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Abstract

To achieve short mass transfer zones that enable arsenic removal under high hydraulic loading rates and short empty bed contact times needed
for small point-of-use packed bed applications, hybrid media was developed and tested. Cross-linked macroporous glycidyl methacrylate
copolymer support media was synthetized, amino modified and in-situ impregnated by goethite nanoparticles via an oxidative deposition in a
hydrophilic/hydrophobic (water/xylene) system. The media properties were characterized via scanning electron microscopy (SEM), energy
dispersive X-ray analysis (EDS), X-ray diffraction (XRD), and surface area analysis. Arsenic removal capabilities of the hybrid goethite
impregnated media were evaluated by conducting batch sorption tests, developing isotherms and simulating the breakthrough curve with a pore
surface diffusion model (PSDM), after being verified by a short bed column (SBC) test. The high porous media (e, = 0.7) contained ~16% of iron
and exhibited Freundlich adsorption capacity parameter of K = 369 (ug g ')(L ug )" and Freundlich intensity parameter of 1/n = 0.54. Without
engaging in taxing pilot scale testing, the PSDM was able to provide a good prediction of the media’s capacity and intraparticle mass transport
properties under high hydraulic loading rates.
© 2016 Tomsk Polytechnic University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer review under responsibility of Tomsk Polytechnic University.
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1. Introduction sources, and disinfection, granular activated carbon or other
inexpensive small system water treatment technologies are not
capable of removing them to innocuous level [1,4]. Since the
inorganic substances are the major chemical contaminants of
potable water, its adverse effects to human populations are of
growing concern [5]. For example, more than 70 countries
contain high levels of arsenic and endanger lives of several
hundred million people [1]. Considering its potential carcino-
genicity and toxicity health risks, WHO and US EPA promul-
gated 10 ug L' as a maximum contaminant level (MCL) of
arsenic in a drinking water [6—8]. Latest toxicological research,
however, suggests that the MCL should be further lowered to
address the newest acceptable health risks associated with
arsenic in drinking water [9]. Consequently, this new regulatory

Stemming from their rapid population growth, economic
development, and climate change, many developing and devel-
oped countries are concerned with increasing demands for
potable water [1,2]. Although available, potable water is often
contaminated with a number of contaminants that prevent its
direct use without any treatment [3]. Many of these contami-
nants are present in an inorganic form in the potable water

* Corresponding author. The Polytechnic School, Ira A. Fulton Schools of
Engineering, Arizona State University, 7171 E. Sonoran Arroyo Mall, Mesa, AZ

85212, USA. Tel.: +1 (480) 727 1617; fax: +1 (480) 727 1549. and scientific pressure creates a drive to develop novel tech-
E-mail address: jmarkov2@asu.edu (J. Markovski). nologies capable of addressing the low arsenic MCL challenge.

http://dx.doi.org/10.1016/j.reffit.2016.04.002
2405-6537/© 2016 Tomsk Polytechnic University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer review under responsibility of Tomsk Polytechnic University.


mailto:jmarkov2@asu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.reffit.2016.04.002&domain=pdf
http://www.sciencedirect.com/science/journal/24056537
http://dx.doi.org/10.1016/j.reffit.2016.04.002
http://www.elsevier.com/locate/reffit

16 K. Taleb et al./Resource-Efficient Technologies 2 (2016) 15-22

Nanomaterials, which could be tailored to exhibit large spe-
cific surface area and specific functionality, offer a promise that
could help resolve some of the challenges associated with novel
small systems arsenic treatment technologies [10—12]. Such
systems are probably the only viable water treatment approach
capable of addressing the needs of many small communities,
which do not have the technological expertise, resources, or
infrastructure to employ conventional and energy intensive
water treatment systems [3,13]. In the past 15 years, there has
been a growing interest in harvesting the unique properties of
metal (hydr)oxide nanomaterials for developing adsorptive
arsenic treatment technologies, considering that adsorption has
been identified as one of the Best Available Technologies (BAT)
for small systems’ arsenic treatment [4,10,11,14-16]. Nano
iron (hydr)oxides, like goethite (0.-FeOOH), have been identi-
fied as one of the best candidates for developing nanomaterial
based small arsenic treatment systems because of simple fab-
rication, low cost, high adsorption capacity and selectivity, and
thermodynamic stability in naturally fluctuating water matrices
[17-20].

