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H I G H L I G H T S

� Evaluation of periodic operations of a non-isothermal CSTR based on NFR method.
� The analysis of a non-isothermal, homogeneous, simple nth order reaction in a CSTR.
� Simultaneous modulation of inlet concentration and inlet temperature is considered.
� The optimal phase difference for maximal increase of conversion is defined.
� The results are tested on three numerical examples (two oscillatory and one non-oscillatory).
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a b s t r a c t

The nonlinear frequency response (NFR) method is applied for evaluation of possible improvement
through simultaneous periodic modulation of two inputs of a non-isothermal continuously stirred tank
reactor (CSTR) in which homogeneous nth order reaction A-product(s) takes place. The two modulated
inputs are the concentration of the reactant in the feed steam and the temperature of the feed stream.
The cross asymmetrical second order FRF which correlates the outlet concentration with both modulated
inputs is derived and analyzed. The optimal phase difference which should be used in order to maximize
the conversion is determined. The method is tested on three numerical examples of non-isothermal
CSTRs: (a) one which is oscillatory stable with strong resonant behavior, (b) one which is oscillatory
stable with weak resonant behavior and (c) one which is nonoscillatory stable. Good agreement between
the results of the approximate NFR method and the results of “exact” numerical integration is obtained
except for the reactor with strong resonance for forcing frequencies which are close to the resonant
frequency and for the reactor with weak resonant behavior for forcing frequency equal to the resonant
one in case of high forcing amplitudes.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Forced periodic operations of non-isothermal CSTRs have been investigated in the past fifty years both for single and two-input
modulation (Ritter and Douglas, 1970; Sinčić and Bailey, 1977; Sterman and Ydstie 1990a, 1990b, 1991; Lee and Bailey, 1980; Lee et al.,
1980; Rigopoulos et al., 1988; Chen et al., 1994; Sidhu et al., 2007). The theoretical and experimental investigations have shown that, in
some cases, significant enhancement in the reactor performance can be obtained by forced periodic operation.
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The process improvement caused by periodic modulation of one or more inputs is a consequence of the system nonlinearity. The
improvements for highly nonlinear system or those which exhibit resonance might be significant (Ritter and Douglas, 1970).

It is possible that multi-input periodic operations improve the steady-state performance even when single-input perturbations have
negligible or detrimental effect on the system performance (Sterman and Ydstie, 1990b).

The investigations of Parulekar (2003) demonstrated that the higher the number of inputs subject to periodic modulation, the better
the process (reactor) performance can be. Additionally, in the same theoretical study it was concluded that an increase in the number of
inputs perturbed led to a broadening of the regions in the operating parameter space where forced periodic operations are superior to
operation at optimal steady state (Parulekar, 2003).

In our previous work, we have proposed the nonlinear frequency response (NFR) method for identification of candidate systems for
process enhancement through periodic operation and an approximate estimation of the magnitude of such enhancement. The NFR
method, which is applicable for weakly nonlinear systems, is based on Volterra series, generalized Fourier transform and the concept of
higher order frequency response functions (FRFs) (Weiner and Spina, 1980).

Up to now, we have applied the nonlinear frequency response method to several generic examples of forced periodic operations of
chemical reactors. In most cases the reactor was an isothermal or non-isothermal CSTR with a simple nth order irreversible chemical
reaction:

A-product(s).

Inlet concentration (Marković et al., 2008; Petkovska et al., 2010; Nikolić-Paunić and Petkovska, 2013; Nikolić et al., 2014a), flow-rate
(Nikolić-Paunić and Petkovska, 2013; Nikolić et al., 2014a), inlet temperature and temperature of the cooling/heating medium (Nikolić
et al., 2014b) were used as periodically modulated inputs, separately (Marković et al., 2008; Petkovska et al., 2010; Nikolić et al., 2014a,
2014b) or two of them simultaneously (Nikolić-Paunić and Petkovska, 2013).

An isothermal CSTR with a simple nth order heterogeneous reaction with inlet concentration modulation (Petkovska et al., 2010) was
also investigated, as well as isothermal plug flow reactor (PFR) and isothermal dispersed flow tubular reactor (DFTR) with simple nth order
reaction and inlet concentration modulation (Marković et al., 2008).

Recently, we applied the NFR method to analyzing periodically operated non-isothermal CSTRs, with single input modulations (Nikolić
et al., 2014a, 2014b). In Part I (Nikolić et al., 2014a), the modulated input was the inlet concentration or flow-rate, and in Part II (Nikolić
et al., 2014b) it was the temperature of the inlet reaction stream or the temperature of the heating/cooling fluid.

In this manuscript the NFR method is applied for evaluating periodic operations of a non-isothermal CSTR subject to modulation of two
inputs. It is assumed that a simple nth order homogeneous reaction takes place. We analyze the case when the concentration of the inlet
stream and its temperature are modulated simultaneously. In this way, the database of the derived FRFs related to the periodically
operated non-isothermal CSTRs is enriched and this manuscript complements our previous papers (Nikolić et al., 2014a, 2014b) where
single input modulations of the non-isothermal CSTRs were analyzed.

In the next section are given the basics regarding nonlinear frequency response, in general, and the NFR method for fast evaluation of
periodic processes.

2. Nonlinear frequency response method for evaluating periodic processes with two modulated inputs

By definition, frequency response is the quasi-stationary response of a stable system to a periodic (sinusoidal or co-sinusoidal) input,
imposed around a steady-state (Douglas, 1972). It has been widely used in many fields of engineering, in order to investigate and study
system dynamics. For linear systems the relationship between the system output (the frequency response) and the input is well known,
the output spectrum Y(jω) being equal to the input spectrum X(jω) multiplied by the system’s frequency response function (FRF) G(jω)
(Lang et al., 2007). Unlike linear systems, the relationship between the input and output spectra of nonlinear systems is more complicated.
One approach to study nonlinear systems in the frequency domain is based on the concept of higher order frequency response functions
(FRFs). This approach extends the linear FRF concept to the nonlinear case for a wide class of nonlinear systems which can be described by
the Volterra series model (Lang et al., 2007).

Frequency response of a weakly nonlinear system is a complex periodic function. It contains the basic harmonic, which has the same
frequency as the input modulation, a DC (non-periodic) component, and an infinite number of higher harmonics (Douglas, 1972; Weiner
and Spina, 1980). On the other hand, the nonlinear model G of a weakly nonlinear system in the frequency domain can be replaced by an
infinite sequence of FRFs of different orders. These FRFs are directly related to the DC component and different harmonics of the response
(Weiner and Spina, 1980).

In the case of a weakly nonlinear system with multiple inputs, several sets of FRFs need to be defined. Fig. 1 represents a block diagram
of a weakly nonlinear system with two inputs and one output, for which it is necessary to define three sets of FRFs: two of them relating

Fig. 1. Block diagram of a weakly nonlinear system with two inputs and one output.
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the output to each of the inputs, and one set of cross-functions, relating the output to both inputs. The third set contains only functions of
the second and higher orders (Petkovska and Seidel-Morgenstern, 2013).

In Fig. 1 the following notation is used: Gn,x
n and Gn,z

n are the nth-order FRFs corresponding to the individual inputs x and z, while Gn,x
m
z
n�m is the

nth-order cross-function, with order m regarding the input x and n�m, regarding the input z (Petkovska and Seidel-Morgenstern, 2013).
For a weakly nonlinear system with two modulated inputs x and z, the output of the system, y, is a sum of the contributions of the

modulated inputs x and z separately (via the Gx and Gz functions), and the contribution corresponding to the cross-effect of both inputs
(via the Gxz functions). Each of these contributions can be presented as Volterra series (Petkovska and Seidel-Morgenstern, 2013).

y tð Þ ¼ yx tð Þþyz tð Þþyxz tð Þ ¼
X1
n ¼ 1

yx;n tð Þþ
X1
n ¼ 1

yz;n tð Þþ
X1
n ¼ 1

yxz;nðtÞ ð1Þ

The NFR method for fast evaluation of periodic operations, which is based on the nonlinear frequency response analysis of weakly
nonlinear systems and the concept of higher order FRFs, has been explained in detail in our previous publications (Marković et al., 2008;
Petkovska et al., 2010; Petkovska and Seidel-Morgenstern, 2013; Nikolić et al., 2014a, 2014b). The essence of the method is that the time-
average performance of a periodic process is defined only by the DC component of the system’s frequency response, which can be
approximately estimated by using only the asymmetrical second order FRFs.

The details about application of the NFR method for systems with two modulated inputs can be found in Nikolić-Paunić and Petkovska
(2013), where it was shown that the interaction of two modulated inputs will give the highest contribution to a possible process
improvement when the two inputs are modulated with equal forcing frequencies. Here, we will repeat the main equations and
conclusions about this case, as a non-isothermal CSTR with simultaneous modulation of the inlet concentration and temperature of the
feed stream is in the focus of the current manuscript.

