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Abstract: In this paper a multi-step algorithm for LC1 unconstrained optimization 
problems is presented. This method uses previous multi-step iterative information and 
curve search to generate new iterative points. A convergence proof is given, as well as an 
estimate of the rate of convergence. 
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1. INTRODUCTION 

We shall consider the following LC1 problem of unconstrained optimization 

{ }min ( ) | nf x x D R∈ ⊂ ,  (1)  

where : nf D R R⊂ →  is a LC1 function on the open convex set D , that means the 
objective function we want to minimize is continuously differentiable and its gradient  is 
locally Lipschitzian, i.e. 

( ) ( )g y g x L y x− ≤ −   for ,x y D∈  

for some 0L > ,  where the gradient computed at  x  is denoted by g(x ). 
We shall present an iterative multi-step algorithm which is based on the 

algorithms from [1] and [4] for finding an optimal solution to problem (1) generating the 
sequence of points { }kx  of the following form:   

2
1 , 0,1,..., 0, 0k k k k k k k kx x s d k s dα α+ = + + = ≠ ≠  (2) 

where the step-size kα  and the directional vectors ks  and kd  are defined by the 
particular algorithms. 



N.I. Đuranović-Miličić / A Multi-Step Curve Search Algorithm 48

2. PRELIMINARIES 

We shall give some preliminaries that will be used for the remainder of the 
paper. 

 

Definition (see [5]) The second order Dini upper directional derivative of the function 
1f LC∈  at n

kx R∈  in the direction nd R∈  is defined to be  

( ) ( ) ( )"

0
; limsup

T

D

g x d g x d
f x d

λ

λ
λ↓

+ −⎡ ⎤⎣ ⎦=  

If g  is directionally differentiable at kx , we have 

( ) ( ) ( ) ( )" "

0
; ; lim

T

D k k

g x d g x d
f x d f x d

λ

λ
λ↓

+ −⎡ ⎤⎣ ⎦= =  

for all  .nd R∈  
 

Lemma 1 (See [5]) Let : nf D R R⊂ →  be a 1LC  function on D , where nD R⊂  is an 

open subset. If x  is a solution of 1LC  optimization problem (1), then: 
( ; ) 0f x d′ =  

and ( ; ) 0, n
Df x d d R′′ ≥ ∀ ∈ . 

 

Lemma 2 (See [5]) Let : nf D R R⊂ →  be a 1LC  function on D , where nD R⊂  is an 
open subset. If x  satisfies 

( ; ) 0f x d′ =  

and ( ; ) 0, 0, n
Df x d d d R′′ > ∀ ≠ ∈ , then x  is a strict local minimizer of (1). 

 
 

3. THE OPTIMIZATION ALGORITHM 

Algorithm: 0 1σ< < , 0 1ρ< < , 1x D∈ , m is a positive integer, k :=1. 
 

Step 1. If 0kg =  then STOP; else go to step 2. 
 
Step 2. ( ) ( )2

1k k k k k k k kx x s dα α α α+ = + + ,  where kα  is selected by the curve search rule, 

and ( )k ks α  and  ( )k kd α  are computed by the direction vector rules 1 and 2. For 

simplicity , we denote ( )k ks α  by ks , ( )k kd α  by kd  and ( )kg x  by kg . 
 

Curve search rule: Choose ( )i k
k qα = , 0 1q< < , where ( )i k  is the smallest integer from 

0,1,...i =  such that 
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( ) 2 ( )
1

i k i k
k k k kx x q s q d D+ = + + ∈  

and 

( ) ( ) ( )( )2i k i k
k k k kf x f x q s q d− + + ≥ ( ) ( ) ( )4 "1 ;

2
i k i kT

k k D k kq g s q f x dσ ⎡ ⎤− +⎢ ⎥⎣ ⎦
  (3) 

Direction vector rule 1 : 

( )
*

1 1
1

2 2

, 1
, ,

1

k

m m
k i i i i

k k k k i
i i

s k m
s k m

p g p s
α

α α− −
− +

= =

⎧ ≤ −
⎪

= ≥⎡ ⎤⎨ ⎛ ⎞− − +⎢ ⎥⎜ ⎟⎪
⎝ ⎠⎣ ⎦⎩

∑ ∑
 

where      

( )