When developing small systems for arsenic treatment, it is
imperative to ensure simultaneous operational and technologi-
cal simplicity and efficient performance on a large system scale.
These technological targets are difficult to achieve with sorbent
technologies that employ suspended nanomaterial reactors
because nanomaterials would have to be removed from the
treated water before the water is used [21]. This, of course,
would necessitate employment of energy intensive membrane
filtration technologies, which have their own set of operational
challenges [22]. In contrast, fixed bed reactor configurations
eliminate these operational challenges, but necessitate the use
of either aggregated nanomaterial adsorbents or media com-
posed of nanomaterial sorbent fixed to a macroscopic support
platform i.e. hybrid media [10,15,21,23-27]. Aggregation of
nanomaterials, especially iron (hydr)oxide based ones, often
leads to problems related to adsorbent stability, attrition,
surface area decrease, and porosity reduction, which conse-
quently creates operational problems such as head loss, chan-
neling, and nanomaterial release in the treated effluent. Iron
(hydr)oxide nanomaterial hybrid sorbents have the potential to
minimize these problems with a selection of adequate and
mechanically strong and stable support platform. However, to
fully utilize the potential offered by iron (hydr)oxide
nanomaterials when developing these hybrid media for small
treatment systems, the support material has to exhibit high
macroporosity, which: (1) minimizes pore clogging during
in-situ nanomaterial synthesis; (2) enables fast intraparticle
mass transport at high hydraulic loading rates and empty bed
contact times (EBCTs); (3) creates short mass transfer zones;
and (4) allows for base material functionalization to obtain
synergetic properties for simultanecous removal of other con-
taminants [15,23,25,26,28].

Glycidyl methacrylate based copolymers represent an ideal
candidate for development of macroporous base media that fits
the abovementioned criteria. These copolymers enable inexpen-
sive controllable production of spherical nanoparticle support
media with different geometries, and permits design of

intraparticle properties via a number of versatile ring-opening
reactions of the pendant epoxy groups [29]. Furthermore, the
fabrication of these base support media could be optimized to
maximize porosity while maintaining high mechanical strength
and uniformity of the microscopic hybrid media.

The goal of this study was to evaluate the suitability of the
developed goethite impregnated cross-linked macroporous
copolymer media for removing arsenic from water. To achieve
this goal, the following steps were undertaken: (1) fabricate
macroporous copolymer support media using suspension
polymerization followed by amino modification and in-situ
impregnation by goethite nanoparticles; (2) characterize adsor-
bent media; (3) quantify the adsorption capacity by conducting
pseudo-equilibrium tests under model conditions; (4) quantify
the mass transport processes that control the rate of arsenic
adsorption in a fixed bed column; (5) predict the performance
of a full scale system using the pore surface diffusion model
(PSDM).

2. Experimental and modeling approach

2.1. Fabrication of aminated glycidyl methacrylate support
media

Macroporous glycidyl methacrylate copolymer was fabri-
cated by dissolving 3.9 g of poly(N-vinyl pyrrolidone (PVP
Kollidon 90, BASF) in 300 mL of deionized water (18 MQ cm),
and then mixed with oil phase consisting of monomer precur-
sors, porogen and initiator as it is depicted in Fig. 1. The
monomer precursor was composed of 30 mL glycidyl methac-
rylate (Merck) and 13 mL ethylene glycol dimethacrylate
(Fluka), while 20 mL of 2-hexanone (Merck) was used as a
porogen agent, and 1 g of 2,2"-azobis(2-methyl propionitrile)
(Merck) as initiator. The two phases were vigorously stirred
under inert atmosphere of nitrogen at 80 °C for a period of 2 h
to facilitate a suspension polymerization process. The created
copolymer was separated by filtration, washed firstly with
ethanol (Sigma Aldrich) followed by deionized water, aged in
ethanol for a period of 12 h, and then dried in a vacuum oven at
40 °C for 4 h. The porogen agent was removed from the copo-
lymer by a 48 h continuous Soxlet extraction with chloroform
(Sigma Aldrich). The obtained material was sieved and material
consisted from the fraction in a range 150-600 um was col-
lected, and used in subsequent experiments.

