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Abstract: A suppressed ion chromatography (IC) technique, using a carbonate/hy-
drogen carbonate or a hydroxide eluent, has been evaluated as a monitoring tool for
the detection of major anions (F-, Cl-, NO3

-, PO4
3- and SO4

2-) in ultra pure water and
condensed steam from thermal power plants. An electrical conductivity detector
with an anion-exchange column (IonPac AS14), an auto self-regenerating suppres-
sor (ASRS), and an isocratic high-pressure pump system were used for the detection
of low concentrations of inorganic anions. It was shown that the suppressed IC tech-
nique provides a suitable means for preventing possible damage to generating
equipment in power plants. The detection limits of the method for the anions of in-

terest were < 0.3 �g/L.
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INTRODUCTION

One of the primary concerns in all power plants is to ensure high-purity water

which is the basis for the generation of ultra pure steam in the water–steam cycle of

a power plant. Anions, cations, transition metals and silica should be monitored in

raw water, demineralizer influent/effluent, process steam, boiler feed water, boiler

blowdown water, high and low pressure steam condensate and condensate polisher

water. The measurement of trace level of ionic impurities throughout the power

generation process is critical for the identification and prevention of corrosive con-

ditions in many power plant components. Corrosive ions, such as chloride, should

be minimized and continuously monitored. Control of impurities, such as sodium
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ions, sulfate ions and other ions (fluoride, phosphate, nitrate, calcium, magnesium)

provides valuable information regarding the source of contamination, the likely

rates of contaminant build-up, and probable rates of corrosion and timely data dur-

ing the start-up and shut-down of power plants.1

Ion chromatography (IC) has become an important technique for monitoring

water quality and for the determination of ionic species with respect to corrosive

ions.2,3 Anions in the mg/L and �g/L levels can be analyzed with the direct injec-

tion technique. For the determination of lower levels of ionic impurities (low mg/L

or �g/L levels), sample preconcentration is necessary. Typically, the analytes of in-

terest are preconcentrated on a small precolumn in order to “strip” ions from a mea-

sured sample volume.4,5 This preconcentration results in lower detection limits.

However, the preconcentration method has several disadvantages compared with

the large-volume direct injection technique which is applied in this work.6–8

Unlike the non-suppressed detection mode typically used with a single chro-

matographic column with an eluent which is not chemically modified prior to en-

tering the detector, the suppressed detection mode is characterized by the use of

suppression devices which enable chemical conversion of anion salts to their con-

jugated acids just prior to the conductivity detector. In this way the background

conductance of the eluent is lower than the overall conductance of the analyte, re-

sulting in lower detection limits.9

Due to this advantages, suppressed IC analysis of anions can provide detection

limits up to 10 times lower than non-suppressed systems. This clearly explains why

the suppressed IC technique is recommended as the preferred detection mode for the

determination of anions. In optimized suppressed IC, the employed working eluents

are usually sodium hydroxide or carbonate–hydrogen carbonate buffers. These elu-

ents can be converted into species of low conductance, such as water or H2CO3, after

the ion exchange of their cations with hydrogen ions by suitable suppression devices,

such as packed-bed chemical suppressors, membrane suppressors or self regenerat-

ing suppressors. High signal-to-noise ratios are generally achieved by the suppres-

sion, extending the linear dynamic concentration range of the analyses from �g/L

down to ng/L levels. Such concentration ranges are generally sufficient for any com-

plex IC application where a trace analysis of anions is required.10

Though the suppressed IC technique for separating and detection of inorganic

anions has been extensively developed, quantifying anions at low concentration in

different types of chemical matrices continues to be an important analytical prob-

lem. The development of IC is still a challenge with regard to lowering the detec-

tion limits and obtaining better resolution of the ions present in a sample. Bearing

this in the mind, a suppressed IC procedure was developed for determining anions

in power plant water matrices. The determination of the major inorganic anions

(i.e., F–, Cl–, NO3
–, PO4

3– and SO4
2–) in ultra pure water samples was the main an-

alytical task in this work, aimed at developing a reliable analytical method for

monitoring the chemical impurities in water–steam samples of power plants.
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In this investigation the samples were injected using a large-volume direct in-

jection technique (large sample loop volume of 1000 �L). The analyte ions were

separated on a selective ion-exchange column using high-purity mobile phases

(carbonate/hydrogen carbonate eluents for the determination NO3
–, PO4

3– and

SO4
2–, and sodium hydroxide for the determination of F– and Cl– ions) and de-

tected using the suppressed conductivity detection method. The detection limits of

the method for most analyte ions in ultra pure water ranged from 0.07 to 0.3 �g/L.

