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The distribution of elements in soil fractions affects their mobility and availability and thus their potential bene-
ficial or harmful impact on ecosystems, biota and humans. Differentmineralogical and chemical characteristics of
soil influence elemental distribution. In the present study, chemical speciation of macro and micro elements (Al,
Fe, Mn, K, Cd, Cr, Cu, Li, Ba, Ni, Pb and Zn) in unpolluted soils of different types, collected from the territory of the
Republic of Serbia, were analysed by sequential extraction procedure. The impact of the physicochemical soil
properties on the content, distribution, mobility and availability of elements was investigated. Principal compo-
nent analysis was employed for the evaluation and characterization of the experimental data, understanding of
the relationships between soil properties and the distribution, affiliation and connection of the elements. Finally,
an artificial neural network (ANN)modelwas developed to explore the applicability of this approach for the pre-
diction of the elemental distribution based on soil properties. Good agreement between themodel and the exper-
imental results implied that the ANN could be considered as a useful tool for control and prediction purposes.
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1. Introduction

Elements in soil are present in different levels, which reflect natural
differences between soil types and consequences of soil use and pollu-
tion. The effects and functions that certain soil elements exert on living
organisms range from essential to toxic. An essential element may also
be a risk factor if present in inadequate amounts, i.e., concentrations
higher than optimal are associated with toxicity while lower ones
with nutritional deficiencies. It is generally accepted that the total con-
tent of an element in soil is not necessarily related to potential risks
(Kelepertzis et al., 2015) and that the total element concentrations can-
not provide necessary information on an bioavailability of element
(Abollino et al., 2011; Sungur et al., 2014). Mobility and availability de-
pend on the reactivity and binding behaviour of an element with the
components of the soil matrix (Abollino et al., 2011). Several studies
have investigated the relationship between soil properties and metals
distribution (e.g., de Matos et al., 2001; Luz et al., 2014; Sungur et al.,
2014), butmixed results were foundmainly due to the different miner-
alogical and chemical characteristics of soils.

The sequential extraction method is a useful instrument to gain in-
formation on the bioavailability of elements. One of the most accepted
and commonly used is the Tessier extraction scheme (Tessier et al.,
Institute of Nuclear Sciences, P.
1979). To date, numerous modifications of the basic procedure have
been developed (Alvarez et al., 2006; Arcega-Cabrera et al., 2009;
Lucho-Constantino et al., 2005; Riba et al., 2002; Torres and Auleda,
2013; Yu et al., 2000), whereby all of them presume a decrease in ele-
mentmobility and availability along the extraction sequence. The mod-
ified Tessier methods, including the one adopted in this study, usually
include alteration of the experimental conditions used for the fifth ex-
traction phase. Namely, instead of total mineralization, which involves
the use of HClO4 and HF, extraction by other strong acids and their mix-
tures are applied. Consequently, the residual fraction becomes “pseudo-
residual”. Furthermore, one additional stage has frequently been added
to the Tessier scheme, to enable the determination of a water-soluble
fraction of elements (Adhikari et al., 2005; Kabata-Pendias, 2001;
Lucho-Constantino et al., 2005; Smičiklas et al., 2015). Using a sequen-
tial extraction method, comprehensive information can be obtained
on the origin,mode of occurrence, biological and physicochemical avail-
ability, mobilization and transportation of elements (Sungur et al.,
2014). In environmental impact studies, it is more important to deter-
mine element speciation patterns in soil than to assess their total pedo-
genic concentrations (Sungur et al., 2014).

The sequential extractionmethod results in a large amount of exper-
imental data, especially when coupled tomulti-element analytical tech-
niques, such as ICP OES, which enable the simultaneous elemental
analysis of a large number of samples. Moreover, the physicochemical
properties of the considered soil matrix (such as particle size distribu-
tion, pH value, total carbon content, inorganic carbon content, total
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organic carbon, cation exchange capacity) significantly contribute to in-
creasing the data set. Accordingly, due to simultaneous consideration of
many parameters, multivariate chemometric techniques are very help-
ful in the visualization and interpretation of sequential extraction re-
sults (Giacomino et al., 2011).

Various multivariate statistical techniques have been employed for
the evaluation and characterization of environmental data (e.g., Amiri,
2014; Giacomino et al., 2011). Principal component analysis (PCA) is a
commonly used multivariate method for data reduction (the number
of explanatory variables is lowered by using specific factors), but it is
also used for classification and discrimination of the samples. These
factors explain the major variation within the data in order to make
the components more interpretable. In the last decade, PCA became
accepted and used by a large number of research groups engaged in
the analyses of uncontaminated, contaminated and agricultural soils
(Abollino et al., 2006, 2002a, 2002b; Pérez and Valiente, 2005;
Tokalioğlu and Kartal, 2003; Tokalioğlu et al., 2004).

The basic idea of the present research was to establish the corre-
lations between soil physicochemical properties of soils and the
distribution of a large set of elements in order to explore the predict-
ability of their distribution based on available soil properties. In such
cases, nonlinear models are more suitable due to complexity of the
matrix. Artificial neural network (ANN) models are recognized as
goodmodelling tools since they provide the solution to the problems
from a set of experimental data, and are capable of handling complex
systems with nonlinearities and interactions between decision vari-
ables (e.g., Almeida, 2002; Kashani et al., 2014). The developed em-
pirical models should provide a reasonable fit to experimental data
and successfully predict element mobility in different soil types.

The specific objectives of the studywere: (i) to determine the distri-
bution of twelve elements (minor Cd, Cr, Cu, Li, Ba, Ni, Pb and Zn, and
major Al, Fe, Mn and K) in samples of different soil types having consid-
erably different physicochemical properties (i.e., the content of sand, silt
and clay fraction, pH, cation exchange capacity (CEC), total organic car-
bon (TOC), content of CaCO3, P2O5 and K2O); (ii) to estimate the influ-
ence of soil properties on the content, distribution, mobility and
availability of the elements; (iii) to apply a pattern recognition tech-
nique (PCA) on the data (used as descriptors) to characterize and differ-
entiate among the observed samples; and (iv) to test the applicability of
an ANN for the development of a mathematical model which would
provide a reasonable fit of experimental data on the distribution of the
elements based on the available soil properties, for control and predic-
tion purposes.

2. Materials and methods

2.1. Soil sampling and characterization

As the study aimed to establish correlations between soil physico-
chemical properties and distribution of elements, samples were select-
ed based on their diversity in terms of their essential characteristics.
Table 1
Descriptive statistics of physicochemical properties of the investigated soil types.

Sanda Siltb Clayc CaCO3
d pH

Mean 32.2 30.8 37.1 2.90 5.4
SDg 8.3 9.4 8.3 5.24 1.4
Minimum 24.8 12.2 22.7 0 3.4
Maximum 48.8 43.8 50.1 11.7 6.9
Range 24.0 31.6 27.4 11.7 3.5

a N0.02 mm, %.
b 0.02–0.002 mm, %.
c b0.002 mm, %.
d %.
e cmol kg−1.
f mg · 100 g−1.
g Standard deviation.
The investigated samples (S1–S8), representing eight different soil
types, were collected from various localities in the Republic of Serbia,
from a depth 0–25 cm. A composite sample of each soil was prepared
from five subsamples. The soils used in this study were characterized
as described in detail in a previously published article (Smičiklas et al.,
2015). The soil types were determined and denoted according to the
World reference base for soil resources (FAO, 2006): S1 — Humic
Fluvisol, S2 — Fluvisol, S3 — Eutric Cambisol, S4 — Mollic Leptosol, S5 —
Stagnosol, S6 — Leptosol, S7 — Dystric Cambisol and S8 — Rendzic
Leptosols. The descriptive statistics of physicochemical properties of
examined soil types (Table 1) show wide ranges of soil pH, CEC, TOC,
texture and nutrient content.

