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The subject of the paper is the temperature distribution in the thin metallic 
ferromagnetic plate influenced by moving linear high frequency induction heater. 
As a result of high frequency electromagnetic field, conducting currents appear 
in the part of the plate. Distribution of the eddy-current power across the plate 
thickness is obtained by use of complex analysis. The influences of the heater 
frequency, magnetic field intensity and plate thickness on the heat power density 
were discussed. By treating this power as a moving heat source, differential 
equations governing distribution of the temperature field are formulated. 
Temperature across the plate thickness is assumed to be in linear form. 
Differential equations are analytically solved by using integral-transform 
technique, Fourier finite-sine and finite-cosine transform and Laplace transform. 
The influence of the heater velocity to the plate temperature is presented on 
numerical examples based on theoretically obtained results.  

Key words: electromagnetic field, temperature, high frequency inductor, 
      ferromagnetic plate, moving heat source 

 

Introduction 

 The rigorous phenomenological magneto-elastic theory for ferromagnetic materials 

based on the large deformation theory and the classical theory of ferromagnetism has 

developed at the end of sixties. Since the general nonlinear theory was complicated, Y.W. Pao 

and Yeh 1 derived a set of linear equations and boundary conditions for soft ferromagnetic 

elastic materials. They applied linear theory to investigate magneto-elastic buckling of an 

isotropic plate. General information about the theory of magneto-thermo elasticity is 

presented in monograph by Parkusv 2. A great contribution of a research in this scientific 

field was given by Nowacki. He discussed various dynamic problems of thermo-elasticity 

induced by moving heat sources 3. Thermo-elastic vibrations of thin plate subjected to one 

moving heater was theoretically obtained and presented in [4].    

 The influence of the magnetic fields in a rotating media was considered in 5. 

Sharma and Pal investigated the propagation of a magnetic-thermo-elastic plane wave in 

homogeneous isotropic conducting plate subjected to uniform static magnetic field [6]. The 

influence of the impulsive electro-magnetic radiation on the temperature, strain and stress 
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fields in thin metallic platе was discussed in [7] based on the linear temperature distribution 

across the plate thickness. The similar theory for thick plates with appropriate non-linear 

distribution was presented in [8]. 

 Because of some disagreement in analytical and experimental results, the methods of 

numerical analyses were involved in consideration of the magneto-elastic problems 9. A 

coupled thermo-mechanical finite element model of friction stir welding was developed using 

program Abaqus and presented in [10]. A mathematical model for the temperature field 

developed during high frequency induction heating, together with the experimentally obtained 

results, were established by Shen, et al. [11]. Temperature distribution  in a thin metallic plate 

subjected to low-frequency electromagnetic field was solved in analytical form as the interior 

Dirichlet boundary problem and presented in [12]. In the numerical study of the three-

dimension heat conducting problem with a moving heat source, Douglas-Gunn alternating 

implicit method was applied in [13]. 

Basic equations 

 The problem considered in the paper shows one type of interaction between 

electromagnetic and temperature field in a solid ferromagnetic plate. It is assumed that the 

plate material is elastic, isotropic, soft ferromagnetic, possessing a good electric conductivity. 

Many nickel-iron alloys used for building the magnetic circuits of motors, generators, 

inductors and transformers have these features. 

 As a result of time changing electromagnetic field conducting currents appear in 

electric conductors. This problem is mathematically described by the system of Maxwell’s 

equations 1, 2 

t
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JHrot
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

,  
t
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Krot
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, 0Ddiv
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, 0Bdiv
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,                       (1) 

with the relations for slowly moving media and modified Ohm’s low 2 

     0D K u B   ,   B H u D   ,  J K u B     (2) 

The following notation is applied: H – intensity of magnetic field, K – intensity of 

electric field, B – magnetic induction, D – electric induction, J – current density, u – 

deflection,  – magnetic permeability,  - electric  conductivity, 0 – dielectric constant of 

vacuum, t –time. 