EXPERIMENTAL

Instrumentation

A Dionex DX 100 IC system (Dionex, Sunnyvale, CA, USA) consisting of an IP20 isocratic
pump and a CD20 conductivity detector was used. A PeakNet 5.1 chromatography workstation was

used for instrument control, data collection and processing. A sample loop with a volume of 1000 �L

was made from poly(ether ether ketone) (PEEK) tubing of length of 210 cm and I.D. 0.750 mm. Its

volume was verified by measuring the mass difference between the sample loop filled with

deionized water and the empty loop. The separations of the target analyte anions were performed on

IonPac AS14 (250 mm � 4 mm I.D.) and AG14 (50 mm � 4 mm I.D.) columns. An Anion Self Re-

generating Suppressor (ASRS, 4 mm I.D.) operating in the recycle mode was used as the suppressor.

Details of the operating conditions of the IC system are presented in Table I.

TABLE I. Operating parameters for anion separation by suppressed IC with an anion-exchange col-

umn (IonPac AS14) under isocratic conditions

Anion chromatography

Column IonPac AS14 Analytical (4�250 mm)

IonPac AG14 Guard (4�50 mm)

Eluents 1) Na2CO3/NaHCO3 4.5 mM (3.5:1.0)

2) NaOH 1.0 mM

Eluent flow rate 1 mL/min

Injection volume 1000 �L

Detection Suppressed conductivity

Full-scale range 3 �S (for eluent 1); 10 �S (for eluent 2)

Suppression ASRS recycle mode (4 mm)

Suppressor current 50 mA

Chemical reagents, standard solutions and eluents

All chemicals for the preparation of the IC eluents and standard solutions were of analyti-
cal-reagent grade and dissolved in deionized water. Stock standard solutions of anions containing
1000 mg/L, available from Merck (CertiPur), were used in this study. The stock standard solutions

were stored at 4 ºC. Standard working solutions of lower analyte concentrations (<100 �g/L) were

prepared daily by diluting the stock solutions with deionized water. Fresh working eluents 1 and 2

were prepared daily, filtered through a 0.2 �m pore size membrane filter (Millipore, USA), and de-

gassed prior to use.

Deionized water with a specific resistance of 18.2 M� cm was used to prepare all the solu-

tions. Extreme caution was taken to prevent any possible contamination from the environment and

the sample handling when preparing all trace-level calibration standard solutions. All calibration
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standards and spiked samples were stored in polyethylene containers which had been thoroughly

cleaned and presoaked in deionized water for at least 24 h.

Samples

Thermal power water and steam samples were collected in situ from different steam pipelines
before the steam enters the generation turbines. Two condensed steam samples were additionally
collected at the exit of the turbine. All samples were handled carefully to avoid contamination and
were analyzed in the chemical laboratory as quickly as possible. The samples were analyzed directly

without any pretreatment, except filtering through a syringe membrane filter (0.2 �m) just prior to

injection into the suppressed IC system. A 5-ml syringe was used to load the standards and samples

into the sample loop.

RESULTS AND DISCUSSION

Separation of anions

The use of an IonPac AS14 column with an eluent mixture of 3.5 mM Na2CO3

and 1.0 mM NaHCO3 and a suppression device operated in the continuous self-re-

generation mode has been shown to be a well-established IC setup for separating

anions. All the anions are eluted in less than 15 min (Fig. 1). Despite the relatively

short analysis time exhibited in these runs, all five anion peaks of interest were well

separated at these low concentrations. The analysis time can be reduced by modify-

ing the eluent composition, the eluent flow-rate, the stationary phase composition

or the column temperature.11 Shorter retention times can also be obtained due to a

loss of column efficiency, which is unfavorable because the peak resolution wors-

ens.12 In this work, the optimum IC conditions, as presented in Table I, were deter-

mined by trial-and-error. No further reduction in the analysis time was made in or-

der to enable sufficient resolution between adjacent peaks for samples in which a

large difference in the concentrations of the anions exists.

Precision and calibration tests

Reproducibility tests based on five injections of an anions standards consist-

ing of F–, Cl–, NO3
–, PO4

3– and SO4
2– were performed. Reproducibility data for

retention times and peak areas and peak heights, obtained using the operation pa-

rameters described in Table I, were statistically evaluated from the relative stan-

998 ^I^KARI] et al.

Fig. 1. Separation of inorganic anions of a standard mixture (40 �g/L). Peaks: 1–fluoride, 2–chlo-

ride, 3–nitrate, 4–phosphate, 5–sulfate. The operating conditions are given in Table I (Eluent 1)



dard deviation (RSD) and are presented in Tables II and III. The RSD values for the

retention times and peak areas were less than 0.8 and 9 %, respectively.

