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Finite element modelling of steady state creep process has been 
described. Using an analogy of visco-plastic problem with a described 
procedure, the finite element method has been used to calculate steady 
state stresses and strains in 2D problems. An example of application of 
such a procedure have been presented, using real life problem - 
cylindrical pipe with longitudinal crack at high temperature, under 
internal pressure, and estimating its residual life, based on the C* 
integral evaluation.  
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Introduction 

 Creep is the general term for long time process, well known for slow degradation of 

material and increasing strain, leading to premature failure, [1,2]. Such a process can be 

described mathematically if basic relation between stress, strain, temperature and time is 

known.  

 The general mathematical model of a creep process in one dimension can be 

expressed as follows, [3]: 
c ( , , )F T t       (1) 

where   is the creep strain, F function of the stress, temperature and time. If one considers 

the crack tip fields in an elastic-secondary creeping material, as being analogous to an elastic-

plastic behavior, the equation of state is: 

nB
E


        (2) 

where the total strain rate   is sum of the elastic component, / E  and the nonlinear 

secondary creep component nB  with the creep exponent n and temperature-dependent 

coefficient B being material parameters. The material described by the power law (2) is 

referred to as an elastic-power law creep material, describing a creeping with negligible 

primary and tertiary stage.  
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In the case of the creep under multiaxial stress conditions, a mathematical model 

should satisfy several requirements for correct modeling [3]: 
 -the material law should reduce to the correct uniaxial formulation when 

appropriate; 

 -the model should express the constancy of volume, experimentally observed; 

 -the equation of state should embody the lack of influence of the hydrostatic state of 

stress, also experimentally observed; 

 -for isotropic materials the principal directions of stress and strain should coincide. 

 Having these requirements in mind, equation (1) can be generalized to the multiaxial  

stress state as follows: 

n-11 1 2 3

3 2
ij ij kk ij ijs B s

E E

 
   

 
       (3) 

where 1/3ij ij kk ijs     and 1/ 2(3/ 2 )ij ijs s   stand for deviator stress components and 

effective stress, respectively, ij  is the Kronecker delta symbol, v  Poisson ratio. The equation 

(3) should be supplemented by the equilibrium equation, which can be written in the form: 

, 0         (4) 

In the absence of inertial and volume forces, and by the nontrivial compatibility condition 

, , 0                                                            (5) 

for the small strain and the plane problem  , 1,2   . The equilibrium equation (4) will be 

identically satisfied if the stress components are expressed in terms of the Airy stress function 

 X , such that: 

,xx                                                            (6) 

Stationary crack-tip fields 

 For plane problem the stress and displacement fields are functions of x1 and x2 only. 

The stress component and strain component vanish, as well as ζα3 and the strain component 

εα3, and ζ33 and ε33 vanish for the plane stress and strain problems, respectively. An 

investigation of crack-tip stress and displacement fields is important because these fields 

typically govern the fracture process occurring at the crack tip. 

 We start considering the crack-tip fields for stationary crack in time-dependent 

material undergoing either plane stress or plane strain in mode I loading. For further 

investigations it is convenient to rewrite Eqn (3), in terms of stress tensor σij 

n-11 3

2
ij ij kk ij ijB s

E E

 
    


                  (7) 

n-11 3

2
kk B s

E E
   

 
    


                           (8) 

     n-1
33 33 33

1 3

2
kk B s

E E


          (9) 

From (3) and (6) it follows that    ; 33 333/ 2 1/ 2s     and  
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 33

1

2
s s         ;  33s s     (10) 

Then the effective stress can be written in the form: 

2 1/2
33

3
(2 3 )

2
s              (11) 

 

Also, from (9) and (10), it follows 

n-1
33 33 33 33

2 1 2 1

3 3

v
s B s

E E
   


       (12) 

 

Finally, combining (5), (6), (8) and (10), one gets: 
 

  4 n-1
33, 33

2 1
2 0

3 2

v v
s B s

E E
   


    


      
 

  (13) 

 

where  4


   is the bi-harmonic operator. For the plane stress problem, σ33= σ33=0 and 

S33=-1/3 ψαα; according to (102). Then  

 4 n-12
3 0B

E
  


        

 
   (14) 

1/2
3 1

2 2
       

 
  
 

