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∗∗∗∗

The goal of the nanoparticle synthesis is, first of all, the production of nanoparticles that will be more similar in size and
shape. This is very important for the possibility of studying and applying nanomaterials because of their characteristics that
are very sensitive to size and shape such as, for example, magnetic properties. In this paper, we propose the shape analysis of
the nanoparticles using three shape descriptors – elongation, convexity and circularity. Experimental results were obtained
by using TEM images of hematite nanoparticles that were, first of all, subjected to segmentation in order to obtain isolated
nanoparticles, and then the values of elongation, convexity and circularity were measured. Convexity Cx(S) is regarded as
the ratio between shape’s area and area of the its convex hull. The convexity measure defines the degree to which a shape
differs from a convex shape while the circularity measure defines the degree to which a shape differs from an ideal circle.
The range of convexity and circularity values is (0, 1] , while the range of elongation values is [1,∞) . The circle has lowest
elongation (ε = 1), while it has biggest convexity and circularity values (Cx = 1; C = 1). The measures ε(S), Cx(S), C(S)
proposed and used in the experiment have the few desirable properties and give intuitively expected results. None of the
measures is good enough to describe all the shapes, and therefore it is suggested to use a variety of measures so that the
shapes can be described better and then classify and control during the synthesis process.
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1 Introduction

Nanotechnologies offer many possibilities for the de-
velopment of new materials with improved properties
for applications in electronics, optoelectronics, chemi-
cal engineering, mechanical engineering, microbiological,
biomedicine, etc. It is well known that the size and shape
of the nanoparticles significantly influence the magnetic
properties of nanomaterials and that, by their adjust-
ment, the magnetic properties can be controlled in a wide
range [1-3]. However, the area of magnetic nanomateri-
als is still an insufficiently developed area, and one of the
causes is that the synthesized nanoparticles differ in shape
and size, so that their influence on magnetic properties
cannot be clearly seen. The main goal in nanoparticle syn-
thesis is to obtain the desired material with a well-defined
shape and size of nanoparticles (narrow distribution of
particles by size and shape).

By reducing the size of the magnetic particles, mag-
netic properties change, so magnetic nanomaterials ex-
hibit different physical properties: high coercivity, super-
paramagnetism, high magnetic resistance, low or high
magnetization, a decrease in the Curie/Neel temperature.
One of the very important anisotropy of the nanoparticles
that determines the magnetic properties of the nanoma-
terials is a shape anisotropy, which is directly related to

the nanoparticle shape. The values of the magnetic pa-

rameters can differ in the same materials even ten times

depending on the shape of the nanoparticles [4-7]. Re-

cently, the influence of nanoparticles on the macroscopic

magnetic properties of nanomaterials is increasingly be-

ing studied in literature [8-10]. For example, the shape

elongation plays an important role in understanding the

magnetic properties of nanomaterials. It is known that co-

ercivity increases with increasing elongation [6, 11]. Due

to this influence of the shape on the physical properties of

the materials, in addition to measuring the physical prop-

erties, it is very important to have a procedure to measure

the shape, and assign to a shape the quantitative values

based on what the nanoparticles can be compared and

classified.

The starting point of the algorithm for measuring the

shape are microscopic images of nanomaterials that are

then analyzed in order to determine the quantitative char-

acteristics of the nanoparticles and their mutual relations.

In image analysis procedures image segmentation is one of

the first steps [12-14]. Image segmentation is the process

of dividing an image into its constituent segments until

to the required level. Segments are defined differently de-

pending on the need for which the image is analyzed. In

the case of nanomaterial images, the goal of the segmen-
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tation is to obtain separated nanoparticles whose shape 
is analyzed in the next phase.

For this analysis, a mathematical tool is needed to 
describe the shapes quantitatively. For this purpose, a 
number of shape descriptors are developed to answer the 
question of how much a shape is similar to the corre-
sponding observed shape, such as a circle (circularity), 
a square (squareness), an ellipse (ellipticity), a triangle 
(triangularity), a rectangle (rectangularity) [8, 15-27]. In 
order to be useful, each of the shape descriptors should 
ensure that the appropriate measure is invariant with re-
spect to translation, rotation and scaling. In addition, it 
is important that there is a fast, efficient and easily un-
derstandable procedure for calculating these measures.

