Yugoslav Journal of Operations Research 18 (2008), Number 1, 47-52 DOI: 10.2298/YUJOR0801047D

A MULTI –STEP CURVE SEARCH ALGORITHM IN NONLINEAR OPTIMIZATION

Nada I. ĐURANOVIĆ-MILIČIĆ

Department of Mathematics, Faculty of Technology and Metallurgy University of Belgrade, Belgrade, Serbia nmilicic@tmf.bg.ac.yu

Received: November 2006 / Accepted: April 2008

Abstract: In this paper a multi-step algorithm for LC^1 unconstrained optimization problems is presented. This method uses previous multi-step iterative information and curve search to generate new iterative points. A convergence proof is given, as well as an estimate of the rate of convergence.

Keywords: Unconstrained optimization, multi-step curve search, convergence.

1. INTRODUCTION

We shall consider the following LC^1 problem of unconstrained optimization

$$\min\left\{f(x) \mid x \in D \subset \mathbb{R}^n\right\},\tag{1}$$

where $f: D \subset \mathbb{R}^n \to \mathbb{R}$ is a LC^1 function on the open convex set D, that means the objective function we want to minimize is continuously differentiable and its gradient is locally Lipschitzian, i.e.

$$\|g(y) - g(x)\| \le L \|y - x\|$$
 for $x, y \in D$

for some L > 0, where the gradient computed at x is denoted by g(x).

We shall present an iterative multi-step algorithm which is based on the algorithms from [1] and [4] for finding an optimal solution to problem (1) generating the sequence of points $\{x_k\}$ of the following form:

$$x_{k+1} = x_k + \alpha_k s_k + \alpha_k^2 d_k, \ k = 0, 1, \dots, s_k \neq 0, \ d_k \neq 0$$
⁽²⁾

where the step-size α_k and the directional vectors s_k and d_k are defined by the particular algorithms.

2. PRELIMINARIES

We shall give some preliminaries that will be used for the remainder of the paper.

Definition (see [5]) *The second order Dini upper directional derivative of the function* $f \in LC^1$ at $x_k \in R^n$ in the direction $d \in R^n$ is defined to be

$$f_{D}^{"}(x;d) = \limsup_{\lambda \downarrow 0} \frac{\left[g(x+\lambda d) - g(x)\right]^{T} d}{\lambda}$$

If g is directionally differentiable at x_k , we have

$$f_{D}^{"}(x_{k};d) = f^{"}(x_{k};d) = \lim_{\lambda \downarrow 0} \frac{\left[g(x+\lambda d) - g(x)\right]^{T} d}{\lambda}$$

for all $d \in R^n$.

Lemma 1 (See [5]) Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a LC^1 function on D, where $D \subset \mathbb{R}^n$ is an open subset. If x is a solution of LC^1 optimization problem (1), then:

f'(x;d) = 0

and $f''_D(x;d) \ge 0, \forall d \in \mathbb{R}^n$.

Lemma 2 (See [5]) Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a LC^1 function on D, where $D \subset \mathbb{R}^n$ is an open subset. If x satisfies

f'(x;d) = 0

and $f''_{D}(x;d) > 0, \forall d \neq 0, d \in \mathbb{R}^{n}$, then x is a strict local minimizer of (1).

3. THE OPTIMIZATION ALGORITHM

Algorithm: $0 < \sigma < 1, 0 < \rho < 1, x_1 \in D$, *m* is a positive integer, *k* :=1.

Step 1. If $||g_k|| = 0$ then STOP; else go to step 2.

Step 2. $x_{k+1} = x_k + \alpha_k s_k (\alpha_k) + \alpha_k^2 d_k (\alpha_k)$, where α_k is selected by the curve search rule, and $s_k (\alpha_k)$ and $d_k (\alpha_k)$ are computed by the direction vector rules 1 and 2. For simplicity, we denote $s_k (\alpha_k)$ by s_k , $d_k (\alpha_k)$ by d_k and $g(x_k)$ by g_k .

Curve search rule: Choose $\alpha_k = q^{i(k)}$, 0 < q < 1, where i(k) is the smallest integer from i = 0, 1, ... such that

$$x_{k+1} = x_k + q^{i(k)}s_k + q^{2i(k)}d_k \in D$$

and

$$f(x_{k}) - f(x_{k} + q^{i(k)}s_{k} + q^{2i(k)}d_{k}) \ge \sigma \left[-q^{i(k)}g_{k}^{T}s_{k} + \frac{1}{2}q^{4i(k)}f_{D}^{"}(x_{k};d_{k})\right]$$
(3)

Direction vector rule 1 :

$$s_{k}(\alpha) = \begin{cases} s_{k}^{*}, & k \leq m-1 \\ -\left[\left(1 - \sum_{i=2}^{m} \alpha^{i-1} p_{k}^{i}\right)g_{k} + \sum_{i=2}^{m} \alpha^{i-1} p_{k}^{i}s_{k-i+1}\right], & k \geq m, \end{cases}$$

where

$$p_{k}^{i} = \frac{\rho \|g_{k}\|^{2}}{(m-1)\left[\|g_{k}\|^{2} + |g_{k}^{T}g_{k-i+1}|\right]}, i = 2, 3, ..., m,$$

and $s_k^* \neq 0$, $k \leq m-1$ is any vector satisfying the descent property $g_k^T s_k^* \leq 0$.

