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Abstract: This study proposes synthesis and evaluation of gelatin-/alginate-based hydrogel scaffolds
reinforced with titanium dioxide (TiO2) nanoparticles which, through their combination with allan-
toin, quercetin, and caffeic acid, provide multi-target therapy directed on all phases of the wound
healing process. These scaffolds provide the simultaneous release of bioactive agents and concur-
rently support cell/tissue repair through the replicated structure of a native extracellular matrix.
The hydrogel scaffolds were synthesized via a crosslinking reaction using EDC as a crosslinker for
gelatin. Synthesized hydrogel scaffolds and the effect of TiO2 on their properties were characterized
by structural, mechanical, morphological, and swelling properties, and the porosity, wettability,
adhesion to skin tissue, and simultaneous release features. The biocompatibility of the scaffolds was
tested in vitro on fibroblasts (MRC5 cells) and in vivo (Caenorhabditis elegans) in a survival probe. The
scaffolds revealed porous interconnected morphology, porosity of 88.33 to 96.76%, elastic modulus of
1.53 to 4.29 MPa, full hydrophilicity, favorable skin adhesivity, and biocompatibility. The simultane-
ous release was investigated in vitro indicating dependence on the scaffold’s composition and type
of bioactive agents. The novel scaffolds designed as multi-target therapy have significant promise for
improved wound healing in a beneficial and non-invasive manner.

Keywords: hydrogel scaffolds; gelatin-/alginate-based scaffolds; sustained release; wound healing;
allantoin; caffeic acid; TiO2 nanoparticles

1. Introduction

Wound healing is a complex and dynamic multiple-phase process for the regeneration
of damaged tissue that requires coordinated interactions among dermal and epidermal
cells, growth factors, cytokines, and chemokines [1]. During the wound healing process it
is necessary to direct all the phases of healing including inflammation, proliferation, and
tissue remodeling to achieve tissue homeostasis and integrity [2]. Any wrong action in
these phases, such as discontinuities, aberrancies, or prolongation in the process, leads
to a chronic state that is more vulnerable to infections and other complications. Various
conventional therapies such as wound dressings, growth factor delivery, cell and gene
therapy, as well as different advanced wound care technology including nanotherapeutics,
bioengineered skin grafts, stem cell therapy, and 3D tissue bioprinting have been used for
wound healing but they do not offer effective results for all wound types [3–5]. Despite
the development of various wound healing approaches there is an urgent need to develop
novel innovative treatment modalities for multi-target therapeutic regimens for wounds.
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One of the most promising wound healing approaches is to use three-dimensional
(3D) scaffolds as dermal substitutes that replicate the extracellular matrix and provide
structural support for cell adhesion, migration, and proliferation [6]. Among various
biomaterials, natural polymers including collagen, gelatin, chitosan, and alginate have
been utilized to obtain dermal substitutes due to their favorable biological properties
such as high biocompatibility, biodegradability, and ability to mimic the extracellular
matrix that supports the migration and proliferation of cells during the wound healing
process [7–9]. Collagen, gelatin, chitosan, and alginate are the best types of natural polymer
for dermal scaffold design. Gelatin, obtained by the hydrolysis of collagen due to its high
biocompatibility, biodegradability, higher water-binding capacity, antimicrobial activity,
lower immunogenicity, and cost-effectiveness, is a suitable biomaterial for dermal tissue
engineering applications [10–12]. Gelatin is also a hemostatic agent and contains Arg-Gly-
Asp sequences in the structure which are favorable for cell adhesion [6,12,13]. Alginate,
an anionic polysaccharide obtained from cell walls of brown algae, is a biocompatible,
biodegradable polymer that has been used to create highly biocompatible hydrogel scaffolds
favorable for wound healing applications [14]. However, weak mechanical properties
limit the use of natural polymers as scaffolding biomaterials but through their mutual
combination or with inorganic compounds that act as fillers such as nanoparticles of
graphene oxide (GO), titanium dioxide (TiO2), or zinc oxide (ZnO), it is possible to provide
stronger mechanical properties and adequate flexibility that allow easy handling during
the wounds healing treatment [15,16].