2.2. Sequential extraction

Soil samples were subjected to sequential extraction following a
modified Tessier procedure (Tessier et al., 1979). Whereby, the exam-
ined elements were partitioned into six operationally defined fractions:
water soluble (F0), exchangeable (F1), bound to carbonates (F2), bound
to Fe-, Mn-oxides (F3), bound to organic matter (F4) and residual (F5).
The sequential extraction procedure applied in this study, which was
previously described in detail by Smičiklas et al. (2015), was conducted
in triplicate for each sample, and the mean of the three concentration
values determined for the investigated elements in each fraction were
reported.

2.3. Analytical technique for the determination of the elements

The contents of the elements were determined using an induc-
tively coupled plasma optical emission spectrometer (ICP-OES)
model iCAP 6500 Duo (Thermo Scientific, United Kingdom). Radial
view measurements were applied for Al, Fe and K, and axial for Zn,
Ba, Cd, Cr, Cu, Li, Mn, Ni and Pb. The axial view provides better
LODs (limit of detections) while the radial view is preferred for
higher element concentrations. This instrument is an Echelle-type
spectrometer covering the 166–847 nm range equipped with an
RACID86 charge injection detector.

Determination was realized using external calibrations with matrix
matched standards prepared from single stock solutions of 1000 ppm
(Merck, Germany). Stock solutions were mixed into multi-standard
working solutions according to their concentrations in the soil samples.
Working standard solutions were matrix matched according to each
extraction solution that was applied. Correlation coefficients for
calibration curves were greater than 0.9999. For quality assurance, ICP
multi-element standard solution VI (Merck, Germany) was used.
Quality control (QC) was performed using the ACCU standard MES
21-1 as a QC standard, blank samples, standard reference material
(SRM 2711) and triplicate analyses of each sample. The QC standard
was measured at a frequency of every 10 analytical samples with re-
covery limits ±10%. Three replicates of the SRM 2711 — Montana
Soil (National Institute of Standards & Technology) were digested
KCl pHH2O CECe TOCd P2O5
f K2Of

6 7.05 32.03 2.28 9.69 28.19
5 0.91 8.62 1.30 10.16 11.60
0 5.50 22.50 0.82 0.01 8.80
0 8.00 47.80 4.75 30.00 43.00
0 2.50 25.30 3.93 29.99 34.20
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in a microwave accelerated reaction system model MARS 5 (CEM
Corporation, USA) according to the US EPA method 3051 A (US
EPA, 2007) and the digestate was diluted with Milli-Q deionized
water (18MΩ). Recovery ratios between the certified and the analyt-
ical values for SRM 2711 ranged from 87.2 to 112.8% for the investi-
gated elements.

2.4. Statistical methods

To classify the different soil samples, PCA was applied by Eigenvalue
decomposition of the correlation matrix of the obtained experimental
data set in such a way that the first component contained the largest
possible variance. In this manner, maximum separation between the
clusters of parameters was achieved. PCA was applied in order to com-
prehend the relations of the obtained results, specifically the correlation
between the content of the elements and the soil fractions, aswell as be-
tween the soil properties and the total content of the investigated ele-
ments. In addition, linear correlation coefficients were calculated to
understand the relationships between the inter-element fractions and
the element–soil properties.

Data were analysed by Statistica software (Data Analysis Soft-
ware System, v.10.0, StatSoft, Inc., Tulsa, OK, USA). According to the
recommendation of StatSoft Statistica, the experimental database
was randomly divided into three groups for the development of the
ANN model: training data — 60%, cross-validation — 20% (used to
test the performance of the network while training) and testing
data— 20% (used to examine the network generalization capability).
A multi-layer perceptron model (MLP) consisting of three layers
(input, hidden and output) was used in this study because it is the
most common, flexible and general-purpose kind of ANN (Arsenović
et al., 2013). The MLP neural network learns using an algorithm called
“backpropagation”. The Levenberg–Marquardt algorithm has been
proved to be the fastest and particularly adapted for networks of mod-
erate size. During this iterative process, the input data are repeatedly
presented to the network (Grieu et al., 2011).

3. Results and discussion

3.1. Relations between pseudo-total metal concentrations and soil
physicochemical properties

The pseudo-total amounts, the sum of the individual fractions,
∑ = F0 + F1 + F2 + F3 + F4 + F5, of each investigated element in
the eight soil samples are given in Table 2. Of the investigatedmetals,
concentrations of Fe and Al were commonly the highest, followed by
K and Mn. Heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, Ba), as well as Li were
detected in a wide range of concentrations (0.0750–529 μg/g).

The PCA of pseudo-total element contents and physicochemical
properties of the soil samples showed that the first two principal
Table 2
Pseudo-total concentrations (μg g−1) of the examined elements in different soil samples
(S1–S8).

Pseudo-total element concentrations in μg g−1 dry weight

S1 S2 S3 S4 S5 S6 S7 S8

Al 1413 1419 1853 1879 2214 1669 1851 1532
Ba 78.5 83.2 326 100 86.8 56.8 65.6 114
Cd 0.189 0.164 0.192 0.201 0.149 0.158 0.0750 0.133
Cr 43.5 40.9 62.5 24.4 45.0 501 20.7 24.6
Cu 54.8 45.9 47.4 31.3 31.7 141 40.1 33.4
Fe 11,811 14,461 23,572 14,101 11,448 24,354 12,336 11,977
K 4417 1811 5059 3480 1472 609 1760 4396
Li 13.7 15.1 22.1 12.9 12.8 15.6 10.6 18.4
Mn 216 704 1837 1247 2408 1380 217 675
Ni 69.0 73.7 62.1 22.6 61.4 529 18.4 28.1
Pb 22.6 34.6 44.4 21.7 35.6 27.5 10.0 19.7
Zn 56.6 53.2 54.7 35.6 31.5 34.9 28.3 36.9
components (PCs) explained 57.00% of the total variance in the original
data (Fig. 1). The PC1 contributed 29.17%, and the PC2 27.83% to the total
variance. The contents of Cr (which contributed 7.9% of total variance),
Cu (7.9%), Fe (16.9%) and Ni (11.7%) exhibited positive scores according
to PC1, while the clay content (11.5%) and K2O content (9.7%) exhibited
negative influences on PC1. The contents of Cd (8.3%), Li (7.4%), Zn
(9.4%) and silt fraction (9.0%), together with pHKCl (10.0%) and pHH2O

(12.8%), exhibited positive influences on PC2, whereas Al (7.0%) and
the sand fraction content (10.1%) exhibited negative influences on
PC2. The Pearson's coefficients (r) were calculated and the obtained cor-
relations, statistically significant at the p b 0.01, p b 0.05 and p b 0.10
levels, are given in Table 3.