2

2
1

, 2,3,..., ,
1

ki
k T

k k k i

g
p i m

m g g s

ρ

− +

= =
⎡ ⎤− +⎣ ⎦

 

and * 0 , 1ks k m≠ ≤ −  is any vector  satisfying  the descent property * 0.T
k kg s ≤  

 

Direction vector rule 2. The direction vector * , 1kd k m≤ − ,    presents a solution of the 
problem 

{ }min ( ) | n
k d d RΦ ∈ ,  (4) 

where 

( ) ( )"1 ;
2

T
k k D kd g d f x dΦ = + , 

and 

( )
*

1 *
1

2

, 1

, .

k
m

k i
k i

i

d k m
d

d k m
α

α −
− +

=

⎧ ≤ −
⎪= ⎨

≥⎪
⎩
∑

 

Step 3. k:=k+1, go to step 1. 
 
We make the following assumptions. 
 

A1. We suppose that there exist constants 2 1 0c c≥ >  such that 

2 2
1 2( ; )Dc d f x d c d′′≤ ≤   (5) 

for every nd R∈ .  
 

A2. 1kd =  and 1, 0,1,...ks k= =  
 

It follows from Lemma 3.1 in [5] that under the assumption A1 the optimal 
solution of the problem (4) exists. 
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Proposition: If the function 1f LC∈  satisfies the condition (5), then: 1) the function f  
is uniformly and, hence, strictly convex, and, consequently; 2) the level set 

{ }0 0( ) : ( ) ( )L x x D f x f x= ∈ ≤  is a compact convex set; 3) there exists a unique point 
*x  such that 

0

*

( )
( ) min ( )

x L x
f x f x

∈
= . 

 

Proof: 1) From the assumption (5) and the mean value theorem it follows that for all 
0( )x L x∈  there exists (0,1)θ ∈ such  that  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

"
0 0 0 0 0 0

2
0 0 1 0 0 0

1 ;
2

1 ,
2

T
D

T T

f x f x g x x x f x x x x x

g x x x c x x g x x x

θ⎡ ⎤− = − + + − −⎣ ⎦

≥ − + − > −
 

that is, f  is uniformly and consequently strictly convex on 0( )L x . 
 

2) From [3] it follows that the level set 0( )L x  is bounded. The set 0( )L x  is closed 
because of the continuity of the function f ; hence, 0( )L x  is a compact set. 0( )L x  is 
also (see [6]) a convex set. 
 

3) The existence of *x  follows from the continuity of the function f  on the bounded set 

0( )L x . From the definition of the level set it follows that 

0

*

( )
( ) min ( ) min ( )

x L x x D
f x f x f x

∈ ∈
= =  

Since f  is strictly convex it follows from [6] that *x  is a unique minimizer. 
 

Lemma 3 (See [5]) The following statements are equivalent: 
 

1. 0d =  is a globally optimal solution of the problem (4); 
2. 0 is the optimum of the objective function of the problem (4); 
3. the corresponding kx  is a stationary point of the function f . 
 

Lemma 4:  For [ ]0,1α ∈  and all k m≥ , we have  

( ) ( ) 21 .T
k k kg s gα ρ≤ − −  

Proof is analogous to the proof of Lemma 2.1 in [4]. 
 

Convergence theorem. Suppose that 1f LC∈  and that the assumptions A1 and A2 hold. 
Then for any initial point 0 , kx D x x∈ → , as k → ∞ , where x  is a unique minimal 
point. 
 

Proof: If * 0kd ≠  is a solution of (3), it follows that ( ) ( )* 0 0 .k k kdΦ ≤ = Φ . Consequently, 
we have by (5) that 
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( ) ( )"
1

1 1; 0,
2 2

T
k k D k k kg x d f x d c d≤ − ≤ − <  i.e. (6) 

kd  is a descent direction at kx . From (3), (5) and Lemma 4 it follows that 

( ) ( ) ( ) ( ) ( )4 "
1

1 ;
2

i k i kT
k k k k D k kf x f x q g s q f x dσ+

⎡ ⎤− ≥ − + ≥⎢ ⎥⎣ ⎦

( ) ( ) ( )2 24
11 0.