If two inputs (x, z) are periodically modulated co-sinusoidal around a previously established steady-state (xs, zs, ys), with the same
forcing frequency ω, different forcing amplitudes (A, B) and with a phase difference (φ) between them:

x tð Þ ¼ xsþA cos ðωtÞ ð2Þ

z tð Þ ¼ zsþB cos ðωtþφÞ ð3Þ

the DC components of the output y consists of contributions of the modulations of inputs x and z separately and the cross-effect of both
inputs

yDC ¼ yDC;xþyDC;zþyDC;xz ð4Þ

By taking into account only the contribution of the second order FRFs, the DC components corresponding to the individual
contributions of the inputs can be approximated by

yDC;x � 2
A
2

� �2

G2;xx ω; �ωð Þ ð5Þ

yDC;z � 2
B
2

� �2

G2;zz ω; �ωð Þ ð6Þ

The signs of the asymmetrical second-order FRFs G2,xx(ω,�ω) and G2,zz(ω,�ω) will define the signs of the DC components
corresponding to the individual inputs (Marković et al., 2008).

The DC component which corresponds to the cross-effect of both inputs, taking into account only the second order FRF, is
approximately

yDC;xz �
A
2

� �
B
2

� �
e� jφG2;xz ω; �ωð ÞþejφG2;xz �ω;ωð Þ

� �
ð7Þ

Considering that G2,xz(ω,�ω) and G2,xz(�ω,ω) are complex conjugates, by further transformation, the DC component which
corresponds to the cross effect can also being written in the following form:

yDC;xz � 2
A
2

� �
B
2

� �
cos φð ÞRe G2;xz ω; �ωð Þ� �þ sin φð ÞIm G2;xz ω; �ωð Þ� �� � ð8Þ

After introducing the total asymmetrical second order cross term Gn
2,xz, which is a function of the forcing frequency and the phase

difference between the modulated inputs:

Gn

2;xz ¼ cos φð ÞRe G2;xz ω; �ωð Þ� �þ sin φð ÞIm G2;xz ω; �ωð Þ� � ð9Þ

the DC component of the cross-effect can be written in the following form:

yDC;xz � 2
A
2

� �
B
2

� �
Gn

2;xzðω;φÞ ð10Þ

It is important to notice that the cross-effect of the modulation of two synchronized inputs strongly depends on the phase difference
between them. As the matter of fact, the cross term can always be made negative, if that is desirable (e.g. if the output is defined as the
outlet reactant concentration), by a proper choice of the phase difference (φ). Furthermore, it is possible to determine the optimal phase
difference for which the first derivative of the cross second order asymmetrical term ∂Gn

2;xz=∂φ is equal to zero, and consequently, the cross
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DC term has a minimum. This optimal phase difference is a function of the forcing frequency ω (Nikolić-Paunić and Petkovska, 2013):

φopt ¼ arctang
ImðG2;xz ω; �ωð ÞÞ
ReðG2;xz ω; �ωð ÞÞ

� �
�π ð11Þ

Finally, when the two inputs are modulated with equal forcing frequencies (ω), different forcing amplitudes (A, B) with a phase
difference (φ), the DC component of the output (Eq. (4)) can be approximately calculated using the single input and cross-asymmetrical
second order FRFs, using the following expression:

yDC � 2
A
2

� �2

G2;xx ω; �ωð Þþ2
B
2

� �2

G2;zz ω; �ωð Þþ2
A
2

� �
B
2

� �
Gn

2;xzðω;φÞ ð12Þ

The procedure for deriving the higher order FRFs is standard and can be found in Petkovska (2001), Petkovska and Marković (2006),
Marković et al. (2008), Petkovska et al. (2010), Petkovska and Seidel-Morgenstern (2013). The derivation process is recurrent, i.e., the first-
order FRFs have to be derived first, than the second order FRFs, etc. For this investigation, we limit our derivations and analysis to the first-
order and asymmetrical second-order FRFs.

In our previous publications we applied the NFR method for fast evaluation of chemical reactors (Marković et al., 2008; Petkovska et al.,
2010; Petkovska and Seidel-Morgenstern, 2013; Nikolić-Paunić and Petkovska, 2013; Nikolić et al., 2014a, 2014b). It was explained that, for
a reaction of the type A-product(s), when one or more inputs are periodically modulated, the difference between the mean outlet
concentration of the reactant cA

m and the corresponding steady-state outlet concentration cA,s (Δ¼ cmA �cA;sÞ defines whether the
conversion can be increased by periodic operation. If Δo0, the periodic operation can be considered as favorable as it corresponds to
increased conversion in comparison to the steady-state operation (Marković et al., 2008). It is important to point out that the difference Δ
is equal to the DC component of the periodic change of the outlet reactant concentration, which can approximately be estimated from only
the asymmetrical second order FRFs (Eq. (5) or (6) for single input modulation and Eq. (12) for simultaneous modulation of two inputs).

In principle, the NFR method should be used as a first step for fast screening of possible periodic operations, in order to detect
processes which should further be investigated experimentally. It is meant to replace long and tedious numerical investigations. The most
difficult and time consuming step of the NFR method is derivation of the needed FRFs, which needs to be performed only once. After that,
all computations associated with the NFR method are reduced to simple algebra. So, the computational efforts of the NFR method are
much less that those of the classical numerical investigations, which demand numerical integration of coupled sets of nonlinear
differential equations. Furthermore, and what is more important, the NFR method gives a complete overview of the investigated periodic
operation, with defined ranges of the forcing parameters (input frequency, amplitude(s) and phase differences, for cases of multiple
modulated inputs) which should be used in order to obtain a favorable periodic operation. This is not possible with the classical numerical
method, which gives results only for the defined sets of forcing parameters (frequency, amplitude and phase difference) for which
numerical integrations are performed.

In this manuscript, we apply the NFR method for analysis of periodic operations of non-isothermal CSTRs with simple reaction
mechanisms, for simultaneous modulation of the inlet concentration and inlet temperature. This application can be of great practical
importance, as it can result with substantial improvement of the reactor performance, even in cases when separate modulation of inlet
concentration or temperature give only small improvements or even reduce the reactor performance.

When applying the NFR method, the starting point is always the mathematical model of the investigated system. Therefore, the
mathematical model of a non-isothermal CSTR will be presented in the next section.

3. Mathematical model of a non-isothermal CSTR with simple reaction mechanism

The mathematical model of a non-isothermal CSTR, in which a homogeneous nth order chemical reaction A-product(s) takes place, is
based on the assumptions that the reactor volume is constant and that the temperature of the heating/cooling fluid does not change from
inlet to outlet. The well-known two nonlinear first order ODEs describing the material and energy balances can be found in Nikolić et al.
(2014a). By changing the variables, the model can be transformed into dimensionless form, which can be even further transformed, by
replacing all nonlinear terms with their Taylor series expansions (Nikolić et al., 2014a). Here we are giving just the final form, which is
convenient for applying the NFR method (Nikolić et al., 2014a, 2014b):

dC
dτ

¼ 1þαð Þ Φþ1ð Þ Ciþ1ð Þ� Φþ1ð Þ Cþ1ð Þ�α 1þnCþγθþnγCθþ γ2

2
�γ

� �
θ2þ1

2
n n�1ð ÞC2þ⋯

� �
ð13Þ

Table 1
Definitions of the dimensionless variables.

Inlet concentration of the reactant Ci ¼ cA;i � cAi;s
cAi;s

Outlet concentration of the reactant C ¼ cA � cA;s
cA;s

Inlet temperature θi ¼ Ti �Ti;s
Ti;s

Temperature in the reactor θ¼ T�Ts
Ts

Temperature of the heating/cooling fluid θJ ¼ TJ �TJ;s

TJ;s

Flow-rate Φ¼ F� Fs
Fs

Time τ¼ t
V=Fs

Frequency ω¼ωd
V
Fs
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dθ
dτ

¼ 1þβþSt�δð Þ Φþ1ð Þ θiþ1ð Þ� Φþ1ð Þ θþ1ð Þ�St θþ1ð ÞþδðθJþ1Þ�β 1þnCþγθþnγCθþ γ2

2
�γ

� �
θ2þ1

2
n n�1ð ÞC2þ⋯

� �
ð14Þ

In the dimensionless model Eqs. (13) and (14), C and Ci are the dimensionless concentrations of the reactant in the reactor and in the
inlet stream, respectively, θ and θi are the dimensionless temperatures in the reactor and in the inlet stream, θJ is the dimensionless
temperature of the cooling/heating fluid, Φ is the dimensionless flow-rate and τ is the dimensionless time. Definitions of the
dimensionless variables are given in Table 1, as well as the definition of a dimensionless frequency, which will be used in the frequency
domain.