Soil sample of Leptosol (S6) stands out with the highest pseudo-total
concentrations of Cr, Cu, Fe and Ni, and with the lowest for Ba and K
(Table 2, Fig. 1). This soil type is also characterized by the highest values
of TOC (4.75%) and the lowest values of P2O5 (0.01 mg · 100 g−1), K2O
(8.8 mg · 100 g−1) and clay content (22.7%) in relation to the other
observed soil types (Smičiklas et al., 2015). S6 distinguished itself by
having both the highest and the lowest deviations in terms of the ob-
tained concentration variations (Cr, Cu, Fe, K and Ni) in the examined
soil samples (Table 2). The sample of Eutric Cambisol (S3) is character-
ized by a low content of CaCO3 and the highest pseudo-total concentra-
tions of Ba, K, Li and Pb. The highest pseudo-total concentrations of Al
and Mn were found in soil S5 (Stagnosol) which exhibited the smallest
content of Fe in relation to the other investigated soils, and also a low
content of CaCO3. Dystric Cambisol (S7) was the soil with the highest
content of sand (48.8%) and the lowest content of Cd, Cr, Li, Ni, Pb, Zn,
silt, pH, TOC and CaCO3. Soil sample S1 (Humic Fluvisol) is characterized
by the highest pseudo-total concentrations of Zn, pH value, P2O5 and
K2O contents, and the lowest content of Al and Mn; S2 (Fluvisol) by
the highest silt content and pH value, and the lowest CEC; and S4 (Mollic
Leptosol) by the highest content of Cd and the lowest values for Cu and
CaCO3.

The significant correlations between Cu–Cr, Ni–Cr and Ni–Cu (0.98,
1.00, 0.98, at p b 0.01, respectively; Table 3) indicate that these metals
have a common origin in the natural soils and appear together indepen-
dently of soil type. The high correlation, but at a lower level of signifi-
cance (p b 0.05), was also obtained for the Fe–Cr pair (Table 3). The
positive correlation between Li and Ba (0.81, p ˂ 0.05) suggests their nat-
ural origin and interrelationship in different types of soil. A similar con-
clusion could be made for the pair Al–Mn, based on the obtained
significant correlation at the p b 0.05 level (Table 3).

Considering the textural properties of soil, a negative correlation
(−0.72 at p b 0.05) was found between the sand content and the
pseudo-total concentration of Cd in all soil samples. This indicates
that an increased sand content is accompanied by reduced Cd
Fig. 1. Biplot of correlated pseudo-total element contents and physicochemical properties
of the investigated soil types.



Table 3
Correlation matrix for the pseudo-total concentrations of different elements and physicochemical parameters of the examined soil types.

Ba Cu Fe K Li Mn Ni Pb Sand Clay CaCO3 pHKCl pHH2O TOC K2O

Al 0.17 −0.22 0.01 −0.24 −0.20 0.74⁎ −0.12 0.19 0.48 −0.15 −0.58 −0.83⁎ −0.83⁎ −0.33 0.04
Ba −0.20 0.50 0.64x 0.81⁎ 0.40 −0.23 0.64x −0.23 0.21 −0.11 −0.12 −0.08 −0.27 −0.30
Cd 0.06 0.32 0.44 0.40 0.33 0.07 0.58 −0.72⁎ −0.08 −0.14 0.49 0.53 0.27 −0.06
Cr 0.98+ 0.71⁎ −0.53 0.10 0.20 1.00+ 0.09 0.29 −0.72⁎ −0.24 −0.05 0.12 0.76⁎ −0.71⁎

Cu 0.71x −0.47 0.10 0.05 0.98+ 0.06 0.27 −0.69x −0.23 0.02 0.19 0.76⁎ −0.67x

Fe −0.06 0.60 0.37 0.69x 0.51 0.14 −0.56 −0.28 −0.11 0.02 0.37 −0.85+

K 0.57 −0.15 −0.54 0.12 −0.61 0.78⁎ 0.11 0.40 0.33 −0.09 0.35
Mn 0.18 0.72⁎ 0.00 −0.38 −0.33 −0.44 −0.32 −0.01 −0.40
Ni 0.11 0.26 −0.73⁎ −0.21 −0.02 0.16 0.77⁎ −0.71x

Sand −0.36 −0.51 −0.83⁎ −0.82⁎ −0.16 −0.14
pHKCl 0.96+ 0.37 0.09

Unmarked correlations are not statistically significant.
+ Statistically significant at p b 0.01 level.
⁎ Statistically significant at p b 0.05 level.
x Statistically significant at p b 0.10 level.
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concentrations, regardless of the other soil characteristics. A negative
relation between total Cd and sand content was also determined for
69 sites in New Zealand (Reiser et al., 2014). The statistically significant
correlations obtained in this study also indicated that an increased con-
tent of the clay fraction was associated with decreased contents of Cr
and Ni (−0.72 and −0.73 at p b 0.05, respectively) and an increased
K concentration (0.78 at p b 0.05).

Among the other relations, it was found that the soil pH decreased
with increasing concentrations Al and sand contents, while the content
of K2O was negatively correlated with the concentrations of Cr and Fe
(Table 3). Pearson's correlation analysis also indicated that the soil
TOC was positively correlated with the amounts of Cr, Cu and Ni (0.76,
0.76 and 0.77, respectively, at p b 0.05).

3.2. Relations between metal distribution and physicochemical properties
of the soil

Mobilities of elements largely depend on the types of bonds by
which they are associated with the soil components. The first two
fractions of the applied sequential extraction F0 (water soluble) and F1
(exchangeable) constitute the available forms of elements. F2 (bound
to carbonates) and F3 (bound to iron and manganese oxides) phases
are potentially mobile, but not readily available under natural condi-
tions. Finally, the last two fractions F4 (bound to organic matter) and
F5 (residual) constitute unavailable pools of elements (Abollino et al.,
2011). The hitherto correlations between soil characteristics and ele-
ment distribution, referred to several elements and/or soil samples
(Ashraf et al., 2012; Guo et al., 2005; Navas and Lindhorfer, 2005;
Sipos et al., 2014) and, therefore, this study aimed at extending the
database.

The different patterns ofmetal partitioning in soil, being the function
of metal and soil properties, are demonstrated in Fig. 2. PCA was
performed to analyse possible relationships between soil types and
the distribution of elements in different phases. The rotation of PCs
was executed by the Varimax method with Kaiser normalization. The
PCA showed that the first PCs explained 64.05% of the total variance in
the original data, Fig. 3. The PC1 contributed 44.33%, and the PC2

19.72% to the total variance. The contents of Al (which contributed
14.1% of total variance), Cr (7.9%), Cu (7.9%), Fe (16.9%), K (8.2%), Li
(13.3%), Ni (8.3%), Zn (13.0%), exhibited negative scores according to
the PC1. The contents of K (14.5%), Li (8.8%) and Zn (11.1%) showed a
positive influence on the evaluation of the PC2, while the content of
Mn (26.5%) and Pb (19.3%) exhibited negative influences on the PC2

(Fig. 3). The Pearson's correlation coefficients between the content of
the investigated elements in different soil fractions are presented in
Table 4.

The grouping of Cdwith the samples related to Phase 1 (samples No.
9–16), Fig. 3, indicated that this element was mainly bound to the
exchangeable phase (F1) in most of the examined soil samples. The ob-
tained pseudo-total Cd concentrations in the present study were in
agreement with the average concentration of Cd in the Earth's crust
(~0.2 μg/g) and with the background Cd level in surface soils
(˂1 mg kg−1) (Gleyzes et al., 2002; Petrovic et al., 2009). Cadmium
was identified as the most mobile of the investigated metals, with up
to 60.5% in the exchangeable fraction. A high mobility of Cdwas detect-
ed in other uncontaminated soil samples (Dimović et al., 2013), as well
as in contaminated soil around a mining area (He et al., 2013). Pueyo
et al. (2003) investigated the distribution of a large number of elements
(Al, Ca, Fe, Mg,Mn, As, Bi, Cd, Cu, Pb, Tl and Zn) in contaminated soil and
found that Cd was the most mobile. Due to the high Cd mobility and
availability, its increased concentration in soil may cause long-term
risks to the ecosystem, biota and humans, and hence, Cd belongs to
the group pollutants that are of major interest in bioavailability studies
listed by the US Environmental Protection Agency.