Upon sieving, 10 g of glycidyl methacrylate copolymer was
dispersed in 50 mL of dry tetrahydrofurane (Sigma Aldrich),
and then 20 mL of diethylene triamine (Merck) was added
drop-wise to initiate the amination reaction, which was con-
ducted at 60 °C for a period of 6 h as it illustrated in Fig. 1.
Introduction of terminal amino groups was conducted to dem-
onstrate the possibility of functionalizing this base media and
utilize the affinity of terminal amino groups to facilitate iron
precursor diffusion. Modification of copolymer enriched by
hydrophilic amino group helped surface wetting and more
importantly the interaction of Lewis acid (ferric ions) with
Lewis base site (surface amino groups) provides initial
nucleation center for goethite precipitation. The aminated
macroporous glycidyl methacrylate support media was then
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Fig. 1. Schematic view of the steps applied for fabrication of the aminated glycidyl methacrylate support media.

filtered, washed with ethanol and deionized water, collected,
and dried in a vacuum oven at 40 °C for 6 hours.

2.2. Controllable impregnation of the support media with
goethite

In order to increase the effectiveness of iron transport inside
hydrophilic support media, mixture of hydrophilic (water)/
hydrophobic (xylene) (Merck) solvents was applied. A 10 g of
the aminated glycidyl methacrylate copolymer was soaked with
xylene and placed in a perforated column assembly as illus-
trated in Fig. 2. Xylene was used as a copolymer suspension
system, which was mixed by nitrogen bubbling thoughout the
reactor in an upstream flow to provide a gentle movement/
mixing of packed copolymer. Upon establishing a steady
mixing and continuous flow of nitrogen (15 mL min™!) through
two phase system xylene/copolymer, 30 mL of FeCl, x 4H,0O
(Merck) (0.5mol L") aqueous solution was added in the
reactor over a 15 min period via a dropping funnel located at the
top of reactor column. A glass frit assembly connected to the
funnel was used to provide for homogeneous dispersion of
FeCl,/water droplets. Small droplets of the FeCl,/water solution
were attracted by hydrophilic copolymer, and nitrogen bubbling
promotes formation of uniform film at surface and increase the
effectiveness of iron transport inside the copolymer. After addi-
tional bubbling of N, for 15 min, precipitation of goethite was

performed in air at pH 7 + 0.2 by neutralizing the generated
acid with 1 mol L™' NaHCOs (Zorka Pharma) buffer solution
[19]. Bubbling of air was continued for a period of 24 h to
complete the oxidation of the ferrous ions to ferric, and ensure

1) Xylene
2) FeCl, x 4H,0 (0.5mol dm?)
3) NaHCO,

Vacuum system
1) N, (30 min)
2) Air (24 h) * '
Sel0’e
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Fig. 2. Schematics of the copolymer impregnation assembly.
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complete formation of goethite. The change of the green—blue
color to an ocherous shade of precipitated material was an
indicator of completed oxidation/precipitation process.

The first step of impregnation is completed by exhaustion of
the column (removal of liquid phase), followed by careful
vacuum drying. The entire media impregnation with iron was
repeated. The newly fabricated goethite impregnated media was
then washed with deionized water, filtrated and dried at 40 °C
for 10 h, and further characterized.

2.3. Media characterization

Media morphology was analyzed by scanning electron
microscopy (FEG-SEM) (TESCAN MIRA3). An average
diameter of adsorbents was determined using MIRA TESCAN
in-situ measurement software. Energy dispersion X-ray analy-
sis (EDS) (INCAEnergy 350 Microanalysis System) method
was used for determination of elemental content of goethite
impregnated media. The structural analysis of goethite impreg-
nated media was performed using X-ray diffraction (XRD)
(BRUKER D8 ADVANCE). The specific surface area and
average pore volume were estimated using Micromeritics
ASAP 2020 surface area analyzer. The textural parameters were
calculated by using the BET (Brunauer—-Emmett—Teller) and
BJH (Barrett-Joyner—Halenda) method. Adsorbent media
density and porosity were evaluated by pycnometer analysis
according to procedure presented by the Sontheimer et al.
(1988) [30]. Assuming cylindrical pores, the average pore
diameter was calculated from the surface area—pore volume
ratio [10,24,31] (Eq. 1):

2oL (1)
Tpore Vi

where 10 1S the average pore radius (m); A.q is the surface area
of the adsorbent (m?); and V. is the pore volume of the
adsorbent (m?).