Numerous studies in the field of dermal tissue engineering have been performed to
evaluate the potential of hydrogel scaffolds for drug delivery in wound areas, and have
obtained results indicating that single active agent delivery does not have a favorable effect
for all wound types. From the perspective of successful wound healing treatment, the key
purpose of scaffolds for drug delivery is to provide adequate therapeutic support in all
three phases of dermal tissue repair [3]. Therefore, the goal of this study was to develop an
innovative wound healing approach based on multi-target therapy utilizing the synergistic
effect of the biocompatible scaffold and a combination of the bioactive agents with wound
healing potential, namely allantoin, quercetin, and caffeic acid. Allantoin is an active natural
compound that stimulates wound healing by improving local granulation, modulating the
inflammatory response, and supporting the proliferation of fibroblasts, as well as collagen
and ECM synthesis, leading to a more organized dermal tissue [17,18]. Caffeic acid is
an active component of propolis with significant anti-inflammatory, immunomodulatory,
and antioxidant activity, which is beneficial for the wound healing process due to the
fact that it provides myeloperoxidase activity, inhibits lipid peroxidation, stimulates of
collagen-like synthesis in fibroblast cells, and enhances re-epithelialization by decreasing
oxidative stress [19–22]. Quercetin is a polyphenolic plant-derived flavonoid with strong
anti-inflammatory, antioxidant, and antifibrotic activity, as well as the ability to prevent
fibrosis and scars during the wound healing process [23]. The hydrogel scaffolds, through
their combination with allantoin, quercetin, and caffeic acid, provide multi-target therapy
to wounds directed on the inflammation, proliferation, and tissue remodeling phases by
therapeutic activity of the used agents and simultaneously support growth and reparation
of the cells through replicated structure of native ECM by hydrogel scaffolds.

The novel biocompatible hydrogel scaffolds were prepared via a simple crosslinking
reaction using natural polymers gelatin and alginate, with varying amounts of alginate.
The extra bioactivity of the hydrogel scaffolds was achieved by loading the three active
agents with the ability to direct at multiple therapeutic targets during the wound healing
process. Additionally, to obtain gelatin-/alginate-based scaffolds with enhanced mechanical
properties, TiO2 nanoparticles were incorporated into the scaffolds’ composition, and the
effect of TiO2 on the porosity, morphological, mechanical, hydrophilicity, swelling, and drug
delivery behavior of the hydrogel scaffolds was investigated. The functional properties of
the hydrogel scaffolds, which are important for biomedical and drug delivery engineering
applications, were tested. Biological evaluation of the hydrogel scaffolds was performed
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through in vitro and in vivo tests by a fibroblast cell line and microworm Caenorhabditis
elegans (C. Elegans). The in vitro simultaneous release study of allantoin, quercetin, and
caffeic acid was monitored to evaluate the potential of hydrogel scaffolds as a multi-targeted
delivery system for wound healing therapy.

2. Materials and Methods
2.1. Materials

The natural polymers gelatin (G, Type A powder, bioreagent, suitable for cell culture)
and sodium alginate (A, biomedical polymer), nanoparticles of titanium (IV) oxide (TiO2)
(rutile nanopowder, particle size < 100 nm, Mw 79.87 g/mol), crosslinker 1-ethyl-3-(3-
dimethyl aminopropyl) carbodiimide hydrochloride (EDC, 98.0%) were purchased from
Sigma-Aldrich, St. Louis, MO, USA. Materials used for MTT test on MRC5 cells and
Caenorhabditis elegans: RPMI-1640 medium and supplements for cell proliferation as well
as 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) reduction assay
components, purchased from Sigma-Aldrich, St. Louis, MO, USA. Potassium hydrogen
phosphates (KH2PO4 and K2HPO4, Sigma-Aldrich) were used for buffer preparations.
Quercetin, caffeic acid, and allantoin were used as the bioactive agents with wound healing
properties, and were purchased from Sigma-Aldrich, USA. All syntheses and experiments
were performed using lab-produced, ultra-distilled water.

2.2. Hydrogel Scaffolds Synthesis

Hydrogel scaffolds (HS) composed of natural biomacromolecules gelatin and algi-
nate as well as gelatin-/alginate-based scaffolds reinforced with TiO2 nanoparticles were
synthesized by a crosslinking reaction with varying gelatin/alginate ratios (Table 1). The
initial reaction mixture containing previously dissolved gelatin and sodium alginate in
ultra-distilled water at 40 ◦C was stirred at room temperature for 1 h, then 750 µL of 1 M
solution of crosslinker EDC was added and stirred for 4 min at room temperature. The
reaction mixture was poured into a Petri dish and placed at −18 ◦C for 24 h to complete
the gelation. The scaffolds were immersed in distilled water for 7 days, with daily changes
of water. The hydrogels in a swollen state were placed at −80 ◦C and were exposed to
the lyophilization process. Titanium nanoparticles as well as bioactive compounds with
wound healing properties allantoin, caffeic acid, and quercetin (5% of polymer content)
were loaded into the scaffolds during synthesis by adding into the initial reaction mixture.

Table 1. The scaffolds’ chemical composition and labels.