For the case of simultaneous periodic modulation of the inlet concentration and the inlet temperature the general dimensionless
balance Eqs. (13) and (14) of the non-isothermal CSTR are reduced to the following model equations:

dC
dτ

¼ 1þαð ÞCi� 1þnαð ÞC�αγθ�α
γ2

2
�γ

� �
θ2þnγCθþ1

2
n n�1ð ÞC2þ⋯

� 	
ð15Þ

dθ
dτ

¼ 1þβþSt�δð Þθi� 1þβγþStð Þθ�nβC�β
γ2

2
�γ

� �
θ2þnγCθþ1

2
n n�1ð ÞC2þ⋯

� 	
ð16Þ

(the dimensionless flow-rate and the temperature of the cooling/heating fluid are equal to zero (Φ¼0, θJ¼0)).
In Eqs. (13)–(16), α, β, γ, δ and St are dimensionless auxiliary parameters, defined in the following way:

α¼ koe
� EA

RTs cn�1
A;s

V
Fs
; β¼ΔHRkoe

� EA
RTs cnA;s

ρcpTs

V
Fs
; δ¼ UAwTJ;s

FsρcpTs
; γ ¼ EA

RTs
; St ¼ UAw

Fsρcp
ð17Þ

Hereby the Stanton number St is the well know relative cooling intensity. In Table 1 and the definitions of the introduced auxiliary
parameters (Eq. (17)), cA is the reactant concentration, T temperature, F flow-rate, V the reactor volume, ko the preexponential factor in the
Arrhenius equation, EA activation energy and R the universal gas constant, ΔHr heat of reaction, U the overall heat transfer coefficient, AW

the surface area for heat exchange, ρ density, cp heat capacity and ωd dimensional frequency. The subscripts are: i for inlet, s for steady-
state and J for the heating/cooling fluid (fluid in the jacket) (Nikolić et al., 2014a).

The auxiliary parameters (Eq. (17)) depend on the physical parameters of the system, and on the steady-state values of concentration,
temperature, flow-rate and temperature of the heating/cooling fluid.

4. Frequency response functions of a non-isothermal CSTR

4.1. Definitions of FRFs

When inlet concentration and inlet temperature are periodically modulated, the non-isothermal CSTR represents a nonlinear system
with two modulated inputs and two outputs, namely the outlet concentration and temperature. In order to describe the system, it is
necessary to derive the following six sets of FRFs:

� Set 1: G1,C(ω), G2,CC(ω,�ω),…— FRFs which correlate the dimensionless outlet concentration of the reactant with the modulated
dimensionless inlet concentration.

� Set 2: F1,C(ω), F2,CC(ω,�ω),…— FRFs which correlate the dimensionless outlet temperature with the modulated dimensionless inlet
concentration.

� Set 3: G1,T(ω), G2,TT(ω,�ω),…—FRFs which correlate the dimensionless outlet concentration with the modulated dimensionless inlet
temperature.

� Set 4: F1,T(ω), F2,TT(ω,�ω),…— FRFs which correlate the dimensionless outlet temperature with the modulated dimensionless inlet
temperature.

� Set 5: G2,CT(ω,�ω), G2,CT(�ω,ω),…— The cross FRFs which correlate the dimensionless outlet concentration with the modulated
dimensionless inlet concentration and temperature.

� Set 6: F2,CT(ω,�ω), F2,CT(�ω,ω),…— The cross FRFs which correlate the dimensionless outlet temperature with the modulated
dimensionless inlet concentration and temperature.

Since we are interested in the conversion change, the F-functions, which correlate the outlet temperature with the modulated input(s),
are not subject of our interest. Still, the F-functions need to be derived since they are required in the derivation process of the G-functions.
The derivation of the F-functions will be provided below, but without their further analysis.

4.2. Derivation of the FRFs

The basic steps of the procedure of derivation of the frequency response functions are:

1. The inlet concentration Ci(τ) and the inlet temperature θi(τ) are defined in the form of co-sinusoidal functions with equal frequencies
and a phase shift between them (analogous to Eqs. (2) and (3)),

2. The outlet concentration C(τ) and temperature θ(τ) are expressed in the Volterra series form (analogous to Eq. (1)),
3. The expressions for Ci(τ), θi(τ), C(τ) and θ(τ) are substituted into the corresponding dimensionless model Eqs. (15) and (16),
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4. The method of harmonic probing is applied to the equations obtained in step 3 (the terms with the same amplitude and frequency are
collected and equated to zero). For the derivation of the first order FRFs, the terms with (A/2)ejωτ and for the asymmetrical second order
FRFs the terms with (A/2)2e0 are collected and equated to zero.

5. The equations obtained in step 4 are solved.

The first order and asymmetrical second order FRFs for modulation of only the dimensionless inlet concentration have been derived in
Nikolić et al. (2014a) and for modulation of the inlet temperature in Nikolić et al. (2014b). Here we are giving just the final expressions of
the asymmetrical second order FRF which correlates the dimensionless outlet concentration with the modulated dimensionless inlet
concentration:

G2;CC ω; �ωð Þ ¼ �1
2

α 1þStð Þ
1þnαþβγþnαStþSt

�
1þαð Þ2ðn n�1ð Þω2þ 1þStð Þ2�2β2γ

h i
n2� 1þStþβγð Þ2

h i
nÞ

1þnαþβγþnαStþStð Þ�ω2

 �2þω2 2þβγþStþnαð Þ2

ð18Þ

and the asymmetrical second order FRF which correlates the dimensionless outlet concentration with the modulated dimensionless inlet
temperature:

G2;TT ω; �ωð Þ ¼ �1
2
αγ 1þStð Þ 1þβþSt�δð Þ2
1þnαþβγþnαStþStð Þ

� γ�2ð Þω2�2n2α2�α 4þαγð Þnþ γ�2ð Þ
1þnαþβγþnαStþStð Þ�ω2


 �2þω2 2þβγþStþnαð Þ2
ð19Þ

The final expression for the cross-asymmetrical second order FRF G2,CT(ω,�ω) is given below:

G2;CT ω; �ωð Þ ¼ nαγ 1þαð Þ 1þStð Þ 1þβþSt�δð Þ
nαβγ� 1þnαð Þ 1þβγþStð Þð Þ 1þnαþβγþnαStþStð Þ�ω2

� �2þω2 2þβγþStþnαð Þ2
� �

� 1þStþα 1þStþβγð Þþ2β 1þnαð Þþω2� �þ jωðα�2β�StÞ� � ð20Þ

Some details of the derivation procedure can be found in Appendix A.
G2,CT(�ω,ω) is the conjugated complex function of the FRF G2,CT(ω,�ω)
The real and imaginary parts of the cross-asymmetrical second-order FRF G2,CT(ω,�ω) are as follows:

Re G2;CT ðω; �ωÞ� �¼ nαγ 1þαð Þ 1þStð Þ 1þβþSt�δð Þ
nαβγ� 1þnαð Þ 1þβγþStð Þ

Table 2
A summary of the results of the sign analysis for G2,CC(ω,�ω) (negative sign is desirable) (Reproduced from Nikolić et al., 2014a).

Condition Frequency range Sign of G2,CC(ω,�ω)

n¼0 8ω 0
nonC and no0 8ω Negative
nonC and 0ono1 8ω Positive
nCo1 and n¼1 8ω Negative
nonC and n41 ωoωC Positive

ω4ωC Negative
n4nC and no0 ωoωC Positive

ω4ωC Negative
n4nC and 0ono1 ωoωC Negative

ω4ωC Positive
1
nC
o1 and n¼1 8ω Positive

n4nC and n41 8ω Negative

Table 3
Results of the sign analysis for G2,TT(ω,�ω) (negative sign is desirable) (Reproduced from Nikolić et al., 2014b).