The interconnection of Phase 3 (samples No. 25–32)withMn and Pb
indicate that these elements in soils are primarily linked to iron and
manganese oxides. Logically, Mn as one of the main contributors in
soil occurs mainly in the oxide fraction (44 to 81%). The remaining Mn
content is distributed between the other phases, in amounts which ob-
viously dependon soil type. Themobility ofMn in soils is extremely sen-
sitive to soil conditions, such as acidity,wetness, organicmatter content,
biological activity (Nadaska et al., 2012). Generally, low pH values fa-
vour the reduction of insoluble manganese oxides, resulting in in-
creased manganese mobility, while at soil pH values above 6, Mn is
efficiently bound to organic matter, oxides and silicates, resulting in de-
creased Mn solubility. In addition, Mn availability is high in soils with
low content of organic matter (Nadaska et al., 2012). This was con-
firmed by the present results, in which the most mobile Mn was
found in samples Dystric Cambisol (S7), Stagnosol (S5) and Eutric
Cambisol (S3), characterized by both low pH and low TOC content. Mn
was found in the readily available phase for biogeochemistry cycles in
the ecosystems (F1) and potentially bioavailable phase (F2), up to 16%
and 11%, respectively, for certain soil types. A similar distribution of
Mn in soil, with the highest content in F3, was also obtained by
Petrovic et al. (2009); Walna et al. (2010) and Navas and Lindhorfer
(2005). Pb was also mainly associated to Fe-, Mn-oxide fraction
(32–66%), followed by the oxidizable (F4) phase (17–45%) and the re-
sidual phase (13–27%). Negligible Pb concentrationswere found in frac-
tions F0 and F1, except for Dystric Cambisol (S7), in which the labile F1
phase represents 11% of the pseudo-total concentration. Abollino et al.
(2002a) and Guo et al. (2005) reported that Pb was mostly associated
with the residual phase, while Sarkar et al. (2014) found that the
major geochemical phase for Pbwas the Fe-,Mn-oxides phase, followed
by the residual and the oxidizable phases, aswas the case in the present
study. Pb was found to have a high affinity for soil Fe-oxides. This was
confirmed by Cornu et al. (2005), who reported that Pb was able to



Fig. 2.Distribution of Al, Ba, Cd, Cr, Cu, Fe, K, Li,Mn, Ni, Pb and Zn in the operationally defined soil fractions: F0—water soluble, F1— exchangeable, F2— bound to carbonates, F3— bound to
Fe-, Mn-oxides, F4 — bound to organic matter, F5 — residual.

75J. Marković et al. / Journal of Geochemical Exploration 165 (2016) 71–80
form stable hydroxide and carbonate complexeswhich are preferential-
ly bound to the (slightly) positively charged Fe-oxide surfaces. Pb in the
examined soil samples had a low potential mobility (0% for F0 and
around 2% for the F1 and F2 phases, on average) and, generally speaking,
it could be considered as a relatively immobile element. The exception
was sample S7 with 13% of potentially mobile Pb (F0 + F1). Given that
S7 was characterized by the lowest pseudo-total concentration of Pb
compared with the other soil types, the higher mobility was more
likely influenced by specific soil characteristics than some source of
contamination.

The high correlations between K, Zn, Li and Fe (Zn–Li = 0.94, Fe–
Li = 0.91, K–Zn = 0.89, Fe–Zn = 0.88, K–Li = 0.81 and Fe–K =
0.73 at p b 0.01; Table 4) and their association with samples of Phase
5 (samples No. 41–48) on thebioplot PCAdiagram, Fig. 3, indicate a sim-
ilar distribution of these elements in the soil phases, with the highest
amount in F5. In all soil samples, Znwas themost abundant in the resid-
ual fraction (69–90%). Negligible concentrations of this element were
found in phase F0, F1 and F2, indicating its lowmobility. The abundance
of Zn in F4 phase of all samples ranged from 7 to 15%. An inappreciable
amount of Zn was found in phase F3 except for in samples S1, S2 and S6,
in which the abundancewas 15–17%. A difference in the Zn distribution
among the various soil types was evidenced by Sarkar et al. (2014). The
association of Zn with the Fe-, Mn-oxide phase may be linked to the
high stability constants of Zn oxides (Abdu, 2010). Fe-oxides adsorb
considerable quantities of Zn and may also occlude Zn in the lattice
structures (Sarkar et al., 2014). Li and K also existedmainly in the resid-
ual phase (52–74% and 53–84%, respectively). High content in F5 could
primarily be linked to their natural geochemical origin and their associ-
ationwith the soil matrix. Between 4–19% and 2–14% of the extracted Li
and K, respectively, were associated with the exchangeable phase and
thuswere quite labile and easily available. Presence of Li and K in the re-
maining phases varies significantly depending on the soil type, except in
F0, in which negligible concentrations were found. In the available liter-
ature, it was difficult to find an adequate study to compare the



Fig. 3. Biplot of the correlated element contents in different fractions (F0, F1, F2, F3, F4 and F5) in the investigated soil samples (S1–S8).
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distribution of these two elements. Finally, Fe is a soil macro element
present mainly in the residual phase (62–83%). In all soil types, the Fe
distribution followed the order: F5 ˃ F3 ˃ F4. The high percentages of Fe
in the hardly accessible or inaccessible element pools confirmed its in-
terconnection with the soil matrix.

A high correlationwas also obtained between Fe and Al (Table 4). Al
was primarily distributed between the F3 (27–48%) and F5 (35–54%)
phases, and in the F4 phase (13–19%). Insignificant concentrations of
both Fe and Al were found in phases F0–F2. The obtained results for
the Fe and Al distributions in the soil samples were in good agreement
with those of several reported studies (e.g., Abollino et al., 2002a;
Navas and Lindhorfer, 2005; Sarkar et al., 2014).

The high correlations between Cr, Ni and Cu at p b 0.01 (Table 4)
indicate their similar speciation in the investigated soils. The highest
levels of Cr were found in the F5 phase of all soils, and the highest levels
of Ni and Cu were determined in this phase of the majority of the
investigated soils. The dominant proportion of Ni and Cr found in the re-
sidual phase is in agreement with the results of other studies (Abollino
et al., 2002a; Guo et al., 2005; Sarkar et al., 2014). Ni and Cr are, apart
from the F5, present in F3 (6–42% for Ni and 13–26% for Cr) and F4
(12–33% for Ni and 12–25% for Cr) phases. In soil samples S3, S5, S6
and S7, Niwas present in F1 (~3%),which represents its easily releasable
content. Cu was distributed between the F3, F4 and F5 phases, with no
Table 4
Correlation matrix for the element contents in different phases of the soil samples (n = 48).