Sample Gelatin (g) Sodium
Alginate (g)

Allantoin
(g)

Quercetin
(g)

Caffeic
Acid (g) TiO2 (g)

HSG 1.2 0 0.06 0.06 0.06 0
HSGA 0.6 0.6 0.06 0.06 0.06 0
HSG3A 0.3 0.9 0.06 0.06 0.06 0

TiO2/HSG 1.2 0 0.06 0.06 006 0.06
TiO2/HSGA 0.6 0.6 0.06 0.06 0.06 0.06

TiO2/HSG3A 0.3 0.9 0.06 0.06 006 0.06

2.3. Hydrogel Scaffold Characterization
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)

The chemical composition of the hydrogel scaffolds was analyzed by FTIR spectra
obtained by a Thermo FisherScientific Nicolet 6700 FTIR ATR taste method [16].

2.3.2. Scanning Electron Microscopy (SEM)

Morphological analysis of the samples was performed through the procedure previ-
ously described [16].
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2.4. Porosity Measurements

The porosity of the hydrogel scaffolds was calculated by the solvent replacement
method using the true and bulk density of the hybrid scaffolds as well as the density
obtained by the Archimedes method, where glycerol (ρ = 1.2038 g/cm3) was used as a
wetting medium [24,25].

2.5. Mechanical Testing

The mechanical properties of the samples were determined by the procedure previ-
ously described [16].

2.6. In Vitro Swelling Study

The capacity of the samples to swell was evaluated by the procedure previously
described [26–28].

2.7. Water Contact Angle Measurements

The surface hydrophilicity of the hydrogel scaffolds was analyzed by static water
contact angle measurement as mentioned earlier [16].

2.8. Adhesiveness Test

The adhesive properties of the hydrogel scaffolds on skin tissue were evaluated by
attaching swollen (in a buffer solution of pH 7.4) hydrogel scaffold to skin tissue of the
moving joint with an intersection angle between 0◦ and 120◦ [29]. Adhesion of the scaffold
at the finger extended at 0◦, flexed to 45◦, 90◦, and 120◦, as well as reverse attached to the
palm side of a finger were photographed.

2.9. Biocompatibility Probes
2.9.1. In Vitro Cytotoxicity Assay

The cytotoxic activities of the hydrogel scaffolds were analyzed by the method de-
scribed earlier [30]. The antiproliferative activity of the hydrogel scaffolds was measured
using MTT assay by the procedure described previously [16].

2.9.2. In Vivo Caenorhabditis Elegans Survival Evaluation

C. elegans N2 (glp-4; sek-1) evaluation was performed by the procedure described
previously [31–33].

2.9.3. In Vitro Simultaneous Release Study

The hydrogel scaffolds loaded with three active agents with wound healing potential,
allantoin, quercetin, and caffeic acid, were placed in a basket stirrer containing 800 mL of
the release medium of phosphate buffer of pH 7.4 at 33.5 ◦C that simulated physiological
conditions. The concentration of released allantoin, quercetin, and caffeic acid from the
hydrogel scaffolds was monitored by taking the absorbance of the released media in
determined time using a UV/Vis spectrophotometer (Shimadzu UV/Vis Spectrophotometer
UV-1800, Kyoto, Japan) at λmax values of 204 nm (allantoin), 380 nm (quercetin), and 280 nm
(caffeic acid) [34–36].

3. Results and Discussion
3.1. Preparation of the Hydrogel Scaffolds

Novel hydrogel scaffolds based on polymers of natural origin, gelatin and alginate,
reinforced with TiO2 nanoparticles and loaded with bioactive agents with wound regen-
eration potential including allantoin, quercetin, and caffeic acid, were synthesized by a
crosslinking reaction. The highly porous structure of the hydrogel scaffolds was engineered
by gelatin crosslinked with EDC, intertwined with linear alginate chains, and enriched
with TiO2 nanoparticles (as presented in Scheme 1) to create bioactive scaffolding biomate-
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rial for the simultaneous release of bioactive agents for wound tissue regeneration. The
composition and marks of the hydrogel scaffolds are presented in Table 1.
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Scheme 1. Synthesis route for the hydrogel scaffolds based on gelatin, alginate, active agents, and
TiO2 nanoparticles obtained by a crosslinking reaction (details: photographs of the sample).

Interpenetrating polymeric networks (IPNs) are a special kind of hydrogel where at
least one polymeric network is formed in the presence of the another other. Hydrogels
obtained by IPN formation possess unique performance due to the synergy of individual
properties of two or more polymers. The development of IPNs is attractive due to their
3D structure providing free space for easy loading and release of active agents as well as
support for cell/tissue reparation through the replicated structure of a native extracellular
matrix. The novel gelatin-/alginate-based interpenetrating hydrogel networks were syn-
thesized by crosslinking gelatin with EDC in the presence of different concentrations of
alginate as a linear interpenetrant. EDC molecules provided the linking of two amino acid
side chains, and introduced a stable crosslink between gelatin molecules resulting in the
formation of a stable polymeric network. In the obtained IPNs, among the presence of the
gelatin-EDC crosslinks, the physical interactions, mainly H-bonding, between gelatin and
alginate have been formed also.