    (15) 

represent the governing equations for the Airy stress function. The governing equation for ε33 

can be written in the form: 

n-1
33

1

2
B

E
 


          (16) 

 

For the plane strain 33 33 0    so that eqn (12) becomes 

n-1
33 33

1 2 1
0

3

v
s B s

E E
 


       (17) 

 The crack-tip fields are anticipated to be singular at the crack tip for the assumed 

material law [3]. If it is also assumed that the creep exponent n is greater than unity (n>1), 

then the creep strain rates will dominate around the crack tip, so that the linear (elastic) terms 

in (17) and (21) can be neglected. The resulting equations have the same forms as the 

equations governing the asymptotic behavior in a rate-insensitive, power law strain hardening 

material. Hence, the stress and strain singularities are of the HRR type: 

 

1

1

n

( ) n

ij ij

C t

BI r
  

 
  
 

  
1

n

( )

n

n

ij ij

C t

BI r
  

 
  
 

   (18) 
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where  ij   and  ij   represent the angular distribution of stresses and strains, respecti-

vely, around crack tip, r and θ are the polar coordinates around the crack tip (Fig. 1), and C(t) 
is the time-dependent loading parameter, defined as: 

2
0 1

( ) lim d d
1

i
ij ij ij j

D

un
C t x n s

n x 

  


 
   

  
   (19) 

                                 
Figure 1. Infinitesimal loop around crack tip                              Figure 2. Contour around crack tip 

 

The contour ∂Dε is a small loop with the radius ε, centered at the crack tip, shrinking 

to the crack tip as ε→0 (Fig. 1). From Eqns (18) it is clear that C(t) is the loading parameter 

defining the strength of the crack-tip singularity fields. If the applied load remains fixed n 

time, then Eqn (3) implies that the stress field becomes time-independent as t→∞. The elastic 

strain rates vanish and secondary (steady-state) creep extends throughout the body. Such a 

behavior can be recognized as nonlinear viscous flow, leading to the conclusion that 

C(t)→C*, where C* is the path independent integral: 

2

1

* d di
ij ij j

u
C W x n s

x
 



 
   

 
     (20) 

where W( ij ) is the strain energy rate density, defined by: 

0

( )= d
ij

ij ij ijW



         (21) 

 Therefore, the near-tip fields for the stationary crack in a steady-state creeping body 

are: 

 

1

1

n

* n

ij ij

C

BI r
  

 
  
 

  
1

n

*

n

n

ij ij

C

BI r
  

 
  
 

  (22) 

 

 It follows that the C* integral is the loading parameter that determines the strength 

of the singular stationary crack tip in a body undergoing steady-state creep. Under the 

assumptions introduced, C* integral is an analogous parameter to the well-known J integral. 

This enables application of any handbook of J integral expressions, as shown in [4,5], 
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providing that ui and εij are replaced by their rates, and material constant / n
y y   by B, where 

y  and σy are yield strain and strength, respectively.  

Finite element model of creeping body 

 Here we present the general finite element model of a creeping body, including 

elastic and plastic deformation. The model will be developed using the global Cartesian 

coordinates z
i
(ξ

a
,t) for the particle of a body at the moment t, where ξ

a
 denote the convected 

coordinates of the same particle. Using the convected coordinates, one can rewrite the 

expression (11) in a form: 

n-11 3

2

ab ab cc ab abv
g B s

E E


   


      (23) 

 For the further considerations, it will be useful to separate the creep-dependent part 

of the strain rate: 

n-13

2

c
cd cdB s       (24) 

 If, in addition, the plastic strain rate should be considered, one can write the 

following expression: 

3

2

p
cdcd

p

s
E


 


   

1  for =   and 0

0  for =   and 0

y

y

  


  

 
 



  (25) 

or, in the case of the temperature=dependent plasticity: 

3

2

p
cdcd

p

f
s

E


  

 

 
  

 
    (26) 

In these expressions g
ab

 is the covariant metric tensor, θ is the relative temperature, 

Ep=E∙ET/(E-ET) is so-called “plastic” modulus, ET is the tangent modulus, and f is the yield 

function: 

 ,p
y cdf          (27) 

It should be noticed that one can combine (23) and (25) or (26), to get the creep 

plastic strain rate: 

n3 1

2

cp
cdcd

p

f
B s

E
   

 

  
    

   

   (28) 

