrease of adsorption capacity to 

7.08 mg/g and the efficiency of dye removal to 74.8 %. Similar trend is observed with the 
adsorption rate. The adsorption rate of adsorbent material synthesized at 700 °C is higher (k2= 

0.083 g/(mg min)) than one of the alumina-iron oxide doped particles synthesized at 900 °C 

(k2= 0.01 g/(mg min)) (Fig. S10, Supplementary material). The sample of the alumina-iron 

oxide doped particles sintered at 800 °C with 4 wt.% of FeCl3∙6H2O has lower adsorption 

capacity and the efficiency of dye removal than the sample at 700 °C (less than 5 %). These 

samples have similar structures while the structure of the sample at 800 °C and 13 wt.% of 

FeCl3∙6H2O has hematite in its structure. This change in the structure additinally lowered the 

adsorption capacity of the adsorbent but the efficiency of dye removal is similar to the sample 
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with less iron in the structure. The adsorption capacity of the particles sintered at 800 °C with 

13 wt.% of FeCl3∙6H2O was qt = 8.05 mg/g, and the 83.4 % of initial dye concentration was 

effectively adsorbed. This implies that the formation of –Al2O3 lowers the adsorption 

capacity and the efficiency of dye removal more than the formation of -Fe2O3. Since there 

was not much difference between samples sintered with 4 and 13 wt.% of FeCl3∙6H2O, we 

decided to work father with the particles with less iron in the structure. 
 

3.2.5. Adsorption isotherms 

 
 For the design of the adsorption system, the equilibrium adsorption isotherm is 

valuable data that describes the way of interaction between adsorbates and adsorbents. Two 

important isotherm models were used to determine if the adsorbent surface during the process 

of dye adsorption: Langmuir [35] and Freundlich isotherms [36]. The Langmuir adsorption 

isotherms have been used successfully for many adsorption processes of monolayer 
adsorption, while the Freundlich isotherm describes the adsorption characteristics for 

multilayer adsorbent surface [36]. The isotherms factors were evaluated at pH 3 for describing 

alumina-iron oxide doped particles sintered at 800 °C with 4 wt.% of FeCl3∙6H2O surface. 

The equation for the Langmuir model for alumina is described by Equation 6 [37]: 

 𝑞𝑡 = 𝑞𝑚𝐾𝐿𝐶𝑡1+𝐾𝐿𝐶𝑡           (6) 

 

where Ct (mg/L) represents concentration of AB111 in solution at equilibrium, mass of 

adsorbed dye per gram of alumina at equilibrium is presented by symbol qt (mg/g), constant 

related to monolayer adsorption capacity of alumina is qm (mg/g) and KL (L/mg) is the 
Langmuir constant. A non-linear plot of qt versus Ct (Fig. 11) gives the values of constants qm 

and KL.  

 The presented results in Fig. 11 show the high values of correlation factors (R
2
>0.99). 

The values of the all-important Langmuir isotherm model parameters are presented in Table 

III. The obtained values of the Langmuir constant and qm show high dependence of 

temperature. Increase in temperature increase the Langmuir constant and qm. 

 The separation factor, RL, is a dimensionless constant and can be used to explain the 

essential characteristics of the Langmuir equation. RL is defined as Equation 7 [17][38]: 
 𝑅𝐿 =  11+𝐾𝐿𝐶𝑡          (7) 

 

where KL and Ct are explained in the previous equation. Acceptability of the adsorption 

process is depending on the value of the separation factor. The adsorption process is only 

favorable if 0 < RL< 1 [39]. The dependence of the separation factor on the initial dye 

concentration is presented in Fig. 12.  
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Fig. 11. Langmuir adsorption isotherm plot for removal of AB111. Initial conditions:Cads= 1 
g/L, pH= 3, ω= 750 rpm. Alumina-iron oxide doped particles sintered at 800 °C with 4 wt.% 

of iron salt were used. 

 
 

Fig. 12. The dependence of separation factor RL on the initial concentration of AB111. Initial 

conditions: Cads= 1 g/L, pH= 3, ω= 750 rpm. Alumina-iron oxide doped particles sintered at 
800 °C with 4 wt.% of iron salt were used. 
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 The results presented in Fig. 12 shows that the decrease of the separation factor 

follows the increase of the initial dye concentration which indicates that the adsorption on 

alumina particles are more favorable at higher values of temperature and the initial 

concentration of dye parameters. Also, the values of the separation factor are in the range 

between 0 and 1 which leads to a conclusion that adsorption of AB111 onto alumina surface 
corresponds to the Langmuir adsorption isotherm model as a better fitting model and the used 

alumina-iron oxide doped particles are adsorbent with homogenous surface. Also, dye 

particles form monolayer on adsorbent surface. 