Quantification of epoxy and amino groups were performed
according to the literature volumetric methods [32,33]. The pH
values at the point of zero charge (pHpzc) of goethite impreg-
nated media were measured using the pH drift method [34]. In
brief, 0.50 g of goethite impregnated media was added to
50 mL of KNO; solution (0.1 mol L™"). The initial pH values of
samples were in the range from 2 to 11 and were adjusted by
adding a small amount of HCI or NaOH solution with concen-
tration of 0.1 mol L™'. The samples were shaken for 3 days at
room temperature of 22 +2 °C.

2.4. Equilibrium adsorption experiments

Arsenic removal in batch adsorption experiments with
goethite impregnated media was conducted in 10 mL
arsenic-only water with initial arsenic concentration C,
(As) = 100 pg L' with adsorbent dosages of 100-500 mg L™
at pH value of 6.7 0.2. Although natural waters typically
exhibit pH between 6.5 and 8.5, lower end pH values were used
to ensure better experimental sensitivity stemming from higher
arsenic capacity of goethite at lower pH values. The sample
solutions were agitated for 1 day to ensure complete pseudo-

equilibrium. Prior to the analysis, adsorbent was removed from
the suspension by the filtration through a Millipore 0.22 um
membrane filter (Bedford, MA, USA). Adsorption equilibrium
was analyzed using the Freundlich adsorption isotherm model

(Eq. (2)).
g=KxCe )

where q is adsorption capacity (ug g '), Ce is the equilibrium
concentration of adsorbate in solution (ugL™), K is the
Freundlich adsorption capacity parameter (ug g ")(L ug '™,
and I/n is the unitless Freundlich adsorption intensity
parameter.

Arsenic concentrations in solution after adsorption experi-
ments were analyzed by the use of inductively coupled plasma
mass spectrometry (ICP-MS), using an Agilent 7500ce ICP-MS
system (Waldbronn, Germany).

2.5. Pore Surface Diffusion Model prediction of a short bed
column performance and its verification via a Short Bed
Column Test

Arsenic breakthrough curve of short bed column (SBC) was
predicted by the Pore Surface Diffusion Model (PSDM) using
the AdDesignS™ software developed by Michigan Technologi-
cal University [35]. PSDM is a dynamic packed bed model that
covers both pore and surface diffusion models and has been
successfully applied in the prediction of the breakthrough curve
and the feasibility of adsorbent media [10,24,26,36—40].

Determination of the external mass transport coefficient
were based on the Gnielinski correlation [30]:

ik 1'5(1d‘ XD s (340,644 % R x 5*°) 3)
p
Re = PrX9xd, xv (4)
exXty
Se=—H_ )

- P XD,

Constraints: Re x Sc>500; 0.6 <Sc<10% 1<Re<100;
0.26 < e <0.935; ks is the external mass transport coefficient
(calculated kr= 6.5 x 107 cm s™"); Re is the Reynolds number
(unitless); Sc is the Schmidt number (unitless); d, is the
adsorbent particle diameter (d, = 0.30 x 10 m); D; is the free
liquid diffusivity for arsenate (D;=9.05x 10" m?s™); e is
the bed void fraction (e = 0.4); W is the dynamic viscosity of
water at 20 °C (w=1.002x 10° Nsm™?); p; is the density
of water at 20°C (p1=9982kgm?); @ is the particle
shape factor (®=1); v is the liquid superficial velocity
(v; = 0.00265 m s™).

Considering that the material was very porous (the particle
porosity e, = 0.7), the impact of surface diffusion was assumed
negligible and the pore diffusion coefficient was estimated
using Eq. (6) [10,24,26,30,39,41]:
e, XD,

Dp (6)

T
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Applying the correlation for electrolyte solutions (Eq. (7)),
the tortuosity was determined [10,24,26,39,42]:

r=2me) ™)

¢p

The estimated value for tortuosity and the pore
diffusion coefficient were T=2.4 and Dp=2.6 X 10 cm?s™',
respectively.

The relative importance of internal and external mass trans-
port resistance was evaluated by estimating the pore (Bip) Biot
numbers using the relationship given by Eq. (8) [10,24,26,39]:

— kf X dp

Bi,
2X Dp

®)

Although a number of studies have verified the validity of
the PSDM to predict breakthrough curves of arsenic-only water
matrices [10,24,26,39,43], the SBC tests were conducted under
the same pH and arsenic concentration conditions in order to
validate PSDM prediction of arsenic removal by hybrid media.