Reaction order, n Sign of (γ�2) Forcing frequency, ω Sign of G2,TT(ω,�ω)

nonT1 or n4nT2 Positive ωoωT Positive
ω4ωT Negative

Negative or zero 8ω Positive
nT1ononT2 Negative ωoωT Negative

ω4ωT Positive
Positive or zero 8ω Negative

n¼nT1 or n¼nT2 Positive 8ω Negative
Negative 8ω Positive
Zero 8ω Zero
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� 1þStþα 1þStþβγð Þþ2β 1þnαð Þþω2
� �

1þnαþβγþnαStþStð Þ�ω2
� �2þω2 2þβγþStþnαð Þ2

ð21Þ

Im G2;CT ω; �ωð Þ� �¼ nαγ 1þαð Þ 1þStð Þ 1þβþSt�δð Þ
nαβγ� 1þnαð Þ 1þβγþStð Þ

� ωðα�2β�StÞ
1þnαþβγþnαStþStð Þ�ω2

� �2þω2 2þβγþStþnαð Þ2
ð22Þ

The final expressions for the cross-asymmetrical second order FRF, which correlates the dimensionless outlet concentration with both
modulated inputs can be written as

G2;CT ω; �ωð Þ ¼ Re G2;CT ðω; �ωÞ� �þ j Im G2;CT ω; �ωð Þ� � ð23Þ

The total asymmetrical second order cross term (Eq. (9)) is

Gn

2;CT ¼ cos φð ÞRe G2;CT ω; �ωð Þ� �þ sin φð ÞImðG2;CT ω; �ωð ÞÞ ð24Þ

The optimal phase difference as a function of dimensionless forcing frequency, given by Eq. (11), after incorporating the real and
imaginary parts of the cross-asymmetrical second order FRF becomes:

φopt ¼ arctan
α�2β�Stð Þω

ω2þ1þStþα 1þStþβγð Þþ2β 1þnαð Þ

� �
�π ð25Þ

Table 4
Results of the sign analysis of the real part of G2,CT(ω,�ω).

Reaction order, n εR Forcing frequency, ω Re(G2,CT(ω,�ω))

Zero Any 8ω 0
Positive Positive or zero 8ω Negative

Negative ωoω0,CT Positive
ω¼ω0,CT Zero
ω4ω0,CT Negative

Negative Positive or zero 8ω Positive
Negative ωoω0,CT Negative

ω¼ω0,CT Zero
ω4ω0,CT Positive

Table 5
Results of the sign analysis of the imaginary part of G2,CT(ω,�ω).

Reaction order, n εI Im(G2,CT(ω,�ω))

Zero Any Zero
Positive Zero Zero

Positive Negative
Negative Positive

Negative Zero Zero
Positive Positive
Negative Negative

Table 6
The range of the phase difference which assures negative sign of the cross term G*

2,CT.

Re(G2,CT(ω,�ω)) Im(G2,CT(ω,�ω)) φ

Positive Positive �πoφo� π
2

Positive Negative π
2oφoπ

Negative Positive � π
2oφo0

Negative Negative 0oφo π
2

Positive Zero π

Zero Positive � π
2

Negative Zero 0
Zero Negative π

2
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4.3. Stability and oscillatory analysis

The NFR method is applicable only for stable systems. In Nikolić et al. (2014a), the stability conditions for the investigated system were
derived and analyzed in detail. Let us just repeat here that the stability is determined by the characteristic equation of the system and its
roots. For the non-isothermal CSTR defined by model Eqs. (15) and (16) the characteristic equation is the following second-order
equation (Nikolić et al., 2014a):

s2 þs 2þβγþStþnαð Þþ 1þnαþβγþnαStþStð Þ ¼ 0 ð26Þ

The analysis of the roots of this equation showed that the non-isothermal CSTR will be stable if the following conditions are met
(Nikolić et al., 2014a):

Aps ¼ �ð2þnαþ StþβγÞ
2 o0

Bps ¼ 1þnαþβγþnαStþStð Þ40 ð27Þ

It was also shown that the system is oscillatory if Aps
2 oBps, otherwise the system is nonoscillatory. If the system is oscillatory, it can

exhibit resonant behavior and the resonant frequency can also be calculated from the stability parameters Aps and Bps, in the following way
(Nikolić et al., 2014a):

ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bps�2A2

ps

q
ð28Þ

It can also be shown that the damping coefficient ξ of the system can be calculated from the stability parameters using the following
expression:

ξ¼ � Apsffiffiffiffiffiffiffi
Bps

p ð29Þ

5. Analysis of the signs of the asymmetrical second order functions

5.1. Asymmetrical second order FRFs G2,CC(ω,�ω) and G2,TT(ω,�ω)

The sign analysis of the asymmetrical second order FRFs, G2,CC(ω,�ω)and G2,TT(ω,�ω), were given in detail in Nikolić et al. (2014a,
2014b). Thus, here we repeat only the final results.

Table 7
Model parameters for the numerical examples.

Parameter Value

Reaction order, n 1
Volume of the reactor, V [m3] 1
Preexponential factor of the reaction rate constant, ko, [1/min] 1n1010

Activation energy, EA [kJ/kmol] 69,256
Heat of reaction, ΔHr [kJ/kmol] Numerical example 1 �543,920

Numerical example 2 �271,960
Numerical example 3 �54,392

Heat capacity, ρcp [kJ/K/ m3] 4:184� 103

Steady-state flow-rate, Fs [m3/min] 1
Steady-state inlet concentration, cAi,s [kmol/ m3] 2
Steady-state inlet temperature, Ti,s [K] 323
Steady-state temperature of the coolant, TJ,s [K] 365
Overall heat transfer coefficient multiplied by the heat transfer area, UAW [kJ/K/min] 27,337

Table 8
The steady state concentrations, conversions and temperatures, the stability parameters, damping coefficient, resonant frequency and the eigenvalues for the numerical
examples.

Numerical example Steady state point Aps Bps ξ ωr The eigenvalues

cA,s [kmol/m3] xA,s Ts [K]

1 0.3466 0.8267 388.1 �0.709 31.590 0.126 5.53 �0.70975.576i
2 0.7356 0.6322 370.5 �2.632 15.495 0.669 1.28 �2.63272.927i
3 1.016 0.4920 361.3 �4.343 14.016 1.160 / �2.141, �6.544
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In order to determine the sign of the asymmetrical second order FRF G2,CC(ω,�ω), it is necessary to calculate the following auxiliary
parameter:

nC ¼
ð1þStþβγÞ2

ð1þStÞ2�2β2γ
ð30Þ

The asymmetrical second order FRF G2,CC(ω,�ω) can have the same sign in the whole frequency range or it can change its sign for a
frequency given with the following equation:

ωC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þStþβγð Þ2�nð 1þStð Þ2�2β2γÞ

n�1

s
ð31Þ

if ωC is a real number.
The results of the sign analysis for G2,CC(ω,�ω), with respect to the reaction order n and the calculated auxiliary parameters (nC,ωC) are

summarized in Table 2 (Nikolić et al., 2014a).
In order to determine the sign of the asymmetrical second order FRF connected to the inlet temperature perturbation, G2,TT(ω,�ω), the

following auxiliary parameters need to be calculated:

nT1;T2 ¼
�ð4þαγÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2γ2þ8αγþγ

p
4α

ð32Þ

The asymmetrical second order FRF G2,TT(ω,�ω) can also have the same sign in the whole frequency range or it can change its sign for a
certain frequency, defined by the following equation:

ωT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2n2þα 4þαγð Þn�ðγ�2Þ

γ�2

s
ð33Þ

if ωT is a real number.
The results of the sign analysis for the asymmetrical second order FRF G2,TT(ω,�ω) are given in Table 3, depending on the reaction order

n and the auxiliary parameters nT1, nT2, ωT and γ (Nikolić et al., 2014b). We assume that nT1onT2.

Fig. 2. The real and imaginary parts of the cross asymmetrical second order FRF G2,CT(ω,�ω) as a function of dimensionless frequency, for Numerical examples 1, 2 and 3.

Table 9
The results of the sign analysis of the real and imaginary parts of G2,CT(ω,�ω), for the three numerical examples.

Numerical example εR ω0,CT Forcing frequency, ω Re(G2,CT(ω,�ω)) εI Im(G2,CT(ω,�ω)) φ

1 �19.63 4.43 ωo4.43 Positive �0.65 Positive �πoφo� π
2

ω¼4.43 Zero φ¼ � π
2

ω44.43 Negative � π
2oφo0

2 10.70 / 8ω Negative �4.37 Positive � π
2oφo0

3 13.90 / 8ω Negative �5.50 Positive � π
2oφo0
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5.2. The total asymmetrical second order cross term Gn
2,CT

The sign of the total asymmetrical second order cross term Gn
2,CT depends on the sign of the real and imaginary parts of the

asymmetrical second order cross FRF G2,CT(ω,�ω) and the phase difference between the two modulated inputs (Eq. (24)).
After introducing the definitions of the stability parameter Aps and Bps in Eqs. (21) and (22), the real and imaginary parts of G2,CT(ω,�ω)

can be rewritten in the following way:

Re G2;CT ðω; �ωÞ� �¼ �nαγ 1þαð Þ 1þStð Þ 1þβþSt�δð Þ
Bps

Fig. 4. The second order asymmetrical FRFs corresponding to the single input modulations of inlet concentration (G2,CC(ω,�ω)) and inlet temperature (G2,TT(ω,�ω)) and the
total cross second order asymmetrical cross term, corresponding to the optimal phase difference, (G*

2,CT(φopt,ω)), as functions of the dimensionless forcing frequency, for
Numerical examples 1 (a), 2 (b) and 3 (c).