 Cartesian coordinate system is sustained so that x1 and x2 are the axes in the middle 

plate surface and x3 is perpendicular one.  

 The power of the conducting currents represents one type of volume heat source in 

the plate. So, system of equations describing temperature field in a plate is 14 

     0
,

2 1
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u jjt 
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WWW HE  ,  1,2,3j 

          
 (3) 

where  is the coefficient of thermal intensity,  is the coupling between the temperature and 

the deformation fields, 0 is heat conduction coefficient, 2
 is Laplace operator and t is the 

time derivative. Temperature field is presented as  C, K = T - T0 where T0 is the 

temperature of the plate in its natural state.  
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 The heat generates in unite volume and unit time (heat source intensity) 
 t,x,x,xW 321  consists of three parts: intensity of external heat source WE, hysteresis losses 

WH and Joule’s heat. If one assumes that the temperature changes linearly across the thickness 

of the plate, temperature field  txxx ,,, 321  can be described using two values, 0and1 as 

      1 2 3 0 1 2 3 1 1 2, , , , , , ,x x x t x x t x x x t       (4) 

If equation (3) is multiplied with  3 0.1kx k   and integral of it is made through the plate 

thickness, the results are two partial differential equations describing temperature field in a 

plate as 14 
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where h is the plate thickness and 2
1  is two-dimension Laplace operator defined as 

2
2

2

2
1

2
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


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. 
 Presented differential equations have to be completed with the appropriate set of 

boundary and initial conditions.  

The power of the linear frequency electromagnetic heater 

 In the part of a plate size d × c × h the magnetic field occlusions and time changing 

induction prompts conducting currents and Joule’s heat losses. In order to calculate heat 

power next approximations are involved and applied (fig. 1): 

 
Figure 1. Linear frequency inducting heater in Cartesian coordinate system 

 

 the component of magnetic induction Bx1 can be neglected compared to Bx2, 

 because of the skin-effect, the component Bx3is small compared to Bx2. 

 Electromagnetic field in the plate material has only Hx2 and Kx1 components so 

Maxwell equations are  
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 It is assumed that all field components vary in time t as exp(jt), where  is the 

appropriate angular frequency. Using symbolic-complex method (
tjeHH 


 ) the following 

equation is 

             

2
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 2 ,       (1 ) π (1 )j j f j k                       (7) 

where f [Hz] is appropriate frequency. The solution of equation (7) has the form  
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Coefficients 21 C,C can be obtained based on boundary conditions 
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The solution for the magnetic field intensity is  
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Conducting currents and Joule`s heat power W(x3) are defined with the relations 
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Based on relation (5)3 appropriate power * 2
0 /W W m 
 

 can be presented in the final form 
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 Heat power intensity depends on magnetic permeability, electric conductivity, 

magnetic field intensity, plate thickness and frequency. Diagram in fig. 2 presents heat power 
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in soft ferromagnetic material conductivity 7.7 10
6
 S/m and relative magnetic permeability 

500. The thickness of a plate is sustained to be 5 mm on the square of 100 mm
2
.  

Figure 2. Heat power as a function of magnetic 

field and frequency  

Figure 3. Factor fk as a function of thickness and 

frequency 

 The influence of the plate thickness is represented in factor fk from the relation (14). 

As it is shown in fig. 3, for high frequencies the value of  fk is 1, because of the skin-effect. 