In this paper, for the determination of the morpholog-
ical characteristics of the nanoparticles, the use of three 
descriptors is proposed: elongation, convexity and circu-
larity. The elongation measure ε(S) gives an answer to 
the question of how much nanoparticle shape have been 
elongated. The smallest elongation has a circle, which has 
a measure of elongation equal to 1. Convexity Cx(S) is 
defined as the ratio between shape’s area and area of the 
its convex hull [28]. The convexity measure defines the 
degree to which a shape differs from a convex shape. For 
all shapes, the values of convexity measure are in the 
interval (0, 1]. Only in the case of a convex shape, the 
value of the convexity measure is equal to 1. On the other 
hand, circularity C(S) represents the degree of deviation 
of the shape from the ideal circle. As with convexity, for 
all shapes the values of circularity measure are in the in-
terval (0, 1]. Only in the case of a circle, the value of the 
circularity measure is equal to 1.

Also, three measures ε(S), Cx(S) and C(S) proposed 
and used in the experiment gives intuitively expected 
results. These measures are clearly defined, relatively easy 
to use and there is a fast and easily understood procedure 
for their computing. Next to that, the proposed measures 
are invariant with respect to similarity transformations 
(translation, rotation and scaling). In order to calculate 
the measures of elongation, convexity and circularity, the 
MATLAB software package is used, where algorithms for 
calculating these shape descriptors are implemented.

2 Experiment

This section outlines the basic characteristics and the-
oretical bases of the proposed measures.

2.1 Elongation measure

The elongation measure is often considered in liter-
ature as one of the basic shape descriptors. The shape 
elongation is closely linked to the shape orientation. The 
standard approach to calculating the shape orientation 
defines the orientation using the so-called minimal mo-
ment axis of the second order [8, 20, 29-30]. It is a line 
that minimizes the integral of the square distances from

the points that belong to the shape to that line. The in-
tegral is

I (S, ϕ, ρ) =

∫∫

S

r2 (x, y, ϕ, ρ) dxdy (1)

where r(x, y, ϕ, ρ) is the distance from the (x, y) to the
line

x cosϕ− y sinϕ = ρ.

The line that minimizes the integral I(S, ϕ, ρ) passes
through the centroid (xc(S), yc(S)) of the shape S where

(xc (S) , yc (S)) =





∫∫

S

x dxdy

∫∫

S

dxdy
,

∫∫

S

y dxdy

∫∫

S

dxdy



 .

Without loss of generality, it can be assumed that the ori-
gin is placed at the centroid, ie (xc(S), yc(S)) = (0, 0).
Considering that the required line that minimizes the in-
tegral I(S, ϕ, ρ) passes through the origin, it can be put
ρ = 0. The square of the distance the point (x, y) to the

line x cosϕ−y sinϕ = ρ is equal (x sinϕ−y cosϕ)2 , thus,
the shape orientation problem can be reformulated to the
problem of determining ϕ for which I(ϕ, S) defined as

I (ϕ, S) = I (S, ϕ, ρ = 0) =

∫∫

S

(x sinϕ− y cosϕ)
2
dxdy

reaches the minimum. The function I(ϕ, S) can be writ-
ten in the form

I (ϕ, S) = sin2ϕ

∫∫

S

x2dxdy − sin 2ϕ

∫∫

S

xydxdy+

cos2ϕ

∫∫

S

y2dxdy.

If the central geometric moments mp,q (S) are defined as

mp,q (S) =

∫∫

S

(x− xc (S))
p(y − yc (S))

qdxdy

for p, q ∈ {0, 1, 2, . . . } and since it is supposed that the
origin is placed at the centroid, we obtain

I (ϕ, S) = (sinϕ)
2
m2,0 (S) − sin 2ϕ · m1,1 (S) +

(cosϕ)
2
m0,2 (S) . (2)

The minimum of the function I(ϕ, S) is calculated in
the following manner. The first derivative of the function
I(ϕ, S) is found

I ′ (ϕ, S) = 2 sinϕ cosϕ ·m2,0 (S) − 2 cos 2ϕ ·m1,1 (S)−

2 sinϕ cosϕ ·m0,2 (S) ,
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and then the first derivative is set to zero:

I ′ (ϕ, S) = sin 2ϕ (m2,0 (S)−m0,2 (S)) −

2 cos 2ϕ ·m1,1 (S) = 0.