Cd Cr Cu Fe K

Al −0.42+ 0.37⁎ 0.51+ 0.79+ 0.53+

Ba 0.26x −0.08 0.07 −0.02 0.04
Cd −0.18 −0.28x −0.31⁎ −0.16
Cr 0.53+ 0.60+ 0.09
Cu 0.45+ 0.18
Fe 0.73+

K
Li
Mn
Ni
Pb

Unmarked correlations are not statistically significant.
+ Statistically significant at p b 0.01 level.
⁎ Statistically significant at p b 0.05 level.
x Statistically significant at p b 0.10 level.
similar pattern, indicating that the type of soil plays an important role
in the distribution and mobility of Cu. Copper has an ionic radius close
to that of Fe3+ and thus, it could be incorporated into the structure of
crystalline Fe-oxides. Furthermore, the high stability constants of Cu
complexes with organic matter enable Cu binding to lipids, proteins,
and carbohydrates, while the high affinity of clay minerals for Cu incor-
poration explains its presence in the residue (Martinez and McBride,
1998; Sarkar et al., 2014). No statistically significant correlations were
found between Ba and the other examined elements. Bawas evenly dis-
tributed between phases F1, F2, F3, F4 and F5, with a negligible concentra-
tion in phase F0, in all the examined soil types.

As a final point, to clarify in what manner soil properties affect the
mobility of examined elements, the Pearson's correlation coefficients
were calculated (Table 5). The distribution of the majority of elements,
in one or more soil fractions, was in correlation with the specific soil
characteristics, whereas the patterns of Ba and Mn partitioning could
not be connected with any of the investigated soil properties at the de-
sired level of statistical significance.

The partitioning of the macro-elements Fe and K was significantly
correlated to the soil texture, i.e., to the content of clay. With the in-
creased percentage of clay fraction in the soil, the Fe found in Fe-, Mn-
oxide phase decreased, while the K concentration increased in the
most stable fractions F4 and F5. The total content of K in soil generally
Li Mn Ni Pb Zn

0.66+ 0.56+ 0.39+ 0.67 0.66+

0.04 0.31⁎ −0.07 0.35⁎ −0.05
−0.18 −0.13 −0.18 −0.34⁎ −0.26x

0.45+ 0.12 0.96+ 0.22 0.34⁎

0.29⁎ 0.33⁎ 0.71+ 0.48 0.34⁎

0.91+ 0.17 0.57+ 0.37⁎ 0.88+

0.81+ −0.11 0.04 0.07 0.89+

−0.08 0.39+ 0.18 0.94+

0.20 0.79 −0.12
0.31⁎ 0.31⁎

0.17



Table 5
Pearson's coefficients and p-values for the statistically significant correlations (p ˂ 0.05)
obtained between soil properties and elements in various fractions of the soils.

Element Phase Property r p

Al F1 Sand 0.846 0.008
Silt −0.802 0.017

F2 pH −0.921 0.001

Cr

F2 TOC 0.770 0.026
F3 Clay −0.741 0.035

TOC 0.748 0.033
F4 TOC 0.786 0.021
F5 Clay −0.716 0.046

TOC 0.760 0.029

Cu

F2 TOC −0.742 0.034
CEC −0.712 0.048

F3 Clay −0.725 0.042
TOC 0.736 0.037

F4 TOC 0.762 0.028
Fe F3 Clay −0.843 0.009

K
F4 Clay 0.753 0.031
F5 Clay 0.761 0.028

Li

F2 CaCO3 0.866 0.005
pH 0.746 0.034

F3 CEC 0.751 0.032
Cd F2 Sand −0.731 0.039

pH 0.811 0.015

Ni

F0 Clay −0.737 0.037
TOC 0.724 0.042

F1 Clay −0.721 0.044
TOC 0.730 0.04

F3 Clay −0.736 0.037
TOC 0.772 0.025

F4 TOC 0.816 0.014
F5 Clay −0.754 0.031

TOC 0.740 0.036

Pb

F1 Sand 0.859 0.006
Silt −0.809 0.015

F3 Silt 0.728 0.041

Zn

F1 Sand 0.717 0.045
pH −0.948 0

F2 Sand −0.786 0.021
Silt 0.861 0.006
pH 0.751 0.032
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increased with increasing clay content (Peverill et al., 1999), whichwas
confirmed by the significant positive correlation found in the present
study (0.78, p ˂ 0.05, Table 3). Furthermore, the observed high stability
of K in the clay-rich soils was in agreementwith the previously reported
significant positive relationship between non-exchangeable K and the
illite clay content (Rezapour et al., 2009). The mobility of Al was not
only strongly related to soil texture, but also to pH, two mutually con-
nected soil properties (Table 3). The content of Al in the most mobile
F1 phase was positively correlated with the sand and negatively with
the silt content. In addition, a negative relationship between soil pH
and the Al content in F2 was observed, which may be connected with
negative correlation linking soil pH with the pseudo-total content of
Al (−0.83 at p ˂ 0.05; Table 3).

Considering the distribution of themicro-elements, the effects of the
soil properties were numerous and complex. The distribution of Li was
mostly affected by soil pH and carbonate content. The correlations
were positive, meaning a higher Li content in the F2 fraction of
carbonate-rich soils, which also exhibited higher pH values. The general
weak influence of CaCO3 on the distribution of the other elements may
be partially ascribed to the lack of carbonates in samples S3–S6. A similar
absence of the effect of carbonate content on the mobility of Pb, Cu, Cr,
Table 6
ANN summary.

Network
name

Training
performance

Test
performance

Validation
performance

Training
error

MLP 2-4-12 0.783 0.795 0.853 0.110
Zn, As and Sn was registered by Ashraf et al. (2012) in the ex-mining
land of Bestari Jaya, Malaysia. The Cd distribution was significantly af-
fected solely in F2 fraction. The Cd content increased with decreasing
sand content, which is in agreement with the negative correlation be-
tween the sand content and the pseudo-total concentration of Cd in var-
ious soil types (−0.72 at p ˂ 0.05; Table 3). In contrast, the content of Cd
in F2 was positively correlated with soil pH. The easily available content
of Pb in the F1 fraction largely increased with increasing sand fraction.
On theother hand, increasing silt content is associatedwith stabilization
of Pb through its redistribution from F1 to F3. The increased sand content
had a similar effect on the mobility of Zn, given that the Zn concentra-
tion in F1 increased, while simultaneously decreased in F2, with increas-
ing sand fraction. Soil pH had an opposing effect, i.e., with increasing pH,
the Zn redistributed from F1 to F2.

The distributions of Cu, Cr and Ni were largely affected by the soil
TOC and the clay content. The negative correlation between clay content
and pseudo-total concentrations of Cr, Cu and Ni was previously ob-
served (Table 3). In light of the results presented in Table 5, the ob-
served trend may be interpreted as a decrease of the Cr content in F3
and F5, a Cu decrease in F3, and a reduction in the Ni content in F0, F1,
F3 and F5. In addition the TOC content also showed a significant correla-
tion with the pseudo-total Cr, Cu and Ni concentrations, but a positive
one (Table 3). Thus, the increasing total concentration of thementioned
elements with increasing TOC may be associated with increasing Cr
content in F2, F3, F4 and F5, the Cu in F3 and F4, and Ni in F0, F1, F3, F4
and F5. In addition, some stabilization of Cu with increasing TOC may
be an explanation for the observed redistribution from F2 to F3 and F4.
The Cu content in the carbonate fraction was also negatively correlated
with the soil CEC.
3.3. ANN modelling of metal distribution in different soil types

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, imple-
mented in the StatSoft Statistica evaluation routine, was used for the
ANN modelling. The optimization procedures to minimize the error
function between network and experimental outputs was used during
the ANN training cycle (Pezo et al., 2013; Taylor, 2006) and the sum of
squares (SOS) was evaluated according to the BFGS algorithm, to accel-
erate and stabilize the convergence of the results (Basheer andHajmeer,
2000). The training process was repeated several times in order to
obtain thebest performance of theANN, due to a high degree of variabil-
ity of the parameters. It was accepted that successful training was
achieved when the learning and cross-validation curves (SOS vs. train-
ing cycles) approached zero. Coefficient of determination (r2) and SOS
were used as parameters to check the performance (i.e., the accuracy)
of the obtained ANN.