Fig. 3. The optimal phase differences as functions of dimensionless frequency, for Numerical examples 1, 2 and 3.
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� 1þStþα 1þStþβγð Þþ2β 1þnαð Þþω2
� �

Bps�ω2

 �2þ4A2

psω
2

ð34Þ

Im G2;CT ω; �ωð Þ� �¼ �nαγ 1þαð Þ 1þStð Þ 1þβþSt�δð Þ
Bps

ωðα�2β�StÞ
Bps�ω2

 �2þ4A2

psω
2

ð35Þ

We can conclude from Eqs. (24), (34), (35) that the sign of the total cross asymmetrical second order term depends on:

� The parameters that are the characteristics of the system, i.e., the reaction order n and auxiliary parameters α, β, γ, δ (Eq. (17)) which are
functions of the physical parameters of the reactor, the kinetics data of the chemical reaction and the steady-state concentration and
temperature,

� The variables of the periodic operation, i.e., the forcing frequency ω and the phase difference between the two modulated inputs φ.

Table 10
Conversion increase due to simultaneous modulation of the inlet concentration and temperature, estimated by numerical simulation and by the NFR method, and the
relative errors, for Numerical example 1.

ω φopt Input amplitudes A¼50%, B¼10% Input amplitudes A¼25%, B¼6% Input amplitudes A¼10%, B¼3%

ΔxA,num ΔxA,NFRM δc ΔxA,num ΔxA,NFRM δc ΔxA,num ΔxA,NFRM δc

0.1 �3.14 1.9930 1.9614 �1.58 0.4988 0.4986 �0.04 0.0789 0.0789 0.08
1 �3.11 2.0577 2.0400 �0.86 0.5177 0.5176 �0.01 0.0816 0.0817 0.11
2 �3.06 1.9917 2.3179 16.38 0.5786 0.5843 0.99 0.0913 0.0915 0.20
3 �2.96 1.3976 2.9706 4100 0.5219 0.7393 41.66 0.1095 0.1139 3.96
4 �2.52 0.7775 4.7280 4100 0.4697 1.1532 4100 0.1498 0.1733 15.69
5 �0.55 2.1137 16.7432 4100 0.6286 4.3432 4100 0.2718 0.7300 4100
5.53 �0.32 2.6064 31.8083 4100 1.0774 8.6160 4100 0.5145 1.5431 4100
6 �0.24 2.8833 26.2170 4100 1.4044 7.2957 4100 0.6703 1.3550 4100
7 �0.16 3.1206 8.5252 4100 1.6224 2.4610 51.69 0.4450 0.4784 7.52
8 �0.12 2.8605 3.9032 36.45 1.0729 1.1512 7.30 0.2264 0.2295 1.39
9 �0.10 2.0949 2.2807 8.87 0.6665 0.6820 2.33 0.1371 0.1381 0.72
10 �0.08 1.4693 1.5232 3.67 0.4545 0.4598 1.19 0.0936 0.0941 0.50

Fig. 5. The dimensionless DC components of the outlet concentration for single modulation of inlet concentration (CDC,C), inlet temperature (CDC,T) and for simultaneous
modulation of inlet concentration and temperature (CDC) with forcing amplitudes A¼50%, B¼10% and optimal phase difference, for Numerical example 1 (a), 2 (b) and 3 (c).
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Since the forcing frequency and the phase difference are manipulated variables of the periodic operations, the sign analysis is
performed in a way that, for a particular investigated system with defined parameters, the forcing frequency and the phase difference are
determined for which the total cross asymmetrical second order function is negative (Gn

2,CTo0).

5.2.1. Sign of Re(G2,CT(ω,�ω))
The auxiliary parameters α, γ and δ are always positive, while β can be positive (for endothermic reactions) or negative (for exothermic

reactions). The stability conditions define the signs of stability parameters which have to be Apso0 and Bps40 for the system to be stable.
Considering this, we can conclude that the sign of the real part of the G2,CT(ω,�ω) function (Eq. (34)) depends on the reaction order n,

the forcing frequency ω and the term

εR ¼ 1þStþα 1þStþβγð Þþ2β 1þnαð Þ ð36Þ

The real part of G2,CT(ω,�ω) changes its sign if εRo0, for a frequency

ω0;CT ¼
ffiffiffiffiffiffiffiffiffiffi�εR

p ð37Þ
otherwise it has the same sign in the whole frequency range.

The results of the sign analysis of Re(G2,CT(ω,�ω)) as a function of the reaction order n, auxiliary parameter εR, and forcing frequency are
summarized in Table 4.

5.2.2. Sign of Im(G2,CT(ω,�ω))
From the above mentioned observations and from Eq. (35), it can be concluded that the sign of Im(G2,CT(ω,�ω)) depends on the

reaction order n and the term

εI ¼ α�2β�St ð38Þ

The final results of the sign analysis for the imaginary part of FRF G2,CT(ω,�ω), as a function of the reaction order n and the sign of the
term εI, are given in Table 5.

Table 11
Conversion increase due to simultaneous modulation of the inlet concentration and temperature, estimated by numerical simulation and by the NFR method, and the
relative errors, for Numerical example 2.

ω φopt Input amplitudes A¼50%, B¼10% Input amplitudes A¼25% B¼6% Input amplitudes A¼10% B¼3%

ΔxA,num ΔxA,NFRM δc ΔxA,num ΔxA,NFRM δc ΔxA,num ΔxA,NFRM δc

0.1 �0.04 6.4231 6.8851 7.19 1.7739 1.8103 2.05 0.3070 0.3080 0.30
1 �0.36 6.8433 7.6097 11.20 1.9671 2.0359 3.50 0.3534 0.3558 0.67
1.28 �0.43 7.0787 8.0260 13.38 2.0792 2.1672 4.23 0.3807 0.3840 0.87
2 �0.54 7.9070 9.2035 16.40 2.4382 2.5508 4.62 0.4644 0.4693 1.05
3 �0.59 9.1047 9.8570 8.26 2.7675 2.8257 2.11 0.5409 0.5443 0.62
4 �0.58 8.1281 8.3552 2.79 2.4392 2.4606 0.88 0.4887 0.4905 0.37
5 �0.55 5.9632 6.0454 1.38 1.8065 1.8169 0.58 0.3703 0.3713 0.26
6 �0.51 4.1630 4.2038 0.98 1.2770 1.2828 0.45 0.2662 0.2669 0.26
7 �0.47 2.9576 2.9799 0.75 0.9164 0.9197 0.36 0.1934 0.1939 0.24
8 �0.44 2.1750 2.1880 0.60 0.6792 0.6812 0.28 0.1447 0.1450 0.21
9 �0.41 1.6558 1.6638 0.48 0.5202 0.5214 0.24 0.1116 0.1118 0.20

10 �0.38 1.2993 1.3044 0.39 0.4100 0.4109 0.21 0.0885 0.0886 0.14

Table 12
Conversion increase due to simultaneous modulation of the inlet concentration and temperature, estimated by numerical simulation and by the NFR method, and the
relative errors, for Numerical example 3.

ω φopt Input amplitudes A¼50%, B¼10% Input amplitudes A¼25%, B¼6% Input amplitudes A¼10%, B¼3%

ΔxA,num ΔxA,NFRM δc ΔxA,num ΔxA,NFRM δc ΔxA,num ΔxA,NFRM δc

0.1 �0.04 4.5015 4.5462 0.99 1.3148 1.3210 0.47 0.2542 0.2551 0.37
1 �0.35 4.2607 4.3039 1.01 1.2629 1.2693 0.50 0.2494 0.2504 0.41
2 �0.55 3.6804 3.7055 0.68 1.1172 1.1217 0.40 0.2283 0.2292 0.42
3 �0.62 3.0319 3.0453 0.44 0.9386 0.9416 0.32 0.1970 0.1978 0.38
4 �0.63 2.4646 2.4731 0.34 0.7743 0.7763 0.26 0.1656 0.1662 0.34
5 �0.61 2.0064 2.0125 0.30 0.6371 0.6385 0.22 0.1381 0.1385 0.31
6 �0.58 1.6453 1.6495 0.26 0.5264 0.5275 0.21 0.1152 0.1155 0.31
7 �0.54 1.3616 1.3648 0.23 0.4380 0.4389 0.20 0.0965 0.0968 0.29
8 �0.51 1.1379 1.1405 0.23 0.3679 0.3684 0.11 0.0811 0.0816 0.67
9 �0.48 0.9610 0.9627 0.17 0.3114 0.3119 0.17 0.0691 0.0694 0.38

10 �0.45 0.8190 0.8204 0.17 0.2661 0.2665 0.16 0.0593 0.0595 0.35
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5.2.3. Phase difference, φ
For a particular system we can determine the signs of the real and imaginary parts of the asymmetrical cross second order FRF G2,

CT(ω,�ω). If the real part changes sign for a certain frequency, the value of that forcing frequency can be calculated from Eq. (37).
The next step in the analysis is to choose the phase difference which should be used in order to ensure the negative sign of the total

cross asymmetrical second order term Gn
2,CT.

