
The 1st WG2 Virtual meeting COST action CA21101 COSY

BOOK OF ABSTRACTS

From quantum to classical dynamics of isolated molecules and 3D materials

6th February 2024, Belgrade, Serbia

BOOK OF ABSTRACTS

Welcome Message

We are pleased to welcome you all to the first Virtual WG2 Meeting of the COST Action CA21101 - CONFINED MOLECULAR SYSTEMS: FROM A NEW GENERATION OF MATERIALS TO THE STARS (COSY).

This one-day virtual meeting entitled "From quantum to classical dynamics of isolated molecules and 3D materials" will be dedicated to a better understanding and recognition of issues relevant to describing intermolecular interactions and molecular motion in a confining environment. The goal is to present recent advances in quantum and classical dynamics to treat molecules either isolated or in a confined environment, which may consist of enclosing molecular cages, surfaces, and interfaces as well as of strong electromagnetic static or optical fields. Speakers will be allotted 12 minutes for presentations plus 3 minutes of discussion. Also, there will be poster presentations supported by 3' time flash presentations. Presentations by young researchers are encouraged as well as those addressing specifically COST Action Goals for the 2nd Grant Period.

We are grateful to colleagues and friends for helping with the organization of this WG2 Virtual Meeting. In particular, we are thankful to the COST Action CA21101 "COSY" for having provided the financial support, and especially to the COST Action Chair (Prof Maria Pilar de Lara-Castells) and Grant Holder (Prof Juan Carlos Hernandez-Garrido); the host institution (Institute for Chemistry, Technology and Metallurgy) in Belgrade, Serbia, for all the human, logistic, and complementary funding resources provided.

We would like to express our gratitude to all speakers and participants for attending this meeting and hope that we will have a very inspiring scientific program with plenty of interesting scientific discussions.

The Chairs of the 1st COSY WG2 Virtual Meeting:

Sonja Grubišić and Jiří Vaníček (WG2 Leaders)

Scientific Organizing Committee:

María Pilar de Lara-Castells Consejo Superior de Investigaciones Científicas - CSIC, Spain

Cristina Puzzarini University of Bologna, Italy

Sonja Grubišić University of Belgrade, Institute of Chemistry, Technology and

Metallurgy - ICTM, Serbia

Jiří Vaníček Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Majdi Hochlaf Université Gustave Eiffel, COSYS/IMSE, France

Francesca Mocci University of Cagliari, Italy

Juan Carlos Hernández Garrido Universidad de Cádiz, Spain

Vladimir Srećković Institute of Physics Belgrade, University of Belgrade, Serbia

Local Organizing Committee:

Sonja Grubišić University of Belgrade, Institute of Chemistry, Technology and Metallurgy
Ivana Đorđević University of Belgrade, Institute of Chemistry, Technology and Metallurgy
Dragan Popović University of Belgrade, Institute of Chemistry, Technology and Metallurgy
Snežana Spasić University of Belgrade, Institute of Chemistry, Technology and Metallurgy

Supported by:

L19	Vasiliu Tudor	Exploring the Impact of PEG Length on PEI Binding to DNA: Insights from an In Silico Study of PEI-PEG-Squalene-dsDNA Polyplex Formation. The importance of using the correct simulation protocol
L20	Nađa Došlić	What do we get by breaking the Kasha rule?
L21	Razvan Puf	Investigating the influence of polyamines on G-Quadruplex structures: Insights from Molecular Dynamics
L22	Aamir Saeed	Exploring potential HDAC's inhibitors for halting cancer progression: insight from virtual screening, molecular docking, and molecular dynamic simulation
Poster Presentations:		
P1	Narcis-Iulian Cibotariu	Computational analysis of the impact of polyethylene glycol- associated tert-butoxycarbonyl group in the formation, stabilization and drug encapsulation efficiency of PEGylated squalene micelles
P2	Marinella Striccoli	Advancing colloidal synthetic routes for carbon dots:
		a priori design of their optical properties
P3	Anzhela Veselinova	Study of the Λ -doublet population in the
	Marinova	$O(^{3}P) + D_{2} \rightarrow OD(^{2}\Pi) + D$ reaction
P4	Žyginta Einorytė	Modelling Glibenclamide in Aqueous Mixtures of Bioactive Ionic Liquids
P5	Vladimir Srecković	New data for confined molecular systems and astrochemical modelling
P6	Einaras Sipavičius	Modelling intermolecular structure and NMR parameters of the
		[C ₄ mim][NO ₃] ionic liquid and of its mixtures with water
P7	Jafar Guliyev	Preparation of macroporous honeycomb alumina ceramics used for water purification
P8	Ana Isabel Furtado	Rational design of ScCO ₂ -assisted Bio-Molecularly Imprinted Polymers
P9	Yeha Lee	Two-dimensional nonadiabatic quantum dynamics of the oxidation of subnanometric Cu_5 clusters
P10	Anita Lazić	Quantitative Crystal Structure Analysis of A Selected Spirohydantoin Derivative
P11	Peter A. Georgiev	Intramolecular dynamics of micropore confined CO ₂ by Raman scattering

ABSTRACTS OF POSTER PRESENTATIONS

COST COSY
The 1st Virtual meeting WG2

Quantitative Crystal Structure Analysis of A Selected Spirohydantoin Derivative

Anita M. Lazić, ¹ Lidija D. Radovanović, ¹ Jelena R. Rogan, ² Nataša V. Valentić, ² Ivana S. Đorđević, ³ Nemanja P. Trišović ²

¹Innovation Center, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia,

²Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia,

³University of Belgrade - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia

An analysis of structural features of new compounds with multiple hydrogen-bond donating and accepting groups can enhance our understanding of development of supramolecular assemblies with potential for application in life sciences. Using the quantum chemical calculations, formation of the crystal structure of cyclohexane-5-spirohydantoin bearing a 4-*tert*-butylbenzoyl group (Fig. 1) was analysed in terms of a number of dimeric motifs associated with intermolecular interactions. The crystal structure retains the motif commonly found in hydantoin derivatives, where two molecules related by inversion are linked by a pair of N–H···O hydrogen bonds [1]. This motif is involved in two types of double chains, which further form a layer. Together with the dispersion interactions (π – π and hydrophobic), C–H···O interactions act as the source of attraction between the layers. Intermolecular interactions were also investigated using the Hirschfield surface analysis, enabling to additionally estimate quantitative contributions of intermolecular interactions to the crystal packing.

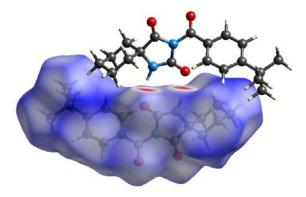


Fig 1. Structure of the investigated compound.

References:

1. A. J. Cruz-Cabeza and C. H. Schwalbe, New J. Chem. (2012), 36, 1347.