The optimumnumber of hidden neuronswas chosen uponminimiz-
ing the difference between the predicted ANN values and the desired
outputs, using SOS during testing as a performance indicator. The
employed MLP is marked according to StatSoft Statistica's notation,
“MLP” followed by the number of inputs, number of neurons in the hid-
den layer, and the number of outputs. According to the ANN perfor-
mance (sum of r2 and SOSs for all variables in one ANN), it was
determined that the optimal number of neurons in the hidden layer is
7 (network MLP 2-4-12), Table 6.

The goodness-of-fit, between the experimental measurements and
model calculated outputs, represented as ANN performance (r2 be-
tween measured and calculated Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb
Test
error

Validation
error

Training
algorithm

Error
function

Hidden
activation

Output
activation

0.140 0.180 BFGS 73 SOS Tanh Logistic



Table 7
Coefficients of determination, r2, between experimentally measured and ANN outputs, during the training, testing and validation steps.

r2 Al Ba Cd Cr Cu Fe K Li Mn Ni Pb Zn

Training 0.978 0.625 0.910 0.438 0.572 0.931 0.815 0.919 0.901 0.427 0.920 0.962
Testing 0.988 0.072 0.564 0.965 0.955 0.998 0.992 0.970 0.575 0.616 0.854 0.993
Validation 0.882 0.897 0.854 0.965 0.679 0.964 0.926 0.952 0.561 0.818 0.785 0.949
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and Zn) during the training, testing and validation steps, is given in
Table 7.

The ANN models were used to predict the experimental variables
(Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb and Zn) in the different soil
types and phases. The networks were able to predict reasonably well
all process outputs for a broad range of the process variables (as seen
in Fig. 4, where the experimental measured and ANN model predicted
values are presented).

The predicted values were very similar to the desired values in most
cases, in terms of the r2 value, for the ANN models. The SOS obtained
with the ANN models were of the same order of magnitude as the ex-
perimental errors for Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb and Zn report-
ed in the literature (Basheer and Hajmeer, 2000; Pezo et al., 2013). The
values of r2 between experimental and ANN model (MLP 2-4-12) out-
puts, for Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb and Zn were 0.978,
0.625, 0.910, 0.438, 0.572, 0.931, 0.815, 0.919, 0.901, 0.427, 0.920 and
0.962, respectively, during the training period. Moreover, the means
and the standard deviations of the residuals were analysed. The
mean of the residuals for the ANN model were 5.90, −2.88, 0.00,
−4.64, −1.14, −422.99, −7.65, −0.12, −8.04, −3.66, −0.06 and
−0.02 for Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb and Zn, respectively,
while the standard deviations were 96.65, 18.17, 0.02, 41.01, 11.49,
1675.17, 553.68, 1.32, 225.93, 39.21, 3.06 and 3.51, respectively. These
results showed a relatively good approximation to a normal distribution
around zero with a probability of 95% (2•SD), which indicates a good
generalization ability of the ANN model for the ranges of the observed
experimental values.

The fitting parameters imply that the ANN approach has a significant
potential as a tool for the rapid assessment of metal mobility. The
Fig. 4. Experimentally measured and ANN model predicted values of Al,
improvement in the prediction reliability should be tested in the future
by taking into account additional soil parameters (such as mineralogy,
specific surface area and porosity, anion exchange capacity (AEC), the
type of organic matter). For instance, it could easily be observed from
Fig. 4 that the predicted and measured K concentrations were largely
scattered in the region of high concentrations, associated with fraction
F5. As clay mineralogy plays an important role in terms of the distribu-
tion of the K content (Rezapour et al., 2009), it must be taken into con-
sideration as input data for ANN development. Furthermore, the high
concentrations of Ni and Cr in sample S6 have a pronounced impact on
the fitting results (Fig. 4). Even though S6 is an unpolluted soil, some lo-
cations in Serbia are recognized as Ni and Cr rich (Albanese et al., 2015),
and such unusually high concentrations of naturally occurring elements
were associated with ophiolite masses and related sedimentary rocks.
Therefore, the goodness-of-fit could be enhanced by increasing the
total sample size, which would, among others, also contain more
extremes.

4. Conclusions

This study aimed to provide information on the speciation of Al, Fe,
Mn, K, Cd, Cr, Cu, Li, Ba, Ni, Pb and Zn in different types of unpolluted
soil, and establish correlations of metal contents and speciation with
soil characteristics. For this purpose, a chemometric approach (PCA
and ANN) was employed for the evaluation of the results of sequential
extraction analysis. The patterns of metal partitioning were dependent
on both metal and soil type. With the exception of Cd and Ba, these
metals were commonly found in the less available fractions (F3, F4 and
F5). Generally, soil texture and TOC had a predominant impact on the
Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb, and Zn in different soil fractions.
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metal contents and speciation. Samples with a higher percentage of
sand exhibited increased contents of Pb, Zn and Al in phase F1, which
is readily available in the environment. An ANN model was developed
in order to predict the complex distribution and mobility of elements
in uncontaminated soils based on the known soil properties. High r2

values and prediction accuracy of the observed outputs proved the
ANN as useful in the prediction of metal (especially Al, Cd, Fe, K, Li,
Mn, Pb and Zn) mobility in soils with a wide range of characteristics.
The obtained relationships are important for a rapid assessment of
metal speciation and represent a starting point for analysing mobility
changes due to contamination.
Acknowledgement

This work was supported by the Ministry of Education Science and
Technological Development of the Republic of Serbia (Project III43009).
References

Abdu, N., 2010. Availability, Transfer and Balances of HeavyMetals in Urban Agriculture of
West Africa. Kassel University Press GmbH, Kassel, Germany.

Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., Barberis, R., 2002a. Dis-
tribution and mobility of metals in contaminated sites. Chemometric investigation of
pollutant profiles. Environ. Pollut. 119, 177–193. http://dx.doi.org/10.1016/S0269-
7491(01)00333-5.

Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., Petrella, F., 2002b. Heavy
metals in agricultural soils from Piedmont, Italy. Distribution, speciation and chemo-
metric data treatment. Chemosphere 49, 545–557. http://dx.doi.org/10.1016/S0045-
6535(02)00352-1.

Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., Aceto, M., Barberis, R., 2006.
Assessment of metal availability in a contaminated soil by sequential extraction.
Water Air Soil Pollut. 173, 315–338. http://dx.doi.org/10.1007/s11270-005-9006-9.

Abollino, O., Malandrino, M., Giacomino, A., Mentasti, E., 2011. The role of chemometrics
in single and sequential extraction assays: a review. Anal. Chim. Acta 688, 104–121.
http://dx.doi.org/10.1016/j.aca.2010.12.020.

Adhikari, T., Biswas, A.K., Saha, J.K., 2005. Cadmium phytotoxicity in spinachwith or with-
out spent wash in a vertisol. Commun. Soil Sci. Plant Anal. 36, 1499–1511. http://dx.
doi.org/10.1081/CSS-200058495.

