

Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION VII New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society Institute of Technical Sciences of SASA Institute for Testing of Materials Institute of Chemistry Technology and Metallurgy Institute for Technology of Nuclear and Other Raw Mineral Materials

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 17-19. September 2018.

Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION VII New Frontiers in Multifunctional Material Science and Processing

/ Serbian Ceramic Society / Institute of Technical Science of SASA / / Institute for Testing of Materials / Institute of Chemistry Technology and Metallurgy / / Institute for Technology of Nuclear and Other Raw Mineral Materials /

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 17-19. September 2018

Book title:

Serbian Ceramic Society Conference -ADVANCED CERAMICS AND APPLICATION VII Program and the Book of Abstracts

Publisher:

Serbian Ceramic Society, Belgrade, 2018.

Editors:

Prof. dr Vojislav Mitić Dr Lidija Mančić Dr Nina Obradović

Technical Editors:

Ivana Dinić Marina Vuković

Printing:

Serbian Ceramic Society, Belgrade, 2018.

Edition:

130 copies

```
CIP - Каталогизација у публикацији - Народна библиотека Србије, Београд
666.3/.7(048)
66.017/.018(048)
SRPSKO keramičko društvo. Conference Advanced Ceramics and Application : New Fron-
tiers in Multifunctional Material Science and Processing (7 ; 2018; Beograd)
```

Program; and the Book of Abstracts / Serbian Ceramic Society

Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19. September 2018 ; [organized by] Serbian Ceramic Society ... [et al.] ; [editors Vojislav Mitić, Lidija Mančić, Nina Obradović]. - Belgrade : Serbian Ceramic Society, 2018 (Belgrade : Serbian Ceramic Society). - 106 str. : ilustr. ; 30 cm

Tiraž 130.

ISBN 978-86-915627-6-2

а) Керамика - Апстракти b) Наука о материјалима - Апстракти c) Наноматеријали - Апстракти

COBISS.SR-ID 267569676

Dear Colleagues,

We have great pleasure to welcome you to the Advanced Ceramic and Application Conference VII organized by the Serbian Ceramic Society in cooperation with the Institute for Testing of Materials, Institute of Technical Sciences of SASA, Institute of Chemistry Technology and Metallurgy and Institute for Technology of Nuclear and Other Raw Mineral Materials.

Advanced Ceramics today include many old-known ceramic materials produced through newly available processing techniques as well as broad range of the innovative compounds and composites, particularly with plastics and metals. Such developed new materials with improved performances already bring a new quality in the everyday life. The chosen Conference topics cover contributions from a fundamental theoretical research in advanced ceramics, computeraided design and modeling of a new ceramics products, manufacturing of nanoceramic devices, developing of multifunctional ceramic processing routes, etc. Traditionally, ACA Conferences gather leading researchers, engineers, specialist, professors and PhD students trying to emphasizes the key achievements which will enable the wide speared use of the advanced ceramics products in High-Tech industry, renewable energy utilization, environmental efficiency, security, space technology, cultural heritage, etc.

Serbian Ceramic Society has been initiated in 1995/1996 and fully registered in 1997 as Yugoslav Ceramic Society, being strongly supported by American Ceramic Society. Since 2009, it has continued as Serbian Ceramic Society in accordance to the Serbian law procedure. Serbian Ceramic Society is almost the only one Ceramic Society in the South-East Europe, with members from more than 20 Institutes and Universities, active in 16 sessions, by program and the frames which are defined by the American Ceramic Society activities.

This year, the conference is dedicated to the memory of Academician Momčilo M. Ristić (1929-2018), Honorary President of the Serbian Ceramic Society and founder of Material Science in our country.

Prof. Dr Vojislav Mitić, President of the Serbian Ceramic Society World Academy Ceramics Member European Academy of Sciences&Arts Member

Of from to

Prof. Dr Olivera Milošević, President of the General Assembly of the Serbian Ceramic Society Academy of Engineering Sciences of Serbia Member

Conference Topics

Basic Ceramic Science & Sintering - in memoriam Momčilo M.Ristić, academician **Optical, Glass & Electro Ceramics** Advanced Ceramics Nano & Bio Ceramics Heritage, Arts & Design Modeling & Simulation Guide on Science Writing

Conference Co-chairmens:

Prof. Dr. Vojislav Mitić SRB Prof. Dr. Olivera Milošević SRB Prof. Dr. Marcel Van de Voorde EU Prof. Dr. Rainer Gadow GER

Conference Programme Chairs:

Dr. Lidija Mančić SRB Dr. Nina Obradović SRB

Scientific Committee

Academician Zoran Đurić SRB Academician Ninoslav Stojadinović SRB Academician Zoran Popović SRB Academician Miroslav Gašić SRB Academician Laszlo Forro CHE Prof. Dr. Vojislav Mitić SRB Prof. Dr. Marcel Van de Voorde EEZ Prof. Dr. David Johnson GBR Prof. Dr. Jurgen G. Heinrich DEU Prof. Dr. Masohiro Yoshimura JPN Dr. Mrityunjay "Jay" Singh USA Prof. Dr. Rainer Gadow DEU Prof. Dr. Pavol Šajgalik SVN Dr. Richard Todd GBR Dr. Moritz von Witzleben DEU Prof. Dr. Hans Fecht DEU Dr. Dušan Jovanović SRB Prof.Dr. Olivera Milošević SRB Prof. Dr. Vladimir Pavlović SRB Dr. Nina Obradović SRB Dr. Lidija Mančić SRB