From here, the required angle ϕ , but also the angle
ϕ+ π/2, satisfies the equation

sin 2ϕ

cos 2ϕ
=

2m1,1 (S)

m2,0 (S)−m0,2 (S)
. (3)

By using trigonometric identities:

sin2α =
1− cos 2α

2
, cos2α =

1 + cos 2α

2
,

sin 2α =
±tg2α

√

1 + tg22α
, cos 2α =

±1
√

1 + tg22α

and equation (3), the maximum and minimum of the
function I(ϕ, S) are obtained:

max { I (ϕ, S) | ϕ ∈ [0, 2π] } =
m2,0 (S) +m0,2 (S)

2
+

√

4(m1,1 (S))
2
+ (m2,0 (S)−m0,2 (S))

2

2

min { I (ϕ, S) | ϕ ∈ [0, 2π] } =
m2,0 (S) +m0,2 (S)

2
−

√

4(m1,1 (S))
2
+ (m2,0 (S)−m0,2 (S))

2

2
.

The elongation of the shape S is obtained as a quotient
max

ϕ∈[0,2π)
I (ϕ, S) and min

ϕ∈[0,2π)
I (ϕ, S)

ε (S) =
max { I (ϕ, S) | ϕ ∈ [0, 2π] }

min { I (ϕ, S) | ϕ ∈ [0, 2π] }
(4)

The central geometric moments mp,q (S) in the digital
objects were replaced by the so-called central discrete
moments µp,q (S) defined by

µp,q(S) =
∑

(i,j)∈S
⋂

Z2

(i− xcd(S))
p(j − ycd(S))

q

where a real shape S is represented with its digitization
dig(S), while pixel (i, j) belongs to dig(S) and the cen-

troid of the discrete shape S
⋂

Z2 is given by

(xcd (S) , ycd (S)) =







∑

(x,y) ∈S
⋂

Z2

x

∑

(x,y) ∈S
⋂

Z2

1
,

∑

(x,y) ∈S
⋂

Z2

y

∑

(x,y) ∈S
⋂

Z2

1






.

Thus, the method for calculating the shape elongation is
derived from the standard definition of the shape orienta-
tion. This procedure is simple in both versions, real and
discrete, and the shape elongation measure is based on a
simple calculus and standard algebraic operations, and it
is easy to implement.

2.2 Convexity measure

The convexity is important shape descriptor in image
processing and human vision. Here, convexity is defined
as the ratio between shape’s area and area of the its
convex hull [28]:

Cx(S) =
A(S)

A(Ch(S))

where A(S) represents the shape’s area and A(Ch(S)) is
the area of the minimum convex boundary circumscribing
the shape S . It is illustrated in Fig. 1.

Fig. 1. The shape area and the convex hull area

The measure Cx(S) is an invariant with respect to
translation, rotation and scaling. The convexity measure
has the following desirable properties:

• Cx(S) ∈ (0, 1],

• Cx(S) = 1 if and only if the measured shape S is
convex,

• there are shapes whose estimated convexity is arbitrar-
ily close to 0.

2.3 Circularity measure

The circularity is one of the most studied shape de-
scriptors. It is usually defined by the following formula
Cst(S) = 4πA/P 2 , where A represents shape’s area while
P represents its perimeter. The disadvantages of this
standard measure are discussed in the literature. There-
fore, here we use the other one definition of the circularity
based on the moments calculation defined by Zunic [31]:

C(S) =
Area(S)

2

2π (m2,0(S) +m0,2(S))

where S is an arbitrary shape and Area(S) represents
the shape’s area. As with convexity, the measure C(S)
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is an invariant with respect to translation, rotation and 
scaling. The circularity measure also has similar desirable 
features as well as a convexity measure:

• C(S) ∈ (0, 1],

• C(S) = 1 if and only if the measured shape S is circle,

• there are shapes whose estimated circularity is arbi-
trarily close to 0.

3 Results

The morphology of the nanoparticle structures in TEM
micrographs has been studied, Fig. 2(a) and Fig. 3(a),
using proposed shape analysis (elongation, convexity and
circularity).

In order to perform the shape analysis, the observed
images should first be segmented. Fig.2(b) and Fig. 3(b)
show Fig. 2(a) and Fig. 3(a) analyzed through R, G
and B channels, respectively. If these images are watched
through RGB histograms, it can be noticed that there
are no significant oscillations between the observed chan-
nels, so the segmentation cannot be performed by ana-
lyzing the RGB channels. It is confirmed by the degree of
matching by the structural similarity (SSIM) index which
is based on the computation of three terms, namely the lu-
minance term, the contrast term and the structural term.
SSIM index shows large degree of matching. Namely, the
SSIM values are from 96.27% to 98.80% depending on
which two channels of Fig. 2(b) are compared, while these
SSIM values are from 99.52% to 99.88% for Fig. 3(b).