Albanese, S., Sadeghi, M., Lima, A., Cicchella, D., Dinelli, E., Valera, P., Falconi, M.,
Demetriades, A., De Vivo, B., 2015. GEMAS: cobalt, Cr, Cu and Ni distribution in agri-
cultural and grazing land soil of Europe. J. Geochem. Explor. 154, 81–93. http://dx.doi.
org/10.1016/j.gexplo.2015.01.004.

Almeida, J.S., 2002. Predictive non-linear modeling of complex data by artificial neural
networks. Curr. Opin. Biotechnol. 13, 72–76. http://dx.doi.org/10.1016/S0958-
1669(02)00288-4.

Alvarez, J.M., Lopez-Valdivia, L.M., Novillo, J., Obrador, A., Rico, M.I., 2006. Comparison of
EDTA and sequential extraction tests for phytoavailability prediction of manganese
and zinc in agricultural alkaline soils. Geoderma 132, 450–463. http://dx.doi.org/10.
1016/j.geoderma.2005.06.009.

Amiri, F., 2014. A nutritive value of Iranian mangrove ecosystems, northern part of the
Persian Gulf. Nat. Resour. Res. 23, 321–330.

Arcega-Cabrera, F., Armienta, M.A., Daesslé, L.W., Castillo-Blum, S.E., Talavera, O., Dótor, A.,
2009. Variations of Pb in a mine-impacted tropical river, Taxco, Mexico: use of geo-
chemical, isotopic and statistical tools. Appl. Geochem. 24, 162–171. http://dx.doi.
org/10.1016/j.apgeochem.2008.09.015.

Arsenović, M., Radojević, Z., Stanković, S., Lalić, Ž., Pezo, L., 2013. What to expect from
heavy clay? Ceram. Int. 39, 1667–1675. http://dx.doi.org/10.1016/j.ceramint.2012.
08.009.

Ashraf, M.A., Maah, M.J., Yusoff, I., 2012. Chemical speciation and potential mobility of
heavy metals in the soil of former tin mining catchment. ScientificWorldJournal
2012, 125608. http://dx.doi.org/10.1100/2012/125608.

Basheer, I., Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, de-
sign, and application. J. Microbiol. Methods 43, 3–31. http://dx.doi.org/10.1016/
S0167-7012(00)00201-3.

Cornu, S., Deschatrettes, V., Salvador-Blanes, S., Clozel, B., Hardy, M., Branchut, S., Le
Forestier, L., 2005. Trace element accumulation in Mn–Fe-oxide nodules of a
planosolic horizon. Geoderma 125, 11–24. http://dx.doi.org/10.1016/j.geoderma.
2004.06.009.

de Matos, A.T., Fontes, M.P.F., da Costa, L.M., Martinez, M.A., 2001. Mobility of heavy
metals as related to soil chemical and mineralogical characteristics of Brazilian soils.
Environ. Pollut. 111, 429–435. http://dx.doi.org/10.1016/S0269-7491(00)00088-9.

Dimović, S., Smičiklas, I., Šljivić-Ivanović, M., Dojčinović, B., 2013. Speciation of 90Sr and
other metal cations in artificially contaminated soils: the influence of bone sorbent
addition. J. Soils Sediments 13, 383–393. http://dx.doi.org/10.1007/s11368-012-
0633-7.

FAO, 2006. World reference base for soil resources 2006. World Soil Resources Reports
http://dx.doi.org/10.1017/S0014479706394902.

Giacomino, A., Abollino, O., Malandrino, M., Mentasti, E., 2011. The role of chemometrics
in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple
linear regression, mixture resolution, experimental design and other techniques.
Anal. Chim. Acta 688, 122–139. http://dx.doi.org/10.1016/j.aca.2010.12.028.

Gleyzes, C., Tellier, S., Astruc, M., 2002. Methodologies for soil and sediment fractionation
studies. In: Quevauviller, P. (Ed.), Methodologies for soil and sediment fractionation
studies, single and sequential extraction procedures. Royal Society of Chemistry,
Cambridge, p. 200 http://dx.doi.org/10.1039/9781847551412.

Grieu, S., Faugeroux, O., Traoré, A., Claudet, B., Bodnar, J.-L., 2011. Artificial intelligence
tools and inversemethods for estimating the thermal diffusivity of buildingmaterials.
Energy Build. 43, 543–554. http://dx.doi.org/10.1016/j.enbuild.2010.10.020.

Guo, P., Xie, Z.L., Li, J., Kang, C.L., Liu, J.H., 2005. Relationships between fractionations of Pb,
Cd, Cu, Zn and Ni and soil properties in urban soils of Changchun, China. Chin. Geogr.
Sci. 15, 179–185.

He, Q., Ren, Y., Mohamed, I., Ali, M., Hassan, W., Zeng, F., 2013. Assessment of trace and
heavy metal distribution by four sequential extraction procedures in a contaminated
soil. Soil Water Res. 8, 71–76.

Kabata-Pendias, A., 2001. Trace Elements in Soils and Plants, Third Edition. third ed. CRC
Press, Boca Raton, FL.

Kashani, M.H., Ghorbani, M.A., Dinpashoh, Y., Shahmorad, S., 2014. Comparison of
Volterra model and artificial neural networks for rainfall–runoff simulation. Nat.
Resour. Res. 23, 341–354.

Kelepertzis, E., Paraskevopoulou, V., Argyraki, A., Fligos, G., Chalkiadaki, O., 2015. Evalua-
tion of single extraction procedures for the assessment of heavy metal extractability
in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece).
J. Soils Sediments 15, 2265–2275. http://dx.doi.org/10.1007/s11368-015-1163-x.

Lucho-Constantino, C.A., Alvarez-Suárez, M., Beltrán-Hernández, R.I., Prieto-García, F.,
Poggi-Varaldo, H.M., 2005. A multivariate analysis of the accumulation and fraction-
ation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigat-
ed with raw wastewater. Environ. Int. 31, 313–323. http://dx.doi.org/10.1016/j.
envint.2004.08.002.

Luz, F., Mateus, A., Matos, J.X., Gonçalves, M.A., 2014. Cu- and Zn-soil anomalies in the NE
border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by
multifractal and geostatistical analyses. Nat. Resour. Res. 23, 195–215.

Martinez, C.E., McBride, M.B., 1998. Coprecipitates of Cd, Cu, Pb and Zn in iron oxides:
solid phase transformation and metal solubility after aging and thermal treatment.
Clay Clay Miner. 46, 537–545.

Nadaska, G., Lesny, J., Michalik, I., 2012. Environmental aspect of manganese chemistry.
Hung. Electron. J. Sci. HEJ ENV-10, 1–16.

Navas, A., Lindhorfer, H., 2005. Chemical partitioning of Fe, Mn, Zn and Cr in mountain
soils of the Iberian and Pyrenean ranges (NE Spain). Soil Sediment Contam. Int. J.
14, 249–259. http://dx.doi.org/10.1080/15320380590928311.

Pérez, G., Valiente, M., 2005. Determination of pollution trends in an abandoned mining
site by application of a multivariate statistical analysis to heavy metals fractionation
using SM&T-SES. J. Environ. Monit. 7, 29–36. http://dx.doi.org/10.1039/b411316k.

Petrovic, D., Todorovic, M., Manojlovic, D., Krsmanovic, V.D., 2009. Speciations of trace
metals in the accumulation Bogovina on the Crni Timok river. Pol. J. Environ. Stud.
18, 873–884.

Peverill, K., Sparrow, L., Reuter, D., 1999. Soil Analysis: An Interpretation Manual. CSIRO
Publishing.