Direction vector rule 2. The direction vector d_k^* , $k \le m-1$, presents a solution of the problem

$$\min\left\{\Phi_k(d) \,|\, d \in \mathbb{R}^n\right\},\tag{4}$$

where

$$\Phi_k(d) = g_k^T d + \frac{1}{2} f_D^{"}(x_k;d),$$

and

$$d_{k}(\alpha) = \begin{cases} d_{k}^{*}, & k \leq m-1 \\ \sum_{i=2}^{m} \alpha^{i-1} d_{k-i+1}^{*}, & k \geq m. \end{cases}$$

Step 3. k := k+1, go to step 1.

We make the following assumptions.

A1. We suppose that there exist constants $c_2 \ge c_1 > 0$ such that

$$c_1 \|d\|^2 \le f_D''(x;d) \le c_2 \|d\|^2$$
(5)

for every $d \in R^n$.

A2. $||d_k|| = 1$ and $||s_k|| = 1$, k = 0, 1, ...

It follows from Lemma 3.1 in [5] that under the assumption A1 the optimal solution of the problem (4) exists.

Proposition: If the function $f \in LC^1$ satisfies the condition (5), then: 1) the function f is uniformly and, hence, strictly convex, and, consequently; 2) the level set $L(x_0) = \{x \in D : f(x) \le f(x_0)\}$ is a compact convex set; 3) there exists a unique point x^* such that $f(x^*) = \min_{x \in L(x_0)} f(x)$.

Proof: 1) From the assumption (5) and the mean value theorem it follows that for all $x \in L(x_0)$ there exists $\theta \in (0,1)$ such that

$$f(x) - f(x_0) = g(x_0)^T (x - x_0) + \frac{1}{2} f_D^{"} [x_0 + \theta(x - x_0); x - x_0]$$

$$\geq g(x_0)^T (x - x_0) + \frac{1}{2} c_1 ||x - x_0||^2 > g(x_0)^T (x - x_0),$$

that is, f is uniformly and consequently strictly convex on $L(x_0)$.

2) From [3] it follows that the level set $L(x_0)$ is bounded. The set $L(x_0)$ is closed because of the continuity of the function f; hence, $L(x_0)$ is a compact set. $L(x_0)$ is also (see [6]) a convex set.

3) The existence of x^* follows from the continuity of the function f on the bounded set $L(x_0)$. From the definition of the level set it follows that

$$f(x^{*}) = \min_{x \in L(x_{0})} f(x) = \min_{x \in D} f(x)$$

Since f is strictly convex it follows from [6] that x^* is a unique minimizer.

Lemma 3 (See [5]) The following statements are equivalent:

d = 0 is a globally optimal solution of the problem (4);
 0 is the optimum of the objective function of the problem (4);
 the corresponding x_k is a stationary point of the function f.

Lemma 4: For $\alpha \in [0,1]$ and all $k \ge m$, we have

$$g_{k}^{T}s_{k}(\alpha) \leq -(1-\rho)||g_{k}||^{2}$$

Proof is analogous to the proof of Lemma 2.1 in [4].

Convergence theorem. Suppose that $f \in LC^1$ and that the assumptions A1 and A2 hold. Then for any initial point $x_0 \in D$, $x_k \to \overline{x}$, as $k \to \infty$, where \overline{x} is a unique minimal point.

Proof: If $d_k^* \neq 0$ is a solution of (3), it follows that $\Phi_k(d_k^*) \leq 0 = \Phi_k(0)$. Consequently, we have by (5) that

N.I. Đuranović-Miličić / A Multi-Step Curve Search Algorithm

$$g(x_k)^T d_k \le -\frac{1}{2} f_D^{"}(x_k; d_k) \le -\frac{1}{2} c_1 ||d_k|| < 0, \text{ i.e.}$$
(6)

 d_k is a descent direction at x_k . From (3), (5) and Lemma 4 it follows that

$$f(x_{k}) - f(x_{k+1}) \ge \sigma \left[-q^{i(k)} g_{k}^{T} s_{k} + \frac{1}{2} q^{4i(k)} f_{D}^{"}(x_{k}; d_{k}) \right] \ge$$

$$q^{i(k)} \sigma(1 - \rho) \|g_{k}\|^{2} + \frac{\sigma}{2} q^{4i(k)} c_{1} \|d_{k}\|^{2} > 0.$$
(7)

Hence $\{f(x_k)\}$ is a decreasing sequence and consequently $\{x_k\} \subset L(x_0)$. Since $L(x_0)$ is by Proposition a compact convex set, it follows that the sequence $\{x_k\}$ is bounded. Therefore there exist accumulation points of $\{x_k\}$. Since the gradient g is by assumption continuous, then, if $g(x_k) \to 0$ as $k \to \infty$, it follows that every accumulation point \overline{x} of the sequence $\{x_k\}$ satisfies $g(\overline{x}) = 0$. Since f is by the Proposition strictly convex, it follows that there exists a unique point $\overline{x} \in L(x_0)$ such that $g(\overline{x}) = 0$. Hence, $\{x_k\}$ has a unique limit point \overline{x} – and it is a global minimizer. Therefore we have to prove that $g(x_k) \to 0$, $k \to \infty$. There are two cases to consider.