3.2. Structural Characteristics of the Hydrogel Scaffolds—FTIR Analysis

The FTIR spectra of pure gelatin, alginate, and TiO2, as well as of gelatin (HSG) and
gelatin/alginate hydrogel scaffolds reinforced with TiO2 nanoparticles (TiO2/HSG3A)
are presented in Figure 1. The FTIR spectra of both hydrogel scaffolds have the most
gelatin- characteristic IR absorption bands, appearing at around 3283 cm−1, 1628 cm−1,
1539 cm−1, and 1441 cm−1, related to N–H, C=O vibrations for the amide I, N–H defi-
nition for the amide II, and amide III, respectively [16,37]. The intensity of the amide I,
amide II, and amide III peaks of the HSG scaffold are higher than for pure gelatin, which
might indicate that HSG contains a higher number of amide bonds due to the higher
gelatin/EDC crosslinking density. Other significant absorption bands were identified in
the TiO2/HSG3A spectrum and confirmed the presence of alginate and TiO2 nanopar-
ticles in the hydrogel scaffold [38,39]. The signals at 3281 cm−1, 1290 cm−1, 1160 cm−1,
and 1028 cm−1 present in the FTIR spectrum of TiO2/HSG3A are representative bands
of alginate that are attributed to O–H stretching, C–O stretching, C–C stretching, and
C–O–C stretching. The molecular compatibility among gelatin, alginate, and TiO2 has been
studiously analyzed previously [39–41]. The proof of the intermolecular connections and
good chemical compatibility of gelatin and alginate is the shift to the lower wavenumber
IR absorption band that is related to the stretching vibration of the N-H group bonded
to the O-H group, as found in the FTIR spectrum of TiO2/HSG3A [40–42]. The signals
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at 1623 cm−1 and 3404 cm−1 in the FTIR spectrum of pure TiO2 are attributed to O–H
stretching. The obtained FTIR spectral changes are evidence of crosslinking of gelatin by
EDC, which couples carboxyl groups with amino groups forming amide bonds as well
as physical crosslinking (H-bonding) between the hydroxyl groups of alginate and the
carboxyl groups of gelatin.
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Figure 1. FTIR spectra of pure TiO2, gelatin, alginate, and gelatin-based hydrogel scaffolds HSG, and
gelatin-/alginate-based hydrogel scaffold reinforced with TiO2 nanoparticles TiO2/HSG3A.

3.3. Morphology of the Hydrogel Scaffolds—SEM Analysis

The basic biological function of hydrogel scaffolds in tissue regeneration applications
is to ensure a porous three-dimensional microstructure with interlinked pores that promotes
adhesion, migration, proliferation of cells, and adequate flow of nourishment, oxygen,
and active agents needed for successful reparation of damaged tissue. Therefore, the
morphology of the synthesized hydrogel scaffolds was observed by SEM. The obtained SEM
micrographs (Figure 2) of the hydrogel scaffolds indicate a highly porous interconnected
morphology favorable for tissue engineering applications. The pores in the gelatin-based
scaffolds are small and regular with homogeneous thin walls (Figure 2a). The incorporation
of alginate into the scaffolds’ composition modifies the pattern of morphology and increases
porosity. The pores in scaffolds containing alginate are large and irregular with thicker
walls and a disorganized structure (Figure 2b,c). Reinforcing the hydrogel scaffolds with
TiO2 nanoparticles also leads to a change pattern of morphology and decreases porosity.
The incorporation of TiO2 nanoparticles into the gelatin-based scaffold reduces the size
of pores and increases the thickness of the walls (Figure 2d). Layered morphology with
elongated pores reduced in size and thick walls was observed for the scaffolds containing
alginate reinforced with TiO2 nanoparticles (Figure 2e,f). The reduction of porosity of
the hydrogel scaffolds reinforced with TiO2 nanoparticles can be related to the fact that
TiO2 nanoparticles are excellent inorganic fillers with potential to enhance the mechanical
performance of the biomaterials. Based on SEM results, the morphology of the scaffolds
can be simply tuned following the requirements of their final applications by the variation
of the scaffold composition.
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Figure 2. SEM micrographs of a cross-section of (a) HSG, (b) HSGA, (c) HG3A, (d) TiO2/HSG,
(e) TiO2/HSGA, and (f) TiO2/HSG3A hydrogel scaffold.