It can be clearly seen that in the Figs. 2a and 3a
the shade of gray are prevailing. In addition, brighter
shades belong to areas outside the desired segments,
ie nanoparticles. From the perspective of an 8-bit gray-
scale image, the pixel values of these brighter shades be-
longing obviously to the background. Such defined thresh-
olds were applied to filtering of the corresponding images.
The segmentation of Fig. 3(a) is somewhat more compli-
cated because some nanoparticles overlap. It is taken into
account that the segments are surrounded by brighter
shades. The overlapping parts of the nanoparticles are
processed by the method of parallel edge detection using
differences in channel values for observed pixel and real-
ized by standard command in MatLab. After that, the
Sobel operator for edge detection is involved. The Sobel
operator is based on the first derivative and it is techni-
cally a discrete differential operator used to calculate the
approximation of the gradient of the image luminance
function. The Sobel operator consists of two 3× 3 matri-
ces, which are transverse and longitudinal templates, and
are plotted with the image plane, respectively, to obtain
the difference between the horizontal and the longitudinal
difference.

The images of isolated nanoparticles are shown in
Fig. 2(c) (where nanoparticles are denoted by numbers
from 1 to 2) and Fig. 3(c) (where nanoparticles are de-
noted by numbers from 1 to 13) which were then analyzed
using the MatLab software package. Only nanoparticles
that are shown in the picture as a whole are analyzed. The

values of elongation, convexity and circularity for the two

nanoparticles in Fig. 2(c) are shown in Table 1, while Ta-

ble 2 shows the corresponding values of nanoparticles in

Fig. 3(c).

Fig. 2. (a) – TEM image of hematite, (b) – color histogram of (a),
(c) – the two isolated nanoparticles from (a)

Table 1. Values of elongation, convexity and circularity of nanopar-
ticles from Fig. 2

Nanoparticle, Elongation, Convexity, Circularity,

S ε(S) Cx(S) C(S)

No. 1 1.3366 0.9847 0.9863

No. 2 1.0872 0.9836 0.9665
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Fig. 3. (a) — TEM image of hematite, (b) – color histogram of
(a), and (c) – the nanoparticles isolated from (a)

The literature states that no measure is good enough

to describe all shapes. In support of this, we can point

to the example of two nanoparticles in Fig. 2 which are
different in shape, while the convexity measure for these

nanoparticles gives approximately the same value (Ta-

ble 1). The reason is that both nanoparticles are al-
most convex in shape and, thus, the values of the con-
vexity are very close to 1. Therefore, by the proposed
convexity measure, we cannot distinguish these two (ob-
viously different) shapes. On the other hand, the values
of the circularity measure indicate that the nanoparti-
cle No. 1 is slightly more circular than the nanopar-
ticle No. 2, while the elongation measure in compari-
son with these two particles makes the biggest differ-
ence. Nanoparticle No. 1 is more elongated than No. 2
(ε(No.1) = 1.3366; ε(No.2) = 1.0872). For these reasons,
it is not enough to use only one measure, but for the more
precise characterization of the shape it is proposed to use
several different descriptors. The use of several different
measures can contribute to a better understanding of the
shape thanks to the quantitative characteristics obtained
in this way.

Table 2. Values of elongation, convexity and circularity of nanopar-
ticles from Fig. 3

Nanoparticle, Elongation, Convexity, Circularity,

S ε(S) Cx(S) C(S)

No. 1 1.0595 0.9903 0.9889

No. 2 1.8561 0.9846 0.9445

No. 3 1.7087 0.9871 0.9562

No. 4 1.9927 0.9799 0.935

No. 5 1.2742 0.9893 0.9821

No. 6 1.928 0.9791 0.9363

No. 7 2.4985 0.9884 0.8929

No. 8 1.5411 0.9905 0.9681

No. 9 1.2692 0.9877 0.9663

No. 10 2.102 0.9785 0.9141

No. 11 1.355 0.987 0.9697

No. 12 1.2335 0.9847 0.9811

No. 13 1.6678 0.9892 0.9649

Fig. 3 is shown a wider range of the nanoparticle
shapes. It is also indicated by the results of measures
of elongation, convexity and circularity. The convexity