a) The set of indices $\{i(k)\}$ for $k \in K_1$, is uniformly bounded above by a number I, i.e. $i(k) \le I < \infty$ for $k \in K_1$. Consequently, from (3) and (7) it follows that

$$f(x_{k}) - f(x_{k+1}) \ge \sigma \left[-q^{i(k)} g_{k}^{T} s_{k} + \frac{1}{2} q^{4i(k)} f_{D}^{"}(x_{k}; d_{k}) \right] \ge \sigma \left[-q^{I} g_{k}^{T} s_{k} + \frac{1}{2} q^{4I} f_{D}^{"}(x_{k}; d_{k}) \right] \ge$$
(8)

(since $g(x_k)^T s_k \le 0$ and $f_D^"(x_k; d_k) > 0$) $\ge q^I \sigma (1-\rho) \|g_k\|^2 + \frac{\sigma}{2} q^{4I} f_D^"(x_k; d_k).$

Since $\{f(x_k)\}$ is bounded below (on the compact set $L(x_0)$) and monotone (by (7)), it follows that $f(x_{k+1}) - f(x_k) \to 0$ as $k \to \infty, k \in K_1$; hence from (8) it follows that $||g(x_k)|| \to 0$ and $f''_D(x_k, d_k) \to 0, k \to \infty, k \in K_1$.

b) There is a subset $K_2 \subset K_1$ such that $\lim_{k \to \infty} i(k) = \infty$. This part of proof is analogous to the proof in [1].

In order to have a finite value i(k), it is sufficient that s_k and d_k have descent properties, i.e.

$$g(x_k)^T s_k < 0$$
 and $g(x_k)^T d_k < 0$

whenever $g(x_k) \neq 0$. The first relation follows from Lemma 4 and the second follows from (6). At a saddle point the relation (3) becomes

51

$$f(x_{k}) - f(x_{k+1}) \ge \sigma \left[\frac{1}{2}q^{4i(k)}f_{D}^{"}(x_{k};d_{k})\right]$$
(9)

In that case by Lemma 3 $d_k \neq 0$ and hence, by (5), $f''(x_k; d_k) > 0$; so (9) clearly can be satisfied.

Convergence rate theorem: Under the assumptions of the previous theorem we have that the following estimate holds for the sequence $\{x_k\}$ generated by the algorithm.

$$f(x_{n}) - f(\overline{x}) \leq \mu_{0} \left[1 + \frac{\mu_{0}}{\eta^{2}} \sum_{k=0}^{n-1} \frac{f(x_{k}) - f(x_{k+1})}{\left\| \nabla f(x_{k}) \right\|^{2}} \right]^{-1},$$

n=1,2,... where $\mu_0 = f(x_0) - f(\overline{x})$, and diam $L(x_0) = \eta < \infty$ since by Proposition it follows that $L(x_0)$ is bounded.

Proof: The proof directly follows from the Theorem 9.2, page 167 in [2]., since the assumptions of that theorem are fulfilled.

4. CONCLUSION

The algorithm presented in this paper is based on the algorithms from [1] and [4]. The convergence is proved under mild conditions. This method uses previous multistep iterative information and curve search rule to generate a new iterative point at each iteration. Relating to the algorithms in [1] and [4], in [4] it is supposed that the function f has a lower bound on the level set $L(x_0)$ and that the gradient g(x) of f(x) is uniformly continuous on an open convex set B that contains $L(x_0)$, while in this paper and in the previous paper [1] we supposed that $f: D \subset \mathbb{R}^n \to \mathbb{R}$ is a LC^1 function on the open convex set D, and that the second order Dini upper directional derivative satisfies the condition (5).

Acknowledgment: This research was supported by Science Fund of Serbia, grant number 144015G, through institute of Mathematics, SANU.

REFERENCES

- [1] Djuranovic-Milicic, N., "An algorithm for LC¹ optimization", YUJOR, 15(2) (2005) 301-307.
- [2] Karmanov, V.G., *Matematiceskoe programirovanie*, Nauka, Moskva, 1975.
- [3] Polak, E., *Cislennie metodi optimizacii: edinij podhod* (translation from English), Mir, Moskva, 1974.
- [4] Shi, Z.J., Convergence of multi-step curve search method for unconstrained optimization, *J. Numer. Math.*, 12(4) (2004) 297-309.
- [5] Sun, V.J., Sampaio, R.J.B., and Yuan, Y.J., "Two algorithms for LC¹ unconstrained optimization", *Journal of Computational Mathematics*, 6 (2000) 621-632.
- [6] Vujčić, V., Ašić, M., and Miličić, N., *Mathematical programming*, Institute of Mathematics, Belgrade, 1980. (in Serbian)