3.4. Porosity of the Hydrogel Scaffolds

The potential of biomaterial to serve as an efficient scaffold for tissue regeneration is
determined by the porosity—the free space of its inner structure that affects the biological
and mechanical properties of scaffolding biomaterial. Inadequate porosity reduces the
vital functions of cells inside the scaffold. A scaffold porosity above 50% is considered
to be suitable for successful cell populations [43–45]. The obtained results of the porosity
measurements for the scaffolds are summarized in Table 2, indicating dependence on
the scaffolds’ composition. The porosity values of the gelatin-/alginate-based scaffolds
are from 92.42% to 96.74% which is favorable for biomedical/tissue engineering applica-
tions. For the scaffolds reinforced with TiO2 nanoparticles, the porosity values are slightly
reduced probably due to TiO2 nanoparticles filling the free space in the polymeric net-
work. However, the porosity of the gelatin-/alginate-based scaffolds reinforced with TiO2
nanoparticles is from 88.33% to 92.92% which is also suitable for biomedical and tissue
engineering applications.

Table 2. The results of the porosity (%), Young’s modulus (MPa), contact angle, and equilibrium
degree of swelling (qe) of the hydrogel scaffolds.

Sample Porosity (%) Young’s
Modulus (MPa) Contact Angle Equilibrium Degree

of Swelling (qe)

HSG 92.42 ± 4.3 3.52 ± 0.16 77.55◦ 8.99 ± 0.5
HSGA 95.52 ± 3.9 2.46 ± 0.12 43.70◦ 15.66 ± 0.7
HSG3A 96.74 ± 4.0 1.53 ± 0.08 0◦ 25.38 ± 1.3

TiO2/HSG 88.33 ± 3.2 4.29 ± 0.21 0◦ 7.10 ± 0.4
TiO2/HSGA 90.10 ± 3.3 3.34 ± 0.16 0◦ 12.48 ± 0.5
TiO2/HSG3A 92.92 ± 3.5 4.24 ± 0.21 0◦ 15.16 ± 0.6

3.5. Mechanical Properties of the Hydrogel Scaffolds

The structural functionality and durability of scaffolding biomaterial are determined
by their mechanical properties, which are crucial requirements for their tissue engineering
applications. The mechanical properties of gelatin, gelatin/alginate, and hydrogel scaffolds
reinforced with TiO2 nanoparticles were analyzed by Young’s modulus values (E) (Table 2).

Mechanical analysis results revealed a dependence of value of Young’s moduli on
the hydrogel scaffold’s composition as well as on the degree of crosslinking. The high-
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est value of Young’s modulus was obtained with gelatin-based scaffolds reinforced with
TiO2 nanoparticles related to gelatin chemically crosslinked with EDC, and physically
crosslinked with TiO2 nanoparticles, as well as filled polymeric network with TiO2 nanopar-
ticles. The incorporation of alginate into the composition of the gelatin-based scaffolds
decreases the value of Young’s modulus, indicating that chemical crosslinking affects the
mechanical properties. More precisely, a larger amount of chemically crosslinked gelatin in
the hydrogel scaffolds’ composition improves their mechanical properties. On the other
side, the incorporation of TiO2 nanoparticles into the scaffolds improves their mechanical
properties. For example, the value of the Young’s modulus of TiO2/HSG3A is 2.7 times
higher than that of the same scaffold without TiO2 nanoparticles. The changes in the elastic
modulus caused by the incorporation of TiO2 nanoparticles in the scaffold’s composition
could be related to forming additional physical crosslinks between hydroxyl groups of
TiO2 and hydroxyl groups of alginate; also, TiO2 nanoparticles are excellent fillers that can
improve the mechanical properties of the materials. From obtained mechanical analysis re-
sults, it is clear that the mechanical properties of the hydrogel scaffolds could be engineered
by adjusting the selection of chemical components and the degree of crosslinking.

3.6. Swelling Properties of the Hydrogel Scaffolds

The ability of the scaffolding biomaterials to absorb and maintain large amounts of
biological fluids is a crucial property necessary for functional tissue development [46].
The hydrogel scaffolds’ ability to swell was tested in a buffer medium of pH 7.40 at
33.5 ◦C that simulated biological conditions. The results are summarized in Table 2 as
values of the equilibrium degree of swelling (qe). The dependence of swelling capacity
on the scaffolds’ composition was observed and values of qe are from 8.99 to 25.38 for the
gelatin-/alginate-based scaffolds and from 7.10 to 15.16 for the gelatin-/alginate-based
scaffolds reinforced with TiO2 nanoparticles. The incorporation of alginate in the scaffolds’
composition improved swelling ability while TiO2 nanoparticles slightly reduced values of
qe due to their acting as a filler that occupies free space in the polymeric network, hindering
the relaxation of polymeric chains and the diffusion of fluid into the material. The hydrogel
scaffolds containing higher amounts of alginate show a higher value of qe relating to the
reduced degree of crosslinking due to the lower content of chemically crosslinked gelatin.
Based on obtained results, it is clear that swelling capacity can be tuned in a wide range
(from 7 to 25) by modifying the chemical composition of the scaffolds, which increases their
potential for biomedical tissue engineering applications.