2
i k i k

k kq g q c dσσ ρ− + >  (7) 

Hence { }( )kf x  is a decreasing sequence and consequently { } 0( )kx L x⊂ . Since 

0( )L x  is by Proposition  a compact convex set, it follows that the sequence { }kx  is 

bounded. Therefore there exist accumulation points of { }kx . Since the gradient g is by 

assumption continuous, then, if ( ) 0kg x →   as k → ∞ , it follows that every 

accumulation point x  of the sequence { }kx  satisfies ( ) 0.g x = . Since f  is by the 
Proposition  strictly convex, it follows that there exists a unique point 0( )x L x∈  such 
that ( ) 0.g x = . Hence, { }kx  has a unique limit point x  – and it is a global minimizer. 

Therefore we have to prove that ( ) 0, .kg x k→ → ∞  There are two cases to consider. 
 

a) The set of indices { }( )i k  for 1k K∈ , is uniformly bounded above by a number I , i.e. 
( )i k I≤ < ∞  for 1k K∈ . Consequently, from (3) and (7) it follows that  

( ) ( ) ( ) ( ) ( )4 "
1

1 ;
2

i k i kT
k k k k D k kf x f x q g s q f x dσ+

⎡ ⎤− ≥ − + ≥⎢ ⎥⎣ ⎦

( )4 "1 ;
2

I T I
k k D k kq g s q f x dσ ⎡ ⎤− + ≥⎢ ⎥⎣ ⎦

  (8) 

(since ( ) 0T
k kg x s ≤ and ( )" ; 0)D k kf x d >         ( ) ( )2 4 "1 ; .

2
I I

k D k kq g q f x dσσ ρ≥ − +  

Since ( ){ }kf x  is bounded below (on the compact set ( )0L x ) and monotone 

(by (7)), it follows that 1( ) ( ) 0k kf x f x+ − →  as 1,k k K→ ∞ ∈  ;hence from (8) it follows 

that ( ) 0kg x →  and 1( , ) 0, ,D k kf x d k k K′′ → → ∞ ∈ . 
 

b) There is a subset 2 1K K⊂  such that lim ( )
k

i k
→∞

= ∞ . 

This part of proof is analogous to the proof in [1]. 
 

In order to have a finite value ( )i k , it is sufficient that ks  and kd  have descent 
properties, i.e. 

( ) 0T
k kg x s <   and   ( ) 0T

k kg x d <  

whenever ( ) 0.kg x ≠ The first relation follows from Lemma 4 and the second follows 
from (6). At a saddle point the relation (3) becomes 
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( ) ( ) ( ) ( )4 "
1

1 ;
2

i k
k k D k kf x f x q f x dσ+

⎡ ⎤− ≥ ⎢ ⎥⎣ ⎦
  (9) 

In that case by  Lemma 3 0kd ≠  and hence, by (5), ( ; ) 0k kf x d′′ > ; so  (9) clearly can be 
satisfied. 
 

Convergence rate theorem: Under the assumptions of the previous theorem we have 
that the following estimate holds for the sequence { }kx  generated by the algorithm. 

( ) ( ) ( ) ( )
( )

1
1

10
0 2 2

0
1

n
k k

n
k k

f x f x
f x f x

f x

μμ
η

−
−

+

=

⎡ ⎤−⎢ ⎥− ≤ +
⎢ ⎥∇⎣ ⎦

∑ , 

n=1,2,… where 0 0( ) ( )f x f xμ = − , and 0diam ( )L x η= < ∞  since by Proposition it 
follows that 0( )L x  is bounded. 
 

Proof: The proof directly follows from the Theorem 9.2, page 167 in [2]., since the 
assumptions of that theorem are fulfilled.  
 

 
4. CONCLUSION 

The algorithm presented in this paper is based on the algorithms from [1] and 
[4]. The convergence is proved under mild conditions. This method uses previous multi-
step iterative information and curve search rule to generate a new iterative point at each 
iteration. Relating to the algorithms in  [1]  and   [4],  in [4] it is supposed  that the 
function  f  has a lower bound on the level set 0( )L x  and that the gradient  g(x ) of  f(x) is 
uniformly continuous  on an open convex set B  that contains 0( )L x , while  in this paper 
and  in the previous paper [1]   we supposed that : nf D R R⊂ →  is a LC1 function on 
the open convex set D , and that the second order Dini upper directional derivative 
satisfies the condition (5). 
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