 Describing the adsorption characteristics for heterogeneous adsorbent surface by 

Freundlich adsorption isotherm can be expressed mathematically by Equation 8 as [34]: 

 𝑞𝑡 =  𝐾𝐹𝐶𝑡1 𝑛⁄
       (8) 

 
where qt and Ct are described earlier, KF is a constant representing the adsorbent capacity and 

1/n is a constant heterogeneity factor. These factors characteristics for Freundlich isotherm 

are determined from non-linear function. The numerical value of exponent 1/n < 1 shows that 

Freundlich adsorption isotherm is favorable [34]. The experimental results for Freundlich 

adsorption isotherms fitting investigation are presented in Table III. The Freundlich 

adsorption isotherm plot for removal of AB111 by alumina-iron oxide doped particles dried at 

800 °C with 4 wt.% of FeCl3∙6H2O adsorbent is presented in Fig. 13. 

 

 
 

Fig. 13. Freundlich adsorption isotherm plot for removal of AB111. Initial conditions: Cads= 1 
g/L, pH= 3, ω= 750 rpm. Alumina-iron oxide doped particles sintered at 800 °C with 4 wt.% 

of iron salt were used. 

 

 According to the results presented in Fig. 13, Freundlich adsorption isotherm plot has 

correlation factor (R
2
>0.99) similar to the Langmuir adsorption isotherm plot. The obtained 

values of KL, 1/n, and R
2 
are presented in Table III. 
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Tab. III Langmuir and Freundlich adsorption isotherm constants for the adsorption of AB111 

onto alumina-iron oxide doped particles sintered at 800 °C with 4 wt.% of FeCl3∙6H2O. 

Temperature 

(K) 

Langmuir adsorption isotherm Freundlich adsorption 

isotherm 

KL 

(L/mg) 

qm 

(mg/g) 

C0 

(mg/L) 

RL R
2
 KF 1/n R

2
 

298 

 

0.045 20.85 25 

50 

75 

100 

0.891 

0.790 

0.704 

0.602 

0.9943 1.187 0.7309 0.9942 

303 0.0595 23.44 25 

50 

75 

100 

0.897 

0.804 

0.718 

0.622 

0.9983 1.563 0.7515 0.9894 

308 0.036 32.15 25 

50 

75 
100 

0.942 

0.884 

0.841 
0.777 

0.9992 1.556 0.856 0.9965 

318 0.046 44.84 25 

50 

75 

100 

0.950 

0.901 

0.853 

0.806 

0.9998 2.1996 0.8731 0.9996 

 
 Results presented in Table III shows that Langmuir adsorption isotherm is favorable 
(0 < RL< 1) and the obtained values of the Langmuir constant and qm show high dependence 

of temperature. According to the values of the Langmuir constant and qm, the increase of 

temperature has a favorable effect on dye adsorption onto alumina particles. On the other side, 

the values of 1/n from Table III (1<1/n) prove that the Freundlich adsorption isotherm is not 

favorable. Langmuir and Freundlich adsorption isotherm parameters presented in Table III 

lead to the conclusion that the alumina-iron oxide doped particles sintered at 800 °C with 4 

wt.% of FeCl3∙6H2O is adsorbent with a homogenous surface and adsorption process form a 
monolayer coverage of dye particles onto adsorbent. Due to the homogeneous surface of the 

adsorbent, it is not possible to calculate the free energy and porosity using the Dubinin-

Radushcevich izotherm model [40]. 

 

3.2.6. Thermodynamic study 

 
 Additionally, the thermodynamics study was performed and enthalpy (ΔH˚), entropy 
(ΔS˚), and Gibbs free energy (ΔG˚) of the adsorption of AB111 onto the alumina adsorbent 
were determined. The thermodynamic parameters can be described by the following 

Equations 9-11 [41-43]: 

 𝐾0 = (𝐶0−𝐶𝑡)𝑚𝐶0𝑉                             (9) 𝑙𝑛𝐾0 = − ∆𝐺0𝑅𝑇 = ∆𝑆0𝑅 – ∆𝐻0𝑅𝑇         (10) ∆𝐺0 = −RTln𝐾0                      (11) 
 

where m is adsorbent weight, V is volume of system, R is the universal gas constant, T is the 

absolute temperature of the reaction solution expressed in Kelvin and K0 is distribution 

coefficient. Thermodynamics parameters ΔHo
 and ΔSo

 can be calculated from the slope and 
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intercept of values of distribution coefficients plotted against 1/T. The value of ΔGo
 can be 

calculated from Equation 11. The calculated thermodynamic parameters are listed in Table 

IV. In thermodinamics study, alumina-iron oxide doped particles sintered at 800 °C with 

addition of 4 wt.% of FeCl3∙6H2O were used. 