3.7. Hydrophilicity of the Hydrogel Scaffolds

The potential of scaffolding biomaterial to serve as an effective tissue substituent that
promotes cell adhesion and proliferation, and reparation of damaged tissue depends also
on surface hydrophilicity because the cells realize the first contact with the biomaterial
through the surface of the biomaterial. The hydrophilicity of the material’s surfaces was
determined by the contact angle measurements (hydrophilic surface < 90◦, hydrophobic
surface > 90◦) and the results performed at 0 s are presented in Table 2. The results revealed
fully hydrophilic surfaces of HSG3A, TiO2/HSG, TiO2/HSGA, and TiO2/HSG3A—the
drop of water in contact with the scaffold’s surface immediately disappeared. HSG and
HSGA showed slower disappearance of the water drop, but the obtained values of the
contact angle are less than 90◦, classifying their surfaces as hydrophilic also.

3.8. Adhesion Properties to the Skin Tissue of the Hydrogel Scaffolds

The disadvantage of conventional hydrogel dressings is that they have to be fixed
with gauze or other additional fixation systems which cannot provide enough drainage
of the wound and reduce the efficiency of wound healing. The adhesive properties of the
hydrogel dressings are important for successful wound healing because firmly adhering
hydrogels prevent the leakage of exudate or gas from the wound as well as bacterial
infections. Numerous scientific strategies have been developed to improve the tissue
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adhesion properties of the hydrogels such as enhancing the interfacial force with the tissue
by mussel-inspired hydrogels via a Michael-type reaction of catechol/quinone groups
with amino/thiol groups on the protein or oxidized dextran hydrogel via a Schiff base
reaction between aldehyde groups on hydrogels and amino groups from tissue [47,48].
The adhesive properties of the hydrogel scaffolds were tested by attaching the scaffold
to skin tissue on a moving joint, and the obtained photographs are shown in Figure 3.
As can be seen from Figure 3, stable attachment of the scaffold on skin tissue with an
intersection angle from 0◦ to 120◦ was achieved. The scaffold that was reverse attached
to skin tissue also provided stable adhesion (Figure 3e). It was found that the hydrogen
bond and electrostatic interactions between biomaterial and skin tissue contribute to their
adhesive properties [49]. Gelatin can provide skin tissue adhesion due to a large number
of hydrogen bond-forming sites such as carboxyl, amine, and hydroxyl groups. Alginate
and TiO2 nanoparticles can form H-bonds via a hydroxyl group. The obtained skin tissue
adhesion properties of the hydrogel scaffolds correspond to hydrogen bond interaction
between H-bond-forming groups of gelatin, alginate, and TiO2 nanoparticles as well as
interactions between amino groups of gelatin and oppositely charged phospholipids in the
biomembranes of skin tissue [50].
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Figure 3. Adhesion of gelatin-/alginate-based hydrogel scaffold reinforced with TiO2 nanoparticles:
photographs of (a) finger extended at 0◦ with the scaffold attached, (b) finger flexed to 45◦ with the
scaffold attached, (c) finger flexed to 90◦ with the scaffold attached, (d) finger flexed to 120◦ with the
scaffold attached, (e) the scaffold reverse attached to the palm side of finger.

3.9. Biocompatibility Assays of the Hydrogel Scaffolds

Biocompatibility is a decisive criterion for the use of scaffolding materials in biomedical
and tissue engineering applications. The biocompatibility of the synthesized hydrogel
scaffolds was tested by MTT assay as well as in vivo by C. elegans survival assay, and
the obtained results are shown in Figure 4. The in vitro cell viability of the hydrogel
scaffolds was tested on an MRC5 cell line treated with different concentrations of the
hydrogel scaffold extracts. The obtained results (Figure 4a) show biologically accepted
values of cell viability treated with the hydrogel scaffolds’ extracts, indicating the in vitro
cytocompatibility of the hydrogel scaffolds.

The nematode C. elegans takes primacy over mammalian animals for use in predictive
toxicology and drug discovery because of its very short generation time, low-cost culti-
vation, and high similarity of tissues and genes with humans [51,52]. C. elegans was used
for in vivo assay to evaluate the biomedical potential of the materials, and the results are
shown in Figure 4b. The gelatin-/alginate-based hydrogel scaffold with a higher amount
of alginate HSG3A was safe at all applied concentrations. The scaffolds HSG and HSGA
were moderately nematodotoxic at concentrations of 100%, 50%, and 25% and slightly
nematodotoxic at a concentration of 12.5%. The incorporation of alginate into the scaffold
composition increased the favorable in vivo response. Based on the results of the biocom-
patibility assay, the synthesized HSG3A scaffold with a higher amount of alginate shows
special potential to serve as an efficient biomaterial for tissue engineering applications.
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3.10. In Vitro Simultaneous Release Properties of the Hydrogel Scaffolds