The final results for the recommended phase difference which will assure that the cross term is negative are given in Table 6.
It should be noted, that on the other hand, the optimal phase difference (Eqs. (11) and (25)), will always give the minimal possible value

of the total cross second order asymmetrical term. Thus, the value of the optimal phase difference φopt will always be in the recommended
range of the phase difference.

5.2.4. Sign of the DC component of the outlet concentration
As concluded previously, it is always possible to achieve that the total asymmetrical second order cross term and the corresponding DC

component originating from the cross-effect of both inputs (CDC,CT) have negative signs, by appropriate choice of the phase difference.
However, in order to achieve increase of conversion through periodic operation, the total DC component of outlet concentration (CDC)

needs to be negative (Eq. (12)). Thus, it is necessary to consider the sign of the sum of the DC components corresponding to the individuals
inputs (CDC,C and C,DC,T) and to the cross effect (CDC,CT).

If the asymmetrical second order FRFs G2,CC(ω,�ω) and G2,TT(ω,�ω) are both negative, it is obvious that simultaneous modulation of
both inputs will ensure even higher conversion improvement. On the other hand if one of these FRFs is positive, than only evaluation of
the total DC component can clarify the overall effect of the periodic operation on the reactor performance.

6. Numerical examples

6.1. Definition of the numerical examples

Simulation of the asymmetrical second order FRFs and the analysis whether, and to which extent, it would be possible to increase the
conversion in a non-isothermal reactor owing to simultaneous modulation of the inlet concentration and inlet temperature is performed
considering three numerical examples: one which corresponds to oscillatory stabile system with strong resonant behavior (Numerical
example 1), one which corresponds to oscillatory stable system with weak resonant behavior (Numerical example 2) and one which
corresponds to non-oscillatory stable system (Numerical example 3).

The model parameters corresponding to these numerical examples are given in Table 7. All parameters have the same values for all
three numerical examples, except the heat of reaction. The steady state point defined with outlet concentration (cA,s), conversion (xA,s) and
outlet temperature (Ts) as well as the stability parameters (Aps, Bps) (Eq. (27)), the damping coefficient (ξ) (Eq. (29)), the resonant frequency
(ωr) (if existing) (Eq. (28)) and the eigenvalues, are given in Table 8, for all three numerical examples.

The conversion xA,s is defined in the standard way:

xA;s ¼
cAi;s�cA;s

cAi;s
ð39Þ

Numerical example 1 is identical to the one used for the cases of single inputs modulations (Nikolić et al., 2014a, 2014b). The reactor is
oscillatory stable (Apso0 and Bps40, Aps

2 oBps), with a low damping coefficient ξ¼0.126 (Nikolić et al., 2014a). The non-isothermal CSTR
defined as Numerical example 1 is highly nonlinear as a consequence of an assumed extremely high heat of reaction (ΔHr¼�543,920 kJ/
kmol). Also, concerning that damping coefficient is quite low, the system is highly oscillatory with pronounced resonant behavior.

For Numerical example 2 the heat of reaction is 2 times lower than for the system defined as Numerical example 1. The non-isothermal
CSTR defined in this way is oscillatory stable with weak resonant behavior with the damping coefficient ξ¼0.669.The increase of the
damping coefficient for Numerical example 2 in comparison to the Numerical example 1 means that the system is less oscillatory.

Finally, Numerical example 3 corresponds to a non-isothermal CSTR with heat of the reaction which is 10 times lower than the heat of
the reaction for Numerical example 1 (ΔHr¼�54,392 kJ/kmol).The system is stable and non-oscillatory with damping coefficient ξ¼1.160.
The non-isothermal CSTR defined in this way does not exhibit resonant behavior.

The maximal allowed forcing amplitudes of the inlet concentration and inlet temperature are assumed to be the same for all numerical
examples, Amax¼100%, Bmax¼15%. The forcing amplitudes are not limited from the aspect of the system stability, but more from the aspect
of what could be practically realized. E.g. the maximal amplitude of the inlet temperature corresponds to absolute maximal change in the
inlet temperature of ΔTi,max¼48.5 K (Nikolić et al., 2014a, 2014b).

6.2. Simulation of the asymmetrical second order FRFs and the DC component of the outlet concentration

In this section, the simulation results of the asymmetrical second order FRFs corresponding to the single input modulations, as well as
the asymmetrical second order cross FRF and the DC component of the outlet concentration are presented for each numerical example.

A graphical representation of the real and imaginary parts of the cross second order asymmetrical FRF G2,CT(ω,�ω) as a function of
dimensionless forcing frequency is given in Fig. 2 for all three numerical examples.

For Numerical example 1, the real and imaginary part of G2,CT(ω,�ω) both have extensive extremes near the resonant frequency
(ωr¼5.53). For Numerical example 2, the real and imaginary parts of G2,CT(ω,�ω) again have extremes near the resonant frequency
(ωr¼1.28), but not as big as for Numerical example 1. For the non-oscillatory stable non-isothermal CSTR, i.e., Numerical example 3, the
real part of the cross asymmetrical second order FRF G2,CT(ω,�ω) has no extreme values and the imaginary part of this function has a
maximum.
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The result of the sign analysis, in accordance with Tables 4 and 5, as well as the values of the auxiliary parameters εR, ω0,CT and εI
necessary for the sign analysis, are summarized in Table 9, with respect that the chemical reaction is first order (n¼1). The results of the
sign analysis of the real and imaginary parts of the asymmetrical second order cross FRF G2,CT(ω,�ω) are confirmed with simulation
results, presented in Fig. 2.

The phase differences which should be used in order to achieve the negative value of the cross term Gn
2,CT with respect to the signs of

real and imaginary parts, according to Table 6, are also given in Table 9.
The optimal phase differences φopt (defined by Eq. (25)), for all three numerical examples, are graphically presented in Fig. 3. The

optimal phase differences are in the ranges defined in Table 9.
The total asymmetrical second order cross term for the optimal phase difference Gn

2,CT(φopt,ω), as well as the asymmetrical second order
FRFs which correspond to single input modulations (G2,CC(ω,�ω) and G2,TT(ω,�ω), are graphically presented in Fig. 4(a)–(c), for Numerical
examples 1, 2 and 3, respectively.

The asymmetrical second order FRFs which correspond to the single input modulations were analyzed and discussed in detail in Nikolić
et al. (2014a, 2014b). Here, we will discuss only the phenomena related to simultaneous modulation of both inputs.

From Fig. 4 we can conclude the following:

� Similarly as for the single input modulations (Nikolić et al., 2014a, 2014b), the simultaneous modulation of inlet concentration and inlet
temperature with high frequencies has no effect on the process performance, i.e.,

lim
ω-1

Gn

2;CT ¼ 0 ð40Þ

� For low forcing frequencies, the total asymmetrical second order cross term has an asymptotic value which depends on the reaction
order, dimensionless auxiliary parameters and the phase difference

lim
ω-0

Gn

2;CT ¼ � cos ðφÞnnαγ 1þαð Þ 1þStð Þ 1þβþSt�δð Þ
B3
ps

εR ð41Þ

For Numerical example 1, the low-frequency asymptotic value is �2.31, for Numerical example 2, �1.99 and for Numerical example 3,
�1.49.

� For Numerical example 1, similarly to the asymmetrical second order FRFs which correspond to the single input modulations, the total
asymmetrical second order cross term Gn

2,CT(φopt,ω) has an extensive minimum close to the resonant frequency ωr¼5.53, where the
highest improvement is expected. The minimal value of Gn

2,CT(φopt,ω)¼�23.86 is obtained for ω¼5.74 (Fig. 4(a)).
� For Numerical example 2, the cross asymmetrical second order term (Gn

2,CT(φopt,ω)) has a minimum in the vicinity of the resonant
frequency ωr¼1.28, but not as extensive as for Numerical example 1. The minimal value of Gn

2,CT(φopt,ω)¼�3.62 is obtained for ω¼3.04
(Fig. 4(b)).