In the SBC test, 0.4 g of goethite impregnated media was
packed atop a support of cotton and glass beads were placed
above and below to provide evenly distributed flow. Wall effect
on the mass transfer was neglected since used adsorbent media
provided dconmn/dp ratio of ~40 [44]. Arsenic-only water with
initial arsenic concentration of ~150 ug L™ was introduced
through the column until complete breakthrough (C./C, > 95%)
at hydraulic loading rate of 2.65 L m?s™' (4.2 gpm ft ), which
is within the recommended loading rates for full scale opera-
tions [45]. Although relatively high, this hydraulic loading rate
was adequate in capturing the mass transfer zone and minimiz-
ing the film mass transport limitation.

2.6. Full-scale system modeling using validated pore surface
diffusion model

The validated PSDM was used to model the performance of
full-scale fix bed systems operating at the same loading rate as
the SBC tests. The length of the packed bed was changed to
achieve the desired EBCTs of 2.5, 5, and 10 min. The modeling
was conducted with a realistic value of arsenic C, =30 pg L™
while the water chemistry, pH, and bed porosity were assumed
to be the same as those used in the SBC test [10,24].

3. Results and discussion
3.1. Media characterization

Fig. 3 illustrates the aminated macroporous glycidyl meth-
acrylate copolymer before and after impregnation with goethite
nanoparticles. As depicted in Fig. 3a, the media was character-
ized by spherical particles ranging between 150 and 600 um in
size, with an average diameter of 300 um. The media exhibited
large pores that were uniformly distributed on the surface and
through the media (Fig. 3b and c). The presence of the goethite
nanoparticles inside the pores of the media in a manner that
creates a nanostructured protuberances and cavities is illus-
trated in Fig. 3d.

Fig. 3. Aminated macroporous glycidyl methacrylate copolymer (a) spheres,
(b) surface, (c) cross-section of virgin media, and (d) cross-section of goethite
impregnated media.

The results of pore and surface area analysis of the goethite
impregnated media showed an estimated specific surface area
of 43 m? g”'. The average pore diameter and an average specific
pore volume were estimated at 85 nm and 1.44 cm® g™!, respec-
tively, which confirmed the macroporous nature of this media.
Equation (1) provided a more conservative estimate of the
average pore diameter. Assuming cylindrical pores, the average
pore diameter was 67 nm, which is slightly lower than N, pore
analysis results, but still in accordance with definition of TUPAC
limit for macroporous materials of >50 nm [46].

The gravimetric analysis showed that the impregnated media
contained ~16% of iron which was in compliance with EDS
analyses illustrated in Fig. 4. According to EDS analyses, iron
was relatively evenly distributed throughout the outer layers
which exhibited slightly higher Fe content (21.5%) than the
center (15.8%). Observed higher iron content on sphere surface
is expected due to more favorable mass transfer compared to
center. High iron content and uniform distribution at overall
media surface confirms that established procedure for amino
modification and goethite impregnation of glycidyl methacry-
late copolymer is optimized. The high content of both epoxy
and amino groups, 3.2 mmol g! and 6.9 mmol g”!, respec-
tively, further supported the conjecture that this media could be
easily functionalized to develop sites capable of removing con-
taminants with chemistries different than arsenic.

Fig. 5 confirms presence of goethite. The XRD spectra
of the goethite impregnated media show characteristic
peaks observed at the 26 values of 17.8, 21.2, 33.2, 36.6 and
53.2°, corresponding to goethite structure (ICDD PDF2 No.
81-0464). Three factors may be the reason of the obtained
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Spectrum 1

Spectrum 2

Fig. 4. EDS analysis of goethite impregnated media at central and outer point.

significant XRD peak broadening: (1) the influence of polymer
support; (2) amorphous phase of goethite and (3) small size of
goethite particles.

3.2. Removal of arsenic under pseudo-equilibrium batch
conditions

Fig. 6 presents the Freundlich arsenic adsorption isotherm in
arsenic-only water which is characterized by a Freundlich
adsorption capacity parameter of K =369 (ugg )L ug )"
and Freundlich intensity parameter of 1/n = 0.54. Obtained K
value is in the range of reported values for nanostructured ZrO,
spheres [24], however, in comparison to activated carbon and
ion-exchange resin modified with nano-iron (hydr)oxide
[15,47], goethite impregnated media exhibits higher adsorption
capacity. Since point of zero charge of the goethite impregnated
media was estimated at pHpzc = 7.7, the favorable adsorption
process under the experimental thermodynamic conditions
(1/n < 1) stems from the positively charged surface of the media
and the negatively charged arsenate species (H,AsO, and
HAsO,*), which are dominant at pH range of the conducted
sorption experiments [48-51].