 
Tab. IV The calculated thermodynamic parameters for dye adsorption process. Initial 

conditions: Cads=1 g/L,CAB111=100 mg/L, pH= 3, ω = 750 rpm. 
Temperature [K] K0[mg/L] ΔGo

 [kJ/mol]
 ΔHo

 [kJ/mol] ΔSo
 [J/mol K] 

298 

303 

308 

318 

0.058 

0.087 

0.115 

0.181 
 

-23.8 

-23.6 

-23.4 

-22.9 
 

-36.8 -43.7 

 

The negative value of Gibbs free energy and its slight increase caused by increase of 

temperature shows that the dye adsorption process is spontaneous and increase the feasibility 

of adsorption at higher temperatures. The negative value of enthalpy confirms the exothermic 
nature of dye adsorption onto alumina-iron oxide doped particles. Also, according to the 

previous investigations, the value of enthalpy is lower than 40 kJ/mol which corresponds to 

the physical adsorption mechanism [34, 43]. The value of ΔS° can be used to describe the 

decreasing of the randomness at the solution made ofadsorbent/adsorbate system during dye 

adsorption [45]. The values of the K0 presented in Table IV shows that the mobility of 

particles in the system increases with increase of temperature [44]. 

 

3.3. FT-IR spectroscopy 
 
 The assessment of alumina-iron oxide doped particlesurfaces and dye functional 

groups after adsorption was carried out by FT-IR spectral analysis. The FT-IR spectra of 

alumina-iron oxide doped particles synthesized in this work are given in Fig. 14a. Also, the 

FT-IR spectra of alumina-iron oxide doped particles sintered at 800 °C with the addition of 4 

wt.% of FeCl3∙6H2O before and after adsorption as well FT-IR spectra of AB111 are shown in 

Fig. 14b. 
 

 
 

Fig. 14. FT-IR spectra of alumina-iron oxide doped particles sintered at different conditions 

(marked in Fig.) (a) and FT-IR spectra of AB111 and alumina-iron oxide doped particles with 
the addition of 4 wt.% of FeCl3∙6H2O sintered at 800 

o
C surface before and after adsorption 

(b). 
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 Peaks in the range 2966-3550 cm
-1

, which belongs to the stretching vibrations of OH 

functional group, were observed in the FT-IR spectra of alumina particles (Fig.14a). In the 

rest of FT-IR spectra, a wide peak in wavenumbers range 500-1000 cm
-1

 that can be assigned 

to Al–O bonds, can be noticed. Also, in this range, peaks can be originated by octahedral 

(>700 cm
-1

) and tetrahedral structure of Al
3+ 

(700-950 cm
-1

) [22]. 
 The anthraquinone dye AB111 was analyzed earlier by FT-IR spectral analysis and 

results were presented by Stupar et al. [7]. Fig. 14b shows the FT-IR spectra of adsorbent 

before and after dye adsorption. The changes in FT-IR spectra after adsorption observed at 

range 3700 to 3300 cm
-1

 can be assumed to –ON and –NH2 vibrations. The peaks observed at 

2922 and 2855 cm
-1

 can be attributed to C-H aliphatic vibrations which belong to adsorbed 

dye. The peaks at 1698 and 1628 cm
-1

 belong to C=O ester and C=O vibrations, respectively. 

The peak observed at 1382 cm
-1

 originated in CH3 vibrations. Also, peaks at 1273 and 1076 
cm

-1
 can be attributed to C–O and –SO3H, respectively [7]. Enumerated changes of FT-IR 

spectra show the surface modification as a result of the dye adsorption. 

 

4. Conclusion 
 

 Adsorption of anthraquinone dye AB111 from aqueous solutions was studied using 

alumina-iron oxide doped particles sintered at different temperatures (700, 800, and 900 
o
C) 

with the addition of 4 wt.% of FeCl3∙6H2O as well as with the addition of 13 of wt.% of the 

same salt (800 
o
C). The morphology and the structure of samples were examined by SEM 

analyses. The distribution of alumina-iron oxide doped particles sintered at 800 
o
C with lower 

mass of iron salt is mostly in the range 0.5-0.7 µm, and for particles sintered at the same 
temperature with higher mass of iron salt is smaller (0.1-0.2 µm). The XRD analysis showed 

that the dominant structure in the synthetized  alumina-iron oxide doped particles, with the 

adition of 4 wt.% of FeCl3∙6H2O, sintered at 700 and 800 
oC is η – Al2O3 and for sintered at 