� For the non-oscillatory non-isothermal CSTR defined as Numerical example 3, the total asymmetrical second order cross term Gn
2,

CT(φopt,ω)) has no extremes (Fig. 4(c)).
� For all three numerical examples, the asymmetrical second order FRF G2,CC(ω,�ω) is negative in the whole frequency range (which is in

accordance with Table 2), while G2,TT(ω,�ω) changes its sign from positive to negative. G2,TT(ω,�ω) is positive for ωoωT and negative
for ω4ωT (Eq. (33), Table 3). The forcing frequency for which this FRF changes its sign is ωT¼5.24 for Numerical example 1, ωT¼1.82 for
Numerical example 2 and ωT¼0.87 for Numerical example3.

� The asymmetrical second order cross term for the optimal phase Gn
2,CT(φopt,ω) is, as expected, negative in the whole frequency range for

all three numerical examples (Fig. 4(a)–(c)).
� For forcing frequencies ω4ωT both asymmetrical second order FRFs corresponding to the single input modulations G2,CC(ω,�ω) and G2,

TT(ω,�ω) are negative, which guaranties that in this frequency range simultaneous modulation of these two inputs will results with
conversion enhancement, even higher than with single input modulations.

� For ωoωT, since the asymmetrical second order FRF G2,TT(ω,�ω) is positive, it is necessary to evaluate the total DC component of the
outlet concentration in order to reveal whether improvement is possible in this frequency range.

The dimensionless DC components of the outlet concentration of the reactant A, as functions of dimensionless forcing frequency, are
presented in Fig. 5, for all three numerical examples. Along with the total DC component obtained when the inlet concentration and inlet
temperature are simultaneously modulated with the optimal phase difference (CDC), the contributions to the DC component of the
modulations of the inlet concentration (CDC,C) and inlet temperature (CDC,T), separately, are also given. Fig. 5 was obtained for forcing
amplitudes A¼50%, B¼10%.

From Fig. 5, it can be concluded that:

� For all three numerical examples, it is possible to achieve higher increase of conversion when both inputs are periodically modulated
with optimal phase difference, in comparison to the single input modulations (with same forcing amplitudes).

� Even for forcing frequencies for which it is not possible to achieve higher conversion by modulation of the inlet temperature (ωoωT,
G2,TT(ω,�ω)40), if inlet concentration and inlet temperature are simultaneously modulated with forcing amplitudes A¼50%, B¼10%
and optimal phase difference, it is possible to achieve increase of conversion. This increase of conversion is higher in comparison to the
single input modulation of inlet concentration.

� The dimensionless DC component of the outlet concentration for two-input modulation (CDC) around the resonant frequency for
Numerical example 2 is significantly lower that it is for Numerical example 1, around its resonant frequency. Nevertheless, the
differences between the DC components for Numerical examples 1 and 2 at low-frequencies are much less significant than around the
resonant frequencies. The dimensionless DC component of the outlet concentration for Numerical example 3 (non-oscillatory CSTR) is
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lower than the DC components for Numerical examples 1 and 2. This means that higher improvement can be expected for the highly
nonlinear systems, which is in accordance with the previous investigations (Ritter and Douglas, 1970).

6.3. Comparison with results obtained by numerical integration

The conversion increase predicted by application of the NFR method is compared with the results obtained by numerical integration of
the model equations for the periodic modulation of inlet concentration and inlet temperature with optimal phase difference. The model
equations were numerically solved in their original, dimensional form (Nikolić et al., 2014a) by using a standard Matlab function ode15s.

The inputs were modulated in co-sinusoidal way around the previously established steady-state, in the following way:

cA;i tð Þ ¼ cAi;s 1þAn cos ωdtð Þð Þ ð42Þ

Ti tð Þ ¼ Ti;s 1þBn cos ωdtþφopt
� �� � ð43Þ

Based on the mean outlet concentration of the reactant A, cmA ; calculated both from the numerical simulations and by applying the NFR
method, the conversion of the reactant corresponding to the periodic process with simultaneous modulation of the inlet concentration
and inlet temperature were calculated:

xA;p ¼
cAi;s�cmA

cAi;s
ð44Þ

Than the increase of conversion owing to periodic operation, relative to the conversion in steady-state operation, was calculated:

ΔxAð%Þ ¼ xA;p�xA;s
xA;s

n100 ð45Þ

The results of numerical integration and of the NFR method are compared for 3 different combinations of forcing amplitudes, A¼50%,
25% and 10% for inlet concentration (corresponding to absolute changes of inlet concentration of 1 kmol/m3, 0.5 kmol/m3 and 0.2 kmol/
m3, respectively) and B¼10%, 6% and 3% for inlet temperature (corresponding to absolute changes of inlet temperature of 32.3 K, 19.4 K
and 9.7 K, respectively) and for 12 different forcing frequencies, including the resonant frequency for the each numerical example (if
existing).

In order to compare the agreement between the results obtained by the NFR method and by numerical integration, the relative errors
were calculated, in the following way:

δcð%Þ ¼ΔxA;NFRM�ΔxA;num
ΔxA;num

n100 ð46Þ

In Eq. (46) the value of the conversion change obtained by numerical simulation is considered to be exact.
The results of numerical integration and the corresponding results of the NFR method for Numerical example 1 are given in Table 10,

for Numerical example 2 in Table 11 and for Numerical example 3 in Table 12. In Tables 10–12, the conversion increase and the relative
error δc are given in percentages.

From the results given in Tables 10–12, it can be concluded that:

� For Numerical example 1, good prediction by the NFR method is obtained only for frequencies which are not near to the resonant
frequency. For lower forcing amplitudes the prediction is good in the wider range of forcing frequencies, closer to the resonant one.

� Numerical example 1 is identical to the numerical example used to test the quality of the NFR method for analysis of periodic
operations of a non-isothermal CSTR with modulation of the inlet concentration (Nikolić et al., 2014a) and inlet temperature (Nikolić et
al., 2014b), separately. It is important to notice that the quality of the NFR prediction of the process enhancement is about the same (the
errors are in the same range), for the case of simultaneous modulation of both inputs, presented here, and for the cases of modulation
of single inputs, presented in these references.

� For Numerical example 2, good prediction by the NFR method is obtained, except for the maximal amplitudes (A¼50%, B¼10%) around
the resonant frequency. For the forcing amplitudes A¼25%, B¼6% and A¼10%, B¼3%, the relative errors are less than 5% even for
forcing frequencies around the resonant one.

� For Numerical example 3, excellent agreement between the approximate (NFR method) and exact (numerical) solutions are obtained in
the whole frequency range and for every combination of forcing amplitudes, even if they are very high. The maximal relative error
is 1.01%.

� The NFR method based on the second order approximation gives better prediction of the outlet concentration change for the oscillatory
stable non-isothermal CSTR with weak resonant behavior (Numerical example 2) in comparison to the oscillatory stable non-
isothermal CSTR with strong resonant behavior (Numerical example 1), which is highly nonlinear. The disagreements which were
observed for the non-isothermal CSTRs which exhibit resonant behavior (Numerical examples 1 and 2) disappeared for the non-
oscillatory non-isothermal CSTR (Numerical example 3).

7. Conclusions

In this paper the nonlinear frequency response method is used for evaluation of the possible improvement of non-isothermal CSTR
with simple homogeneous nth-order reaction, for the case of simultaneous periodic modulation of two inputs, namely concentration and
temperature of the feed stream. The method is tested on three numerical examples of non-isothermal CSTRs: oscillatory stable reactor
with strong resonant behavior and therefore highly non-linear (Numerical example 1), oscillatory stable reactor with weak resonant
behavior (Numerical example 2) and non-oscillatory stable reactor (Numerical example 3).
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The main conclusions are that:

� The NFR method, based on the second order approximation, gives a correct answer whether the periodic operation of a non-isothermal
CSTR with simultaneous modulation of the concentration and temperature of the feed stream is superior to the corresponding steady-
state one (the sign of the predicted DC component is correct).

� The prediction of the process improvement through periodic operation is good, except around the resonant frequency, for the highly
non-linear systems which exhibit strong resonant behavior (Numerical example 1). It should be noticed that the errors of the NFR
prediction of the periodic operation with simultaneous modulation of the inlet concentration and temperature are similar as those
obtained for single input modulations.

� By appropriate choice of the phase difference between the two modulated inputs, the cross effect of the two modulated inputs can be
adjusted in the desired manner.

� Simultaneous modulation of the inlet concentration and temperature with optimal phase difference can give higher improvement than
modulation of the two inputs, separately. Furthermore, even when modulation of the inlet temperature worsens the process (like for
Numerical example 1, at low frequencies), simultaneous modulation of the inlet concentration and temperature results with process
improvement.

In summary, we could say that the NFR method based on the second order approximation gives satisfactory results for over-damped
and under-damped reactors with high and moderate damping coefficients, even for high input amplitudes, while it fails for low damping
coefficients. The next step in our research will be to define exact criteria for the range of dumping coefficients for which the method gives
reasonable approximations. This issue is directly related to defining the limitimg level of non-linearity and the acceptable range of input
amplitudes for using the second order approximation and finding in which cases it would be necessary to introduce the forth, and possibly
higher order FRFs, in order to withden that range. These issues need to be analysed together with analysis of convergence of the Volterra
series expansion for the investigated system.