The process of loading the active agents into the hydrogel scaffolds used in this study
is simple and has some advantages compared to conventional loading by absorption. The
loading of the active agents was achieved by mixing a precise amount of the active agents
with the pre-hydrogel reaction mixture (initial mixture), which decreased the loading
process time and as a result, gave a formulation with a precise dose of the active agents.
The hydrogel scaffolds were loaded with the same concentration (5% w/w respect to
gelatin-/alginate-based scaffold) of the active agents allantoin, caffeic acid, and quercetin.

The potential of the hydrogel scaffolds as a simultaneous release platform for multi-
target therapy in the wound healing process was evaluated by an in vitro release study of
the active agents in simulated physiological conditions (pH 7.4, at 33.5 ◦C). The obtained
simultaneous active agents’ release profiles from the hydrogel scaffolds are presented in
Figure 5.

The release results revealed a dependence of release behavior on the hydrogel scaf-
fold’s composition as well as on the type of bioactive agent. The gelatin-/alginate-based
scaffolds provided a rapid release of the active agents into the release media during the
first 6 h of the release while gelatin/alginate scaffolds reinforced with TiO2 nanoparticles
provided slightly slower release during the same release period. As shown in Table 3, after
the first 6 h of release, 44% of allantoin, 56% of caffeic acid, and 66% of quercetin had been
released from the gelatin-based scaffold while 27% of allantoin, 28% of caffeic acid. and
36% of the quercetin had been released from the gelatin-based scaffold reinforced with
TiO2 nanoparticles. The incorporation of alginate into the composition of the gelatin-based
scaffolds provided faster release of the active agents compared to the gelatin-based scaf-
folds. For example, 49% of allantoin, 70% of caffeic acid and 79% of quercetin were released
from the gelatin-/alginate-based scaffold with equal amounts of both natural polymers,
while 73% of allantoin, 88% of caffeic acid, and 89% of quercetin were released from the
gelatin/alginate scaffold containing three times as much alginate as gelatin. After this
initial fast release phase, all the scaffolds showed a slower bioactive agents release (Figure 5)
until 3 days. The percentages of release rate of bioactive agents after 6 and 12 h of release
are depicted in Table 3 for each scaffold. The initial rapid release phase (during the first 6 h
of release) (Table 4) was followed by a slower release of the active agents (Table 5).
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after release of the bioactive agents.

Table 3. The percentage of release rate after 6 and 12 h of bioactive agent release from the
hydrogel scaffolds.

Hydrogel
Scaffold

Released % of Allantoin Released % of Caffeic Acid Released % of Quercetin

6 h 12 h 6 h 12 h 6 h 12 h

HSG 44 ± 2.0 50 ± 1.2 56 ± 2.1 65 ± 1.5 66 ± 2.2 79 ± 1.6
HSGA 49 ± 1.8 55 ± 1.2 70 ± 2.0 76 ± 1.2 79 ± 2.3 86 ± 1.9

HSG3A 73 ± 2.1 78 ± 1.5 88 ± 1.8 94 ± 1.6 89 ± 2.7 95 ± 1.8
TiO2/HSG 27 ± 1.9 33 ± 1.8 28 ± 2.2 36 ± 1.4 36 ± 2.4 46 ± 1.9

TiO2/HSGA 34 ± 1.7 39 ± 1.5 35 ± 2.1 45 ± 1.5 46 ± 2.6 58 ± 1.5
TiO2/HSG3A 37 ± 2.0 42 ± 1.5 42 ± 2.0 52 ± 1.6 56 ± 2.4 68 ± 1.8

As shown in Figure 5, the release patterns of the bioactive agents from the hydrogel
scaffolds were dependent on the scaffold’s composition as well as on the type of bioactive
agent. The incorporation of alginate and TiO2 nanoparticles into the composition of
the gelatin-based scaffold showed the opposite effect on the release properties—alginate
increased while TiO2 nanoparticles decreased the release rate of the bioactive agents. This
phenomenon can be explained by the high hydrophilicity of alginate, which can absorb
large quantities of water and biological fluids, swell, and accelerate the release rate of the
bioactive agents. In contrast, TiO2 nanoparticles act as a filler that occupies free polymeric
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network space and hinders the relaxation of the polymer chains and diffusion of the fluid
and active agents. The gelatin-based hydrogel scaffold reinforced with TiO2 nanoparticles
showed slower release compared to the gelatin-based scaffold due to two reasons—TiO2
occupies the free space in the polymeric network, hindering diffusion of the active agents,
and gelatin can form an ionic interaction with TiO2 nanoparticles at pH 7.4 that act as
additional crosslinks, reducing the release of the active agents.