Similarly, one can add (25) or (26) to (23) to get 

 
2

n-11 3 1 1 3
1

2 2

ab
cd ac bd ab cd ab cd cd

T

v g g vg g s s B s
E E E

   
    

          
     

 

 (29) 

However, for computational purposes it is convenient to resolve the equation (23) or 

(29), as follows: 
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   
n-1

2

3 3

1 1 2 2 3 1 2 2 3 1 2

ab cd
ab ac bd ab cd abT T

cd
T T

E E E EE v s s B
g g g g s

v v E v E E v E


   



     
                    

(30) 

Note that in the case when there is no creep (B=0) the Eqn (30) reduces to the well-

know rate constitutive equation for the plasticity with the yield surface. Similarly, if there is 

no plasticity (β=0) Eqn (30) reduces to: 
 

n-13

1 1 2 2

ab ab bd ab cd ab
cd

E v
g g g g B s

v v
  

  
    

   
        (31) 

 

what can be written in a simpler form 

n-13ab abcd ab
cdE B s        (32) 

where 
1 1 2

abcd ac bd ab cdE v
E g g g g

v v

 
  

  
 and 

 2 1

E

v
 


. It is evident that (31) or (32) 

can be found directly by the solution of (23) for ab . 

Constitutive equations 

The constitutive equations for the stresses can be written in the form: 

 ab abcd cp ab
cd cdE E           (33) 

where 
1

2
1 2

abcd abv
E v g

v






 denote the tensor of termoelastic coefficients for an isotropic 

material. In this expression εcd is the total strain tensor, which can be determined from the 

strain-displacement relation: 

 
1

2

i i i i i i
cd ij c d d c c dz u z u z u        (34) 

where /i i c
cz z     are the coordinates of base vectors, /i i c

cu u     are the displacement 

gradients. In addition, one should note that the strain rate is 

 
1

2

i i i i
cd ij c d d cz z z z        (35) 

Discretized equations of motions 

In this paper, a slow motion of a creeping body are considered, and hence the 

inertial forces can be neglected. Consequently, the discretized equations of motion are of the 

form: 

R
j 
- F

j 
= 0                                                                   (36) 

 

 Where R
j
 are external and F

j
 internal forces, both in column matrix form. The entries 

in these columns are 
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ij j j j j

e e

R f P dV P dA
 

 


        (37) 

ji i j ab
a b

e

F z P dV


        (38) 

where f
j
 are the body forces, ζ

j
 the boundary tractions, P

J
 the interpolation functions,  

 /j j b
bP P    .  The summation is performed over all finite elements, and integration over 

the body ε or the boundary ∂ε of each element. However, in order to be solved, the equation 

(33) should be linearized as follows: 

2ij ij i j i i i i
h

e

K S u R R F h R P


        
   (39) 

 

In this expression, K
ij
 is the stiffness matrix 

 

 IiJj j i J I abcd
a c b d

e

K z z P P E dV


       (40) 

S
ij
 is the geometric stiffness matrix 

 

IiJj ij J I ab
b a

e

S P P E dV


        (41) 

U
i
 is the column matrix of the increments of nodal displacement,  jh R   is the 

column matrix of the external forces at the moment t + h (at the end of a time step under 

consideration), If the temperature changes (∆T) are considered (during time step), the column 

matrix P
i
 can be expressed as follows 

 

IiJj J I ab
a b

e

P z P TE dV


        (42) 

Finally, the most crucial part of the expression (54) is the dissipation term hδR
i
, 

where the entries are 
Ji J I cp abcd

a b cd
e

R z P E dV


        (43) 

 At the beginning of the current time step, it is obvious that the values at the end of a 

previous step i.e. z
i
, ζ

ab
 and cp

cd  are known. Hence, one can compute , , , ,ij ij i j i
hK S R R F  and 

JiR  by the use of Eqns (40), (41). (37), (38) and (43), respectively. At the stage it is 

necessary to choose the length of a time step, h. The recommended length of a time step [5] is 

/ cph N  : N<<1 

where is the total effective strain, and cp  is the effective creep-plastic strain rate. However, 

it is believed that the integration scheme proposed in this paper is more stable, so that N<1 

would be sufficient. Anyhow, some possibilities for automatic or interactive step length 

adjustment during the programme execution is certainly beneficial. Having all these values 

known, one can compute u
,
, the displacement increment, from (39). 
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 This algorithm has been presented in [5], but not used until recently. Its use is 

presented in this paper for the first time, providing good results with relatively small 

calculation effort, as shown in the following example. 