* a-FeOOH

*
*

Intensity

L WWM

10 20 30 40 50 60 70 80 90
2-Theta-Scale

Fig. 5. XRD analysis of the goethite impregnated media.

3.3. Short bed adsorbent test and pore surface diffision
modeling

The PSDM prediction and experimental data from the SBC
tests are presented in Fig. 7. For the initially estimated
ki=6.5x 102 cms™! and Dp=2.6x10°cm?s™!, the PSDM
provided a good prediction (R?>=0.93). Considering high
porosity of the material (the particle porosity e,=0.7) and
strong inner-sphere complexes that arsenic forms with goethite
via oxygen bridges, it is verified that surface diffusion can be
ignored in comparison to several orders of magnitude higher
pore diffusion [52-56].

The estimated Biot number (Bip) was 43 and confirmed that
the intraparticle diffusion controls the overall mass transport
[41]. As illustrated, breakthrough occurred rapidly for
C/C,=0.5 at 2500 BVT and for C/C, = 0.95 at 66 000 BVT.

3.4. Performance of full-scale packed bed systems

In order to evaluate the suitability of the developed goethite
impregnated media for removing arsenic from water, the per-
formance of a full scale system is predicted by the use of
validated pore surface diffusion model at commonly used
EBCTs. As illustrated in Fig. 8, the number of bed volumes that
can be treated until the maximum contaminant level (MCL) of
10 ug L' is directly related to EBCT. The PSDM predicted that
for C/C, = 0.33, 26 000 bed volumes can be treated at EBCT of

10000 1
] q = 368.59Ce0-54

- R2=0.98 .

8

o

Q

£ .

£1000 -

© ]

X
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2 'S

o

100 Ty ——— T ———TT
0.1 1 10 100
Ce (ug As/L)

Fig. 6. Arsenic adsorption isotherms for goethite impregnated media in
arsenic-only water after a contact time of 1 day at 20 °C (Co(As) = 100 ug L™,
pH 6.7£0.2).
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Fig. 7. PSDM prediction and experimental data from the SBA tests for goethite
impregnated media in arsenic-only water at 20 °C (Co(As) = 150 ug L', pH
6.7%0.2).

2.5 min. This number increases to 27 000 and 28 000 with
increase of the EBCT to 5 and 10 min, respectively, implying
that more bed volumes can be treated by extending the EBCT.

4. Conclusions

This study demonstrated that glycidyl methacrylate
copolymer exhibits high macroporosity which enables fast
intraparticle mass transport at high hydraulic loading rates and
creates short mass transfer zones in fixed bed reactor configu-
ration. Amination of pendant epoxy groups of macroporous
glycidyl methacrylate support facilitated fabrication of hybrid
media applicable in small treatment systems. By selecting the
appropriate solvent mixture, goethite impregnation on the

1.0 SR I
0.9 i EBCT 2.5 min / ’
| = = —escT5min j
08 o ceeesscensese EBCT 10 min
0.7 4
0.6

Loading rate: 2.65 L m2 s

CIC, As(V)
o
(6]

0.0 T
15000

T T T T T

L I T 1 1
25000 30000 35000 40000 45000

Bed Volumes Treated

1
20000

Fig. 8. PSDM prediction of a full-scale system packed with goethite impreg-
nated media in arsenic-only water at 20 °C (Co(As) =30 ug L', pH 6.7 £ 0.2).

surface and inside the pores of aminated glycidyl methacrylate
support media has been achieved uniformly while pore clog-
ging during in-situ nanomaterial synthesis was minimized.
Designed goethite impregnated media showed to be effective in
a simple water matrix without competition ions and applied
methodology of PSDM full-scale packed bed simulation oper-
ated under realistic conditions showed to be reliable and sig-
nificantly simpler than time-consuming and expensive pilot
tests. Furthermore, the high content of epoxy groups in stable
macroporous support enable functionalization with quaternary
amine and create opportunities of development media capable
of simultaneous removal of multiple contaminants with chem-
istries different than arsenic.
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