The release patterns of the bioactive agents from the hydrogel scaffolds were also
dependent on the type of bioactive agent. As can be seen from Figure 5, the hydrogel
scaffolds provided a higher release rate of quercetin, a medium release of caffeic acid, and a
slower release of allantoin. The properties of a bioactive agent, such as polarity, functional
groups in its structure, and ability to interact with free functional groups in the polymeric
network to form ionic interaction or hydrogen bonds, determined the release patterns from
the scaffolds.

Table 4. The release data obtained during the initial period of bioactive agent release from the scaffolds.

Initial Release Period

Hydrogel
Scaffold

Allantoin Caffeic Acid Quercetin

mg/6 h mg/h mg/6 h mg/h mg/6 h mg/h

HSG 26.4 ± 1.20 4.4 ± 0.20 33.6 ± 1.26 5.6 ± 0.21 39.6 ± 1.32 6.6 ± 0.22
HSGA 29.4 ± 1.08 4.9 ± 0.18 42 ± 1.20 7 ± 0.20 47.4 ± 1.38 7.9 ± 0.23

HSG3A 43.8 ± 1.26 7.3 ± 0.21 52.8 ± 1.08 8.8 ± 0.18 53.4 ± 1.62 8.9 ± 0.27
TiO2/HSG 16.2 ± 1.14 2.7 ± 0.19 16.8 ± 1.32 2.8 ± 0.22 21.6 ± 1.44 3.6 ± 0.24

TiO2/HSGA 20.4 ± 1.02 3.4 ± 0.17 21 ± 1.26 3.5 ± 0.21 27.6 ± 1.56 4.6 ± 0.26
TiO2/HSG3A 22.2 ± 1.20 3.7 ± 0.20 25.2 ± 1.20 4.2 ± 0.20 33.6 ± 1.44 5.6 ± 0.24

Table 5. The release data obtained during the slow period of bioactive agent release from the scaffolds.

Slow Release Period

Hydrogel
Scaffold

Allantoin Caffeic Acid Quercetin

mg/6 h mg/h mg/6 h mg/h mg/6 h mg/h

HSG 33.6 ± 1.08 0.51 ± 0.18 26.4 ± 1.08 0.4 ± 0.18 20.4 ± 1.44 0.31 ± 0.24
HSGA 30.6 ± 1.26 0.46 ± 0.21 18.0 ± 1.26 0.27 ± 0.21 12.6 ± 132 0.19 ± 0.22

HSG3A 16.2 ± 1.32 0.25 ± 0.22 7.20 ± 1.38 0.11 ± 0.23 6.6 ± 1.26 0.1 ± 0.21
TiO2/HSG 43.8 ± 1.44 0.66 ± 0.24 43.2 ± 1.26 0.65 ± 0.21 38.4 ± 1.08 0.58 ± 0.18

TiO2/HSGA 39.6 ± 1.26 0.60 ± 0.21 39 ± 1.14 0.59 ± 0.19 32.4 ± 1.14 0.49 ± 0.19
TiO2/HSG3A 37.8 ± 1.14 0.57 ± 0.19 34.8 ± 1.20 0.52 ± 0.20 26.4 ± 1.32 0.4 ± 0.22

4. Conclusions

The novel biocompatible hydrogel scaffolds were prepared by a simple crosslinking
reaction using natural polymers gelatin and alginate, with varying amounts of alginate.
The extra bioactivity of the hydrogel scaffolds was achieved by loading the three active
agents with the ability to direct at multiple therapeutic targets in wounds during the wound
healing process. To obtain gelatin-/alginate-based scaffolds with enhanced mechanical
properties, TiO2 nanoparticles were incorporated into the scaffolds’ composition and the
effect of TiO2 on their properties was investigated. The physicochemical testing of the
hydrogel scaffolds indicated that variation in the scaffolds’ composition permits tailoring
of all properties important for drug delivery and biomedical engineering applications. The
highly porous morphology with interconnected pores favorable for tissue engineering
applications, tunable porosity in the range of 88.33 to 96.74%, favorable swelling capacity,
adhesion to skin tissue, and biocompatibility of the hydrogel scaffolds were obtained.
Successful simultaneous release of allantoin, quercetin, and caffeic acid was achieved
by all hydrogel scaffolds, indicating that the release pattern could be tuned by altering
the scaffolds’ chemical composition. The release data showed that the scaffolds provide
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controlled simultaneous release for 3 days, suggesting high potential of the hydrogel
scaffolds for multi-target therapy in the wound healing process.
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In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin
IPN Hydrogel Scaffolds. Polymers 2022, 14, 4459–4479. [CrossRef] [PubMed]
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