Example 

Example to illustrate the procedure introduced here, has been taken from [4], where 

the cylindrical pipe with internal longitudinal or circumferential crack has been subjected to 

internal pressure or axial loading, respectively, and high temperature in long time period, as 

shown in Fig. 3. In paper [4], EPRI procedure has been applied to obtain C* integral values, 

then used to calculate the residual life. 

 m*CB
dt

da
        (44) 

where B and m are materials constants.  

a)            b)    
Figure 3. Cylindrical pipe: a) longitudinal crack under internal pressure,  

b) circumferential crack under axial loading 

 

After substituting C
*
 as dJ/dt one gets:  

m

dt

dJ
B

dt

da








      (45) 

which can be written in more suitable form:  

                   

m

dt

da

da

dJ
B

dt

da








      (46) 

After simple transformations, one can get: 



Sedmak, A. S., et al.: Mathematical Modeling of Creep Process  
THERMAL SCIENCE: Year 2014, Vol. 18, Suppl. 1, pp. S179-S188                                                            S187 
 

                             dt

da

dJ
B

da

m1

m

























        (47) 

The complete procedure has been described in [4], including C* integral evaluation 

and residual life calculation for four different cases (two different loading cases and two 

different materials). In this paper the same procedure has been applied, except that C* integral 

has been calculated by using the finite element method. Time is calculated as the cumulative 

value needed to reach given crack length. 

Input date and results 

The initial crack length: a0=0.25 mm, crack length increment, a=0.5 mm, internal 

diameter, Ri=91.5 mm, pipe thickness b=18 mm, valid for both cases, cylindrical pipe with 

internal longitudinal or circumferential crack, subjected to internal pressure or axial loading, 

respectively, 

The “new” material properties: =1.128, 0=1.685∙10
-3

, 0=262.8 MPa, n=9.8382, 

B=2.56∙10
-3

, m=0.75, providing da/dt in mm/s, and C
*
 in N/(mms).  

The “old” material properties: =2.08, 0=1.66∙10
-3

, 0=259 MPa, n=7.98, B=1.03∙10
-3

, 

m=0.73. 

Results for the cumulative time needed to reach given crack length are given in 

Tables 1-4 for combination of two different materials and two cylindrical pipes, one with lon-

gitudinal crack under internal pressure and the other one with circumferential crack subjected 

to axial loading, respectively. 

 
Table 1. The “new” material, Longitudinal crack, internal pressure, p=60MPa  

a mm 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 

t h from [4] 2154 2877 3133 3227 3263 3277 3282 3284 3285 

t h this paper 2134 2857 3113 3216 3239 3250 3252 3244 3238 

 
Table 2. The “old” material, longitudinal crack, internal pressure, p=60 MPa 

a mm 0.75 1.25 1.75 2.25 2.75 3.25 3.75 

t h from [4] 763 937 980 992 995 996 996 

t h this paper 756 930 972 982 983 980 980 

 

Table 3. The “new” material, circumferential crack, axial force, F=3.5MPa   

a mm 0.75 1.75 2.75 3.75 4.75 5.25 5.75 

t h from [4] 5802 9638 10466 10650 10690 10695 10698 

t h this paper 5762 9598 10422 10602 10638 10635 10637 

 
Table 4. . The “old” material, circumferential crack, axial force, F=3.5MPa  

a mm 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 

t h from [4] 1910 2562 2793 2877 2909 2921 2925 2927 2928 

t h this paper 1891 2542 2770 2852 2879 2890 2892 2893 2894 



Sedmak, A. S., et al.: Mathematical Modeling of Creep Process 
S188                                            THERMAL SCIENCE: Year 2014, Vol. 18, Suppl. 1, pp. S179-S188                                                 

 
Conclusion 

  Based on the presented results, one can conclude that the procedure for the finite 

element method evaluation of C* integral provides reliable results, as proved by comparison 

with results obtained by EPRI procedure, and can be used for residual life estimation 

components operating at high temperature under steady state conditions. 

Note 

This paper is partly based on the lecture delivered during the Fifth International 

Fracture Mechanics Summer School, publish in [3]. 
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