Nomenclature

A input amplitude
Aw surface area for heat exchange
Aps stability parameter
B input amplitude
Bps stability parameter
cA reactant concentration
cp heat capacity
C dimensionless concentration of reactant A
EA activation energy
F volumetric flow-rate
Fn nth-order frequency response function which correlates the dimensionless outlet temperature with the dimensionless

modulated input(s), general
Gn nth-order frequency response function which correlates the dimensionless outlet concentration with the dimensionless

modulated input(s), general
G2,CT
n total asymmetrical second order cross term which correlates the dimensionless outlet concentration with both dimensionless

modulated inputs (inlet concentration and inlet temperature)
ko preexponential factor in Arrhenius equation
n reaction order
R universal gas constant
St Stanton number
t time
T temperature
U overall heat transfer coefficient
V volume of the reactor
x input
xA conversion of the reactant A
X dimensionless input
y output
Y dimensionless output
z input

Greek symbols

α auxiliary parameter
β auxiliary parameter
γ auxiliary parameter
δ auxiliary parameter
δc relative error
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εI auxiliary parameter
εR auxiliary parameter
θ dimensionless temperature
ξ damping coefficient
ρ density
τ dimensionless time
φ phase difference
φopt optimal phase difference
ω frequency, general and dimensionless
ωd dimensional frequency
ωr resonant frequency
Δ difference between the time-average and the steady-state outlet concentration
ΔHr heat of reaction

Subscripts

A reactant A
C, CC modulation of inlet concentration
CT simultaneous modulation of inlet concentration and temperature
DC non-periodic term
i inlet
J heating/cooling fluid
m mth order
max maximal value
n nth order
NFR nonlinear frequency response method
num numerical
p periodic operation
s steady-state
T, TT modulation of the inlet temperature
x, xx modulation of input x
z, zz modulation of input z
xz simultaneous modulation of input x and input z

Superscripts

m mean

Abbreviations

CSTR continuous stirred tank reactor
FRF frequency response function
NFR nonlinear frequency response
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Appendix A

Derivation of the cross asymmetrical second order FRFs for simultaneous periodical modulation of inlet concentration and inlet
temperature

Step 1: Defining the dimensionless inlet concentration and inlet temperature modulation, in the form of cosine functions:

Ci τð Þ ¼ A cos υτð Þ ¼ A
2
ejυτþA

2
e� jυτ ðA1Þ

θi τð Þ ¼ B cos uτð Þ ¼ B
2
ejuτþB

2
e� juτ ðA2Þ
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Step 2: Representing the dimensionless outlet concentration and dimensionless outlet temperature in the form of Volterra series:

C τð Þ ¼ A
2
ejυτG1;C υð ÞþA

2
e� jυτG1;C �υð Þþ⋯þ2

A
2

� �2

G2;CC υ; �υð Þ

þ⋯þB
2
ejuτG1;T uð ÞþB

2
e� juτG1;T �uð Þþ⋯þ2

B
2

� �2

G2;TT u; �uð Þ

þ⋯þA
2
B
2
ej υþuð ÞτG2;CT υ;uð Þþ⋯ ðA3Þ

θ τð Þ ¼ A
2
ejυτF1;C υð ÞþA

2
e� jυτF1;C �υð Þþ⋯

þ2
A
2

� �2

F2;CC υ; �υð Þþ⋯þB
2
ejuτF1;T uð ÞþB

2
e� juτF1;T �uð Þ

þ⋯þ2
B
2

� �2

F2;TT u; �uð Þþ⋯þA
2
B
2
ej υþuð ÞτF2;CT υ;uð Þþ⋯ ðA4Þ

Step 3: Substituting the expressions for the dimensionless inlet concentration (Eq. (A1)), dimensionless inlet temperature (Eq. (A2)),
dimensionless outlet concentration (Eq. (A3)) and dimensionless outlet temperature (Eq. (A4)), into the appropriate model equations
(Eqs. (15) and (16)).
Step 4: After applying the method of harmonic probing, i.e., after collecting the terms with ðA=2Þ ðB=2Þ ejðυþuÞθ , corresponding to the
cross asymmetrical second order FRFs and equating them to zero, the following expressions are obtained:

j υþuð ÞG2;CT υ;uð Þ ¼ � 1þnαð ÞG2;CT υ;uð Þ�αγF2;CT υ;uð Þ
�α γ2�2γ

� �
F1;C υð ÞF1;T uð Þþn n�1ð ÞG1;C υð ÞG1;T uð ÞþnγG1;C υð ÞF1;T uð ÞþnγG1;T uð ÞF1;CðυÞ

� � ðA5Þ

j υþuð ÞF2;CT υ;uð Þ ¼ � 1þStþβγð ÞF2;CT υ;uð Þ
�nβG2;CT υ;uð Þ�β γ2�2γ

� �
F1;C υð ÞF1;T uð Þþn n�1ð ÞG1;C υð ÞG1;T uð ÞþnγG1;C υð ÞF1;T uð ÞþnγG1;T uð ÞF1;CðυÞ

� � ðA6Þ

Step 5: Solving the equations obtained in step 4, Eq. (A5) and Eq. (A6), leads to the expression for the cross asymmetrical second order
functions:

G2;CT υ;uð Þ ¼ αβγ�αð1þStþβγþ jðυþuÞÞ
1þnαþ j υþuð Þð Þ 1þStþβγþ j υþuð Þð Þ�nαβγ

γ2�2γ
� �

F1;C υð ÞF1;T uð Þþn n�1ð ÞG1;C υð ÞG1;T uð ÞþnγG1;C υð ÞF1;T uð ÞþnγG1;T uð ÞF1;CðυÞ
� �

ðA7Þ

F2;CT υ;uð Þ ¼ nαβ�βð1þnαþ j υþuð Þ
1þnαþ j υþuð Þð Þ 1þStþβγþ j υþuð Þð Þ�nαβγ

γ2�2γ
� �

F1;C υð ÞF1;T uð Þþn n�1ð ÞG1;C υð ÞG1;T uð ÞþnγG1;C υð ÞF1;T uð ÞþnγG1;T uð ÞF1;CðυÞ
� �

ðA8Þ

After substituting the expressions for the first order FRFs (Nikolić et al., 2014a, 2014b) into Eq. (A7) and Eq. (A8) for the cross function
for equal input frequencies, the following cross asymmetrical second order FRFs are obtained:
For υ¼ ω and u¼ �ω:

G2;CT ω; �ωð Þ ¼ nαγ 1þαð Þ 1þStð Þ 1þβþSt�δð Þ
nαβγ� 1þnαð Þ 1þβγþStð Þð Þ 1þnαþβγþnαStþStð Þ�ω2

� �2þω2 2þβγþStþnαð Þ2
� �

� 1þStþα 1þStþβγð Þþ2β 1þnαð Þþω2� �þ jωðα�2β�StÞ� � ðA9Þ

F2;CT ω; �ωð Þ ¼ nβγ 1þαð Þð1þβþSt�δÞ
nαβγ� 1þnαð Þ 1þβγþStð Þð Þ 1þnαþβγþnαStþStð Þ�ω2

� �2þω2 2þβγþStþnαð Þ2
� �

� 1þStþα 1þStþβγð Þþ2β 1þnαð Þþω2� �þ jωðα�2β�StÞ� � ðA10Þ
For υ¼ �ω and u¼ ω:

G2;CT �ω;ωð Þ ¼ nαγ 1þαð Þ 1þStð Þ 1þβþSt�δð Þ
nαβγ� 1þnαð Þ 1þβγþStð Þð Þ 1þnαþβγþnαStþStð Þ�ω2

� �2þω2 2þβγþStþnαð Þ2
� �

� 1þStþα 1þStþβγð Þþ2β 1þnαð Þþω2� �� jωðα�2β�StÞ� � ðA11Þ

F2;CT �ω;ωð Þ ¼ nβγ 1þαð Þð1þβþSt�δÞ
nαβγ� 1þnαð Þ 1þβγþStð Þð Þ 1þnαþβγþnαStþStð Þ�ω2

� �2þω2 2þβγþStþnαð Þ2
� �

� 1þStþα 1þStþβγð Þþ2β 1þnαð Þþω2� �� jωðα�2β�StÞ� � ðA12Þ

The cross asymmetrical second order FRFs G2;CT ω; �ωð Þ and G2;CT �ω;ωð Þ are complex conjugates, as well as F2;CT ω; �ωð Þ and
F2;CT �ω;ωð Þ.
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