Prof. Dr. Steven Tidrow USA Dr. Takashi Goto, Japan Dr. Jonjaua Ranogajec SRB Dr. Snežana Pašalić SRB Prof. Dr. Zoran Nikolić SRB Dr. Zagorka Radojević SRB Dr. Nebojša Romčević SRB Dr. Zorica Lazarević SRB Prof. Dr. Ljubica Pavlović SRB Prof. Dr. Nebojša Mitrović SRB Prof. Dr. Ljubiša Kocić SRB Dr. Aleksandra Milutinović-Nikolić SRB Dr. Predrag Banković SRB Dr. Zorica Mojović SRB Dr. Dušan Milivojević SRB Dr. Miomir Korać SRB Prof. Dr. Branislav Vlahović USA Dr. Radomir Žikić SRB Prof. Dr. Stevo Najman SRB Dr. Biljana Djordjević SRB

Organizing Committee

Prof. Dr. Vojislav Mitić SRB Dr. Lidija Mančić SRB Dr. Nina Obradović SRB Prof. Dr. Vladimir Pavlović SRB Dr. Dušan Jovanović SRB Dr. Vesna Paunović SRB Dr. Darko Kosanović SRB Dr. Anja Terzić SRB Dr. Suzana Filipović SRB Dr. Vladimir Blagojević SRB Dr. Marina Vuković SRB Dr. Milica Ćurčić SRB Ivana Dinić SRB

Sponsors & Endorsements:

Analysis - Lab equipment, Belgrade (Serbia), HARDER digital SOVA d.o.o. Niš Exchange office "Hulk", LMB Soft, Niš (Serbia), SCAN doo. Preddvor (Slovenia), Voda Vrnjci (Serbia) and Turistička organizacija Beograd

Acknowledgements:

The Conference Organizers are grateful to the **Ministry of Education and Science of the Republic of Serbia** for financial support, as well as to the Serbian Academy of Sciences and Arts, European Academy of Sciences and Arts, American Ceramics Society, Institute of Technical Sciences of SASA, Archeological Institute of SASA, Institute of Physics UB, Vinča Institute of Nuclear Sciences - Laboratory of Physics (010), Electrical Engineering Institute Nikola Tesla High School-Academy for Arts and Conservation. The Seventh Serbian Ceramic Society Conference »Advanced Ceramics and Application« September 17-19, 2018, Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade, Serbia

research. The main hypothesis of adding PRP to bone grafts in combination with different biomaterials, is that the high concentration of platelets in the bone defects increase the local concentration of secreted growth factors and consequently boost the initial bone regeneration. A few days later, the direct effect of applied PRP will fade, and physiological mechanisms of bone reparation will proceed working on higher level. Beside the fact that PRP is intensively used in clinical practice because of its osteoconductive capacity, there are also evidences that PRP possess osteoinductive capacity. The differences in success of experimental procedures can be explained with inconsistency in used platelet concentrations, type of used biomaterials, experimental animals and experimental models. Further investigations of physiology of platelets, importance of platelet concentrations, biomaterials interactions, site of biomaterial application will bring us a bit a closer to controlled ectopic osteogenesis as a most promising approach for reconstruction of bone defects.

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [Grant No. III41017].

P29

The biocompatibility of nanotubular oxide layer formed on the ultrafine -grained Ti-13Nb-13Zr alloy

Dragana R. Barjaktarević, Đorđe N. Veljović, Ivana D. Dimić, Veljko R. Đokić, Marko P. Rakin

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4 11120 Belgrade, Serbia

Primary stability of biomaterials is associated with the mechanical contact of an implant with the surrounding bone, which is governed by surface properties. The implant often needs some kind of modification to optimize and improve biological properties of the surface. In the present study, nanotubular oxide layer on Ti-13Nb-13Zr alloy (coarse-grained, CG, and ultrafine-grained, UFG, obtained by high pressure torsion) alloy was formed by means of electrochemical anodization in the 1M H_3PO_4 + NaF electrolyte, during 60 and 90 minutes. The atomic force microscopy (AFM) was studied to characterize the surface topography and it was shown that highly ordered nanotubular layers were obtained by anodization. Also, results show that increasing anodizing time increases roughness of the surface. The aim of this paper is to determine the vitro biocompatibility of the titanium alloy after electrochemical anodization. In vitro nanotubular oxide layer examinations were performed on the human fibroblast cell lines (MRC-5). The cytotoxicity of the examined materials was measured as a percent of cell growth inhibition using in vitro colorimetric methyl-thiazol-tetrazolium (MTT) test. Scanning Electron Microscope (SEM) observation of MRC-5 cell was performed using a SEM MIRA3 TESCAN which operated at an accelerating voltage of 4.5 keV. Results show that nanotubular oxide layer formed on the UFG Ti-13Nb-13Zr alloy during 90 minutes indicates better cells contact and spreading along nanotubular surface.