TABLE II. Reproducibility data (RSD) of retention times of the target analyte anions (n = 5). Operat-

ing conditions were the same as in Table I (Eluent: 4.5 mM Na2CO3/NaHCO3)

Concentration / �g L
-1

Anion 0.1 0.4 0.7 1.0 5.0 10 40 70 100

� / min

Fluoride 0.43 0.64 0.21 0.41 0.59 0.42 0.33 0.55 0.62

Chloride 0.40 0.61 0.29 0.54 0.33 0.31 0.60 0.53 0.78

Nitrate 0.26 0.55 0.45 0.49 0.28 0.38 0.31 0.43 0.26

Phos-

phate
n.d. n.d. 0.46 0.31 0.54 0.33 0.53 0.21 0.39

Sulfate 0.58 0.33 0.21 0.15 0.35 0.29 0.26 0.18 0.35

n.d. – Not detectable

TABLE III. Reproducibility data of the method (RSD) for target analyte anions (n = 5). Operating

conditions were the same as in Table I (Eluent: 4.5 mM Na2CO3/NaHCO3)

RSD / %

Anions Nitrate Phosphate Sulfate

Concentration/�g L
-1 Peak area Peak height Peak area Peak height Peak area Peak height

0.1 6.0 3.0 n.d. n.d. 7.6 2.9

0.4 4.8 5.3 n.d. n.d. 3.0 8.5

0.7 2.7 6.3 8.3 8.0 2.9 6.7

1.0 0.1 1.5 7.4 8.8 2.1 2.6

4.0 5.4 8.5 6.3 6.1 7.7 2.4

7.0 4.6 7.1 5.3 4.7 1.8 1.7

10 1.3 1.9 2.9 3.4 1.5 2.8

40 2.0 0.2 5.4 5.4 3.7 2.0

70 3.4 3.5 3.3 1.2 2.7 1.3

100 2.2 2.4 3.1 2.8 2.1 1.9

Fluoruide and chloride were determined using the hydroxide eluent (eluent 2).

To increase the detector response to the analytes, the large-volume direct inject

technique was used to inject 1000 �L of sample in this method. Since the IonPac

AS14 column has sufficient ion-exchange capacity, no noticeable band broadening

of the analyte peaks was observed due to the loading of such a large sample vol-
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ume. The use of the large-volume direct injection technique eliminates the neces-

sity for sample pre-concentration, which typically involves the use of a concentra-

tor column and is so more cumbersome and time-consuming.

A representative chromatogram obtained for standards solutions of the target

anions is shown in Figure 2. The analyte concentrations in the standards ranged

from 0.1 �g/L to 100.0 �g/L for fluoride and chloride.

The relative standard deviations (RSD) of the peak areas and peak height were less

than 5 and 3 %, for fluoride and chloride, respectively, and are presented in Table IV.

TABLE IV. Reproducibility data (RSD) of the IC method for fluoride and chloride using an aqueous

NaOH solution as the eluent (n = 5)

Concentration/�g L
-1

RSD / %

0.1 0.5 1.0 5.0 10 40 70 100

Anion Peak area

Fluoride 3.2 2.8 3.5 2.0 1.1 1.2 0.6 1.3

Chloride 4.3 1.6 2.2 2.2 0.8 3.5 2.2 0.7

Anion Peak height

Fluoride 2.5 3.2 2.1 1.9 2.9 1.8 1.2 1.7

Chloride 2.6 2.2 2.5 0.7 0.4 1.1 1.2 0.8

The method detection limits (MDL)

The MDL for all the chromatographic analyses were calculated using the

well-known “3� method”.1,13 This statistical method can determine a MDL based

on a trace-level standard. To determine the precision, five replicates of the anions

standards were injected. The standard deviation of these replicates was divided by

the slope of the calibration curve to estimate the standard deviation (SD) value in

concentration units. This SD was finally multiplied by the corresponding Student’s
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Fig. 2. Representative chromatograms of inorganic anions of standard mixtures (0.1 – 100.0

�g/L). Peaks: 1–fluoride, 2–chloride. The operating conditions are given in Table I (Eluent 2).



t-value (for a 99 % confidence level) to calculate the MDL of the anion. The MDL

value obtained in these IC experimental runs are given in Table V. Although the

MDL values achieved with the present IC instrument were higher than expected,

they were generally suitable for most of the analyzed samples.