900 
oC, the dominant phases are η – Al2O3 and α – Al2O3. The samples sintered at 800 

o
C with 

13 wt.% of FeCl3∙6H2O have as the dominant phases η – Al2O3 and α – Fe2O3. The adsorption 

kinetics can be satisfactorily described by the pseudo-second-order reaction rate model. By 

comparison of samples, the alumina-iron doped particles sintered at 700 
o
C with 4 wt.% of 

iron salt have the highest efficiency in AB111 removal by adsorption (87.5 %). The increase 
of temperature of sintering causes the decreasing of dye adsorption efficiency. The increase of 

FeCl3∙6H2O during the preparation of adsorbent leads to the change in the structure which 

additinally lowers the adsorption capacity but the efficiency of dye removal is similar. The 

experimental data shows good fitting with Langmuir isotherm which confirms that the surface 

of adsorbent is homogenous and at equilibrium, dye particles form monolayer on adsorbent 

surface. According to the obtained thermodynamic parameters, adsorption of anthraquinone 

dye AB111 onto alumina-iron oxide doped particles is a spontaneous physisorption process 
with exothermic nature. 
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Сажетак: Испитивана је адсорпција антрахинонске боје Кисело Плаве 111 (Acid Blue 
111) честицама алуминијум (III) оксид-гвожђе допираних гвожђе оксидом 
припремљених сол-гел методом из водених раствора. Морфологија адсорбента 
испитивана је скенирајућом електронском микроскопијом (FESEM) а кристалографска 
фаза техником дифракције рендгенског зрака (XRD). Испитиван је утицај 
концентрације адсорбента и адсорбата, пХ вредност и термодинамички параметри 
уклањања боје адсорпцијом. Промена концентрације боје током адсорпције праћена је 
коришћењем ултраљубичасте-видљиве (UV-Visible) спектрофотометрије. Површина 
адсорбента пре и након адсорпције боје посматрана је употребом инфрацрвене 
спектроскопије са Фуријеовом (Fourier) трансформацијом. Кинетика адсорпције 
показује најбоље поклапање са кинетичким моделом псеудо-другог реда. Ленгмирова 
(Langmuir) и Фројндлихова (Freundlich) адсорпциона изотерма су употребљене за 
описивање адсорпционог процеса. Термодинамичка студија адсорпције боје доказује да 
је процес спонтан са егсотермном природом.  
Кључне речи: Отпадне воде текстилне индустрије; честице алуминијум (III) оксид 
допираних гвожђе оксидом; уклањање боје; карактеризација адсорбента; кинетичка 
студија. 
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Supplementary material 
 

 
 

Fig. S1. Second-order kinetics plot for and the rate constants for AB111 dye removal at 

different initial alumina concentrations. Conditions: CAB111= 100 mg/L, pH 3, T= 293.15 K, 

ω= 750 rpm. 
 

 
 

Fig. S2. Second-order kinetics plot for and the rate constants for AB111 dye removal at 

different initial dye concentrations. Conditions: Cads=1 g/L, pH 3, T = 293.15 K, ω = 750 rpm. 
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Fig. S3. Second-order kinetics plot for and the rate constants for AB111 dye removal at 

different initial pH values. Conditions: CAB111=100 mg/L Cads=1 g/L, T = 293.15 K, ω = 750 
rpm. 

 

 
 

Fig. S4. Second-order kinetics plot for and the rate constants for AB111 dye removal at 

different initial pH values. Conditions: CAB111=100 mg/L Cads=1 g/L, pH 3, T = 293.15 K, ω = 
750 rpm. 
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Fig. S5. Pseudo-second-order kinetics plot for and the rate constants for AB111 dye removal 

at different initial dye concentrations. Conditions: Cads=1 g/L, pH 3, T = 293.15 K, ω = 750 
rpm. 

 

 
 

Fig. S6. Intra-particle diffusion plot for and the rate constants for AB111 dye removal at 

different initial dye concentrations. Conditions: Cads=1 g/L, pH 3, T = 293.15 K, ω = 750 rpm. 
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Fig. S7. Pseudo-first-order kinetics plot for and the rate constants for AB111 dye removal at 

different initial pH values. Conditions: CAB111=100 mg/L Cads=1 g/L, T = 293.15 K, ω = 750 
rpm 

 

 
 

Fig. S8. Pseudo-second-order kinetics plot for and the rate constants for AB111 dye removal 
at different initial pH values. Conditions: CAB111=100 mg/L Cads=1 g/L, T = 293.15 K, ω = 750 

rpm. 
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Fig. S9. Intra-particle diffusion plot for and the rate constants for AB111 dye removal at 

different initial pH values. Conditions: CAB111=100 mg/L Cads=1 g/L, T = 293.15 K, ω = 750 
rpm. 

 

 
 

Fig. S10. Pseudo-second-order kinetics plot for and the rate constants for AB111 dye removal 
at different initial pH values. Conditions: CAB111=100 mg/L Cads=1 g/L, pH 3, T = 293.15 K, ω 

= 750 rpm 
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