 
Figure 4. Heat power density as a function of thickness and frequency 

 For the electro-magnetic frequencies higher than 1 kHz heat power density doesn’t 

depend on material thickness and skin-effect is dominant. It is presented in fig. 4 for magnetic 

field intensity of H0=5 kA/m.  Based on previous discussion, heat power 
*

1W defined in (5)3 

can be calculated using Dirac  -function as  

      

 
2 2/ 2 / 2

* 0 0
1 3 3 3 3 3

/ 2 / 2 2 2 4
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 
 (15) 

Temperature field in the plate induced by moving high frequency heater 

Let the thin steel plate be under the influence of the temperature field caused by the 

high frequency heater moving at a constant velocity v along the edge x1=0 shown in fig. 5. Let 

the thermal initial and boundary conditions be assumed in the form 
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The position of the heater is shown in fig. 5. The equations (5) can be written in the form 
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Figure 5. The plate under the moving inducting heater 

      

H() denotes the Heaviside function and () is a pulsation function. To solve 

equations (17) subjected to the initial and boundary conditions (16) is used finite cosine 

Fourier transform in x1direction and finite sine Fourier transform in direction x2. Note the 

transformed function as nmk , 0.1k   and apply in calculation the next integrals 
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Differential equations (17) become 

 
 

   *
,

0

sin / 21
sin /

/ 2

k
mk k

nm k t k nm k m

m

dc d
W v t H t H t a v

h d


  

  

  
                  

(19) 
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Using Laplace transform defined by integral 

     *
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and applying partial integration, we have 
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Boundary conditions give transformed forms of the temperature functions τ0 and τ1 
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Based on the inverse Laplace transform denotes as L
-1

, next function is given as 
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Using well-known relation  
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the solution is obtained in the next form 
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Inverse Fourier transforms give next analytical solution  
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Numerical example  

 Field amplitudes and current amplitudes decrease on exponential law along the plate 

thickness. Skin depth decreases with increasing of frequency, conductivity and permeability 

and for high frequency heaters skin-effect is significant.   

 
Figure 6. Temperature field for the inducting heater velocity of v=0.02 m/s 

 
Figure 7. Temperature field for the inducting heater velocity of v=0.01 m/s 

 Numerical example is done for the steel plate dimensions 1000×1000×5 mm. 

Magnetic and electric material properties are defined in previous examples. The plate is 

subjected to one linear electromagnetic heater magnetic intensity H0=5kA/m and dimensions 

c=10 mm and d=50 mm. Other material properties respected to steel are: heat conduction 

coefficient o=50 W/mK and coefficient of thermal intensity=1.4 10
-3

 m
2
/s.  In Figures 6 

and 7 temperature fields for different times and for two cases of heater velocity are presented.  
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As it can be noted from previous figures, plate temperature depends on heater 

velocity. Time t0 is defined as 
v

a
t 0 and non-dimensional time is involved as

0t

t
. 

Temperature intensity for the point in the middle plate surface with coordinates (x1, 

x2) = (300, 500) mm is presented in fig. 8 based on defined non-dimensional time and for 

various heater velocities. 

 
Figure 8. Temperature as a function of non-dimensional time and heater velocity to 

Conclusion 

 Magneto-thermoelasticity has received considerable attention because of the 

possible applications in detection of flaws in ferrous metals, optical acoustics, and levitation 

by superconductors, magnetic fusion and many other electro-mechanical devices. 

 Temperature field in the thin metallic soft ferromagnetic plate influenced by moving 

linear high frequency induction heater was analytically obtained and presented in the paper. 

The problem was described by two systems of differential equations, Maxwell’s equations 

with the relations for slowly moving media and the equations governing temperature field. 

Temperature field was the result of time varying electro-magnetic field and the appearance of 

the eddy-current losses in one part of the plate. Distribution of the eddy-current power across 

the plate thickness was obtained by use of complex analysis. The influences of the heater 

frequency, magnetic field intensity and plate thickness to heat power density were discussed.  

Intensity of the losses is exponential function through the thickness of the plate. The inducting 

heater with high frequency was treated as a surface moving heat source because of the very 

small skin depth. Temperature across the plate thickness was assumed in linear form and 

appropriate differential equations governing temperature field were analytically solved by 

using integral-transform technique (Fourier finite-sine and finite-cosine transform and 

Laplace transform).The influence of the heater velocity on the plate temperature was 

presented in a few numerical examples based on theoretically obtained results. 
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