Fig. 4. Nanoparticles from Fig. 3(c) sorted by: (a) – elongation, (b) circularity, and (c) – convexity measure
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measure on this nanoparticle sample gives results in the
range of 0.9785 (No. 10) to 0.9905 (No. 8). The convex-
ity of the observed nanoparticles is quite high, and the
least convex are nanoparticles No. 10 and No. 6. Observ-
ing Fig. 3(a), this can be interpreted as the influence of
adjacent nanoparticles that have affected the convexity
of its ”neighbors”. Namely, nanoparticle No. 5 is proba-
bly due to its tougher structure and proximity influenced
the decrease of convexity No. 6, while No. 9 for the same
reasons has influenced the decrease of the convexity of
nanoparticle No. 10. On the other hand, the circularity
measure gives values from the range of 0.8929 (No. 7) to
0.9889 (No. 1). It is visually clear that nanoparticles No.
7, 10, and 4 deviate most from the circular shape, which
is confirmed by the quantitative results of the circular-
ity measure. The proposed elongation measure ε(S) in
terms of the elongation of the nanoparticle shapes gives
results that correspond to the visually expected. If all
three proposed measures are observed, the elongation has
the widest range of values of the observed sample (from
1.0595 to 2.4985). The most elongated nanoparticle is No.
7, while the least elongated No. 1.

In Fig. 4 the nanoparticles from Fig. 3(b) are sorted
by the elongation, Fig. 4(a), circularity, Fig. 4(b) and
convexity, Fig. 4(c) are shown. Since nanoparticles shape
are analyzed, and their size does not affect the results of
these measures, the nanoparticles are not shown in the
original size, but are scaled to the same width.

The elongation and circularity measures give the same
order for the first half of the series of nanoparticles from
Fig. 4(a) and Fig. 4(b). The order of the first 7 nanopar-
ticles is the same: 7, 10, 4, 6, 2, 3, 13. However, in the sec-
ond half of the series these two measures differently sort
the nanoparticles from Fig. 3(c). This is in line with nu-
merous studies dealing with the quantification of shapes
that emphasize the need for the use of several different
shape descriptors (circularity, elipticity, orientability) [15,
25, 31]. This is conditioned by the fact that no descriptor
is sufficiently reliable to perform shape characterization
solely on the basis of it.

4 Conclusion

In materials science, shape analysis requires research
that should enable a more precise characterization of
nanoparticles shape, and therefore a better understand-
ing of their impact on the physical properties of the ma-
terial. For the quantification of shapes, shape descriptors
are used whose basic idea is the possibility of distinguish-
ing of shapes. However, it is known that no descriptor is
not good enough to be used in all situations, and the use
of each shape descriptor has advantages and disadvan-
tages. Therefore, for more precise determination of the
nanoparticle shape, it is recommended to combine sev-
eral different measures.

In this paper for the shape characterization of the
nanoparticles, it is proposed to use the measures of elon-
gation, convexity and circularity that are based on the

calculation of discrete moments. The described measures
are good candidates for the shape analysis of nanopar-
ticles, due to the relatively simple realization and fast
execution time of the algorithms. This article presents
experimental results were obtained from TEM images of
hematite nanoparticles (α − Fe2O3 ) from which individ-
ual nanoparticles were isolated and analyzed. The results
show that the measures of elongation, convexity and cir-
cularity give intuitively expected results, which is a desir-
able feature. Thanks to these measures it is possible to im-
prove the efficiency of nanoparticle classification in terms
of estimate their shape. Besides this, these shape analysis
algorithms can be used to understand the relationship be-
tween structure, morphology and magnetic properties of
nanomaterials, as well as applications in other disciplines
such as biomedicine, industry, geology, astronomy.
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[27] J. Žunić, R. Kakarala and M. A. Aktas, “Notes on shape based

tools for treating the objects ellipticity issues”, Pattern Recog-

nition, vol. 69, pp. 141–149, 2017.

[28] J. Zunic and P. L. Rosin, “A new convexity measure for poly-

gons”, IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 26, pp. 923–934, 2004.

[29] R. Mukundan and K. R. Ramakrishnan, Moment functions in

image analysis-theory and applications, World Scientific, 1998.
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