Pezo, L., Curcic, B., Filipovic, V., Nicetin, M., Koprivica, G., Misljenovic, N., Levic, L., 2013. Ar-
tificial neural network model of pork meat cubes osmotic dehydration. Hem. Ind. 67,
465–475. http://dx.doi.org/10.2298/HEMIND120529082P.

Pueyo, M., Sastre, J., Hernández, E., Vidal, M., López-Sánchez, J.F., Rauret, G., 2003. Heavy
metals in the environment: prediction of trace element mobility in contaminated
soils by sequential extraction. J. Environ. Qual. 32, 2054–2066.

Reiser, R., Simmler, M., Portmann, D., Clucas, L., Schulin, R., Robinson, B., 2014. Cadmium
concentrations in New Zealand pastures: relationships to soil and climate variables.
J. Environ. Qual. 43, 917–925. http://dx.doi.org/10.2134/jeq2013.09.0367.

Rezapour, S., Jafarzadeh, A.A., Samadi, A., Oustan, S., 2009. Impacts of clay mineralogy and
physiographic units on the distribution of potassium forms in calcareous soils in Iran.
Clay Miner. 44, 327–337. http://dx.doi.org/10.1180/claymin.2009.044.3.327.

Riba, I., Delvalls, T.a., Forja, J.M., Gómez-Parra, A., 2002. Evaluating the heavy metal con-
tamination in sediments from the Guadalquivir estuary after the Aznalcóllar mining
spill (SW Spain): a multivariate analysis approach. Environ. Monit. Assess. 77,
191–207. http://dx.doi.org/10.1023/A:1015828020313.

Sarkar, S.K., Favas, P.J.C., Rakshit, D., Satpathy, K.K., 2014. Geochemical speciation and risk
assessment of heavymetals in soils and sediments. In: Hernandez-Soriano, M.C. (Ed.),
Environmental Risk Assessment of Soil Contamination. InTech, p. 918 http://dx.doi.
org/10.5772/57295.

Sipos, P., Németh, T., Choi, C., Szalai, Z., Balázs, R., 2014. Distribution, geochemical fraction-
ation and sorption of Cu and Pb in soils characteristic of Hungary. Cent. Eur. Geol. 57,
265–285. http://dx.doi.org/10.1556/CEuGeol.57.2014.3.3.

Smičiklas, I., Jović, M., Šljivić-Ivanović, M., Mrvić, V., Čakmak, D., Dimović, S., 2015. Corre-
lation of Sr2+ retention and distribution with properties of different soil types.
Geoderma 253-254, 21–29. http://dx.doi.org/10.1016/j.geoderma.2015.04.003.

Sungur, A., Soylak, M., Ozcan, H., 2014. Investigation of heavy metal mobility and avail-
ability by the BCR sequential extraction procedure: relationship between soil proper-
ties and heavy metals availability. Chem. Speciat. Bioavailab. 26, 219–230. http://dx.
doi.org/10.3184/095422914X14147781158674.

Taylor, B.J., 2006. Methods and Procedures for the Verification and Validation of Artificial
Neural Networks. first ed. Springer US http://dx.doi.org/10.1007/0-387-29485-6.

Tessier, A., Campbell, P.G.C., Blsson, M., 1979. Sequential extraction procedure for the spe-
ciation of particulate trace metals. Anal. Chem. 51, 844–851.

Tokalioğlu, Ş., Kartal, Ş., 2003. Relationship between vegetable metal and soil-extractable
metal contents by the BCR sequential extraction procedure: chemometrical interpre-
tation of the data. Int. J. Environ. Anal. Chem. 83, 935–952. http://dx.doi.org/10.1080/
03067310310001608740.

http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0005
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0005
http://dx.doi.org/10.1016/S0269-7491(01)00333-5
http://dx.doi.org/10.1016/S0269-7491(01)00333-5
http://dx.doi.org/10.1016/S0045-6535(02)00352-1
http://dx.doi.org/10.1016/S0045-6535(02)00352-1
http://dx.doi.org/10.1007/s11270-005-9006-9
http://dx.doi.org/10.1016/j.aca.2010.12.020
http://dx.doi.org/10.1081/CSS-200058495
http://dx.doi.org/10.1016/j.gexplo.2015.01.004
http://dx.doi.org/10.1016/S0958-1669(02)00288-4
http://dx.doi.org/10.1016/S0958-1669(02)00288-4
http://dx.doi.org/10.1016/j.geoderma.2005.06.009
http://dx.doi.org/10.1016/j.geoderma.2005.06.009
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0050
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0050
http://dx.doi.org/10.1016/j.apgeochem.2008.09.015
http://dx.doi.org/10.1016/j.ceramint.2012.08.009
http://dx.doi.org/10.1016/j.ceramint.2012.08.009
http://dx.doi.org/10.1100/2012/125608
http://dx.doi.org/10.1016/S0167-7012(00)00201-3
http://dx.doi.org/10.1016/S0167-7012(00)00201-3
http://dx.doi.org/10.1016/j.geoderma.2004.06.009
http://dx.doi.org/10.1016/j.geoderma.2004.06.009
http://dx.doi.org/10.1016/S0269-7491(00)00088-9
http://dx.doi.org/10.1007/s11368-012-0633-7
http://dx.doi.org/10.1007/s11368-012-0633-7
http://dx.doi.org/10.1017/S0014479706394902
http://dx.doi.org/10.1016/j.aca.2010.12.028
http://dx.doi.org/10.1039/9781847551412
http://dx.doi.org/10.1016/j.enbuild.2010.10.020
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0110
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0110
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0110
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0115
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0115
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0115
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0120
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0120
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0125
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0125
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0125
http://dx.doi.org/10.1007/s11368-015-1163-x
http://dx.doi.org/10.1016/j.envint.2004.08.002
http://dx.doi.org/10.1016/j.envint.2004.08.002
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0140
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0140
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0140
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0145
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0145
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0145
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0155
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0155
http://dx.doi.org/10.1080/15320380590928311
http://dx.doi.org/10.1039/b411316k
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0170
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0170
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0170
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0175
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0175
http://dx.doi.org/10.2298/HEMIND120529082P
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0185
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0185
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0185
http://dx.doi.org/10.2134/jeq2013.09.0367
http://dx.doi.org/10.1180/claymin.2009.044.3.327
http://dx.doi.org/10.1023/A:1015828020313
http://dx.doi.org/10.5772/57295
http://dx.doi.org/10.1556/CEuGeol.57.2014.3.3
http://dx.doi.org/10.1016/j.geoderma.2015.04.003
http://dx.doi.org/10.3184/095422914X14147781158674
http://dx.doi.org/10.1007/0-387-29485-6
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0230
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0230
http://dx.doi.org/10.1080/03067310310001608740
http://dx.doi.org/10.1080/03067310310001608740


80 J. Marković et al. / Journal of Geochemical Exploration 165 (2016) 71–80
Tokalioğlu, Ş., Kartal, Ş., Güneş, A.A., 2004. Statistical evaluation of bioavailability of metals
to grapes growing in contaminated vineyard soils using single extractants. Int. J. Environ.
Anal. Chem. 84, 691–705. http://dx.doi.org/10.1080/03067310410001688444.

Torres, E., Auleda, M., 2013. A sequential extraction procedure for sediments affected by
acid mine drainage. J. Geochem. Explor. 128, 35–41. http://dx.doi.org/10.1016/j.
gexplo.2013.01.012.