TABLE V. Method detection limits obtained for the five studied analyte anions (n = 5)

Anion MDL
b/�g L

-1 Correlation coefficient r

Fluoride 0.07 0.9999

Chloride 0.08 0.9903

Nitrate 0.18 0.9975

Phosphate 0.23 0.9993

Sulfate 0.20 0.9989

bMDL = (S.D.) � (ts)99 %, for n = 5

Application: determination of anion impurities in condensed steam samples

The proposed suppressed IC procedure was applied as a monitoring analytical

tool for the analysis of the inorganic anion composition of steam samples collected

from thermal power plants. Most of these samples were strategically selected in or-

der to collect steam before it goes through the turbines. However, two condensed

steam samples were additionally collected at the exit of the turbines. Such samples

were selected for evaluating the background anion composition of steam in the en-

tire power generation cycle. Examples of the application of the IC procedure using

an IonPac AS14 column for measuring the major anions in power plant ultra pure

water and steam samples are presented in Fig. 3 and Fig. 4, respectively. These Fig-

ures present typical expanded chromatograms showing the efficient separation of

all of the investigated anions for their detection at trace levels.14

The NO3
– and PO4

3– peaks were near the background noise levels and were

therefore reported as being below the MDL (see Table V). An interesting monitor-

ing case was found when the steam samples collected at the entrance of the turbine
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Fig. 3. Representative chromatogram of anions corresponding to suppressed IC analysis of a con-
densed steam sample. Peaks: 1–fluride, 2–chloride, 3–nitrate, 4–phosphate, 5–sulfate. The oper-

ating conditions are given in Table I (Eluent 1).



and at its exit were analyzed separately. An increase in the Cl– and SO4
2– concen-

trations was observed in these samples. Such small increases could probably be at-

tributed to the effect of steam separation in the condenser section of the thermal

power plant. This separation process tends to slightly concentrate the resulting

condensed steam phase at that sampling site.

Interferences

The shifting observed for the Cl– peaks in all sample chromatograms may be

associated with matrix effects, the origin of which should be studied in the future.

In the case of the separation of fluoride and chloride using hydroxide eluent,

the nitrate, phosphate and sulfate which were present in the injected samples did

not interfer; their retention times being more than 15 min.

CONCLUSION

A simple suppressed IC procedure for the efficient separation and quantifica-

tion of anions under isocratic conditions was evaluated. This method was used for

the chemical analysis of inorganic anions at concentations ranging from 0.1 to 100

�g/L. The use of anion-exchange chromatography with an IonPac AS14 separation

column, a working eluent containing 3.5 mM Na2CO3
– 1.0 mM NaHCO3, or 1 mM

NaOH and suppressed conductivity detection provided a simple, cost-effective,

fast, accurate, and highly sensitive technique for the determination of F–, Cl–, and

SO4
2– (NO3

– and PO4
3– were usually below their MDL) in thermal power con-

densed steam samples. The method was linear (r > 0.99) over the working concen-

tration range. The detection limits were found to be 0.080, 0.160, 0.180, 0.230 and

0.200 �g/L for F–, Cl–, NO3
–, PO4

3– and SO4
2–, respectively, with the carbonate

eluent and 0.077 and 0.082 �g/L for F– and Cl–, respectively, with the hydroxide

eluent. With this suppressed IC technique, it was possible to measure inorganic an-

ions at trace level in condensed steam samples from thermal power plants.
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Fig. 4. Representative chromatogram obtained for a condensate sample. Peaks: 1–fluride, 2–chlo-

ride. The operating conditions are presented in Table I (Eluent 2).



The present method, therefore, may be taken as an appropriate analytical tool

for monitoring the chemical impurities of steam in thermal power plants. Such

monitoring should be considered essential for extending the life-time of power

generation equipment in the thermal power industry.
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RAZVOJ METODA JONSKE HROMATOGRAFIJE ZA ODRE\IVAWE

TRAGOVA ANJONA U ULTRA ^ISTIM VODAMA IZ TERMOELEKTRANA
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Tehnika supresivne jonske hromatografije (IC) razvijena je za analizu tragova

anjona (F-, Cl-, NO3
-, PO4

3- i SO4
2-) u uzorcima ultra ~iste vode. Detektor elektri~ne

provodqivosti sa kolonom za jonsku izmenu (IonPac AS14), samoregeneri{u}i anjon-

ski supresor (ASRS) i izokrati~na IC pumpa visokog pritiska uspe{no su primeweni

za otkrivawe niskih koncentracija neorganskih anjona. Razvijene su dve IC metode,

jedna sa karbonatnim (za analizu NO3
-, PO4

3- i SO4
2--jona), a druga sa hidroksidnim

eluentom (za analizu F- i Cl--jona). Granice detekcije primewenih metoda bile su: < 0,3

�g/L (metoda sa karbonatnim eluntom) i < 0,1 �g/L (metoda sa hidroksidnim eluentom).

Na ovaj na~in razvijene su dve IC metode koje se mogu primeniti za kontrolu tragova

anjona u sistemu voda-para u termoelektranama.

(Primqeno 26. jula, revidirano 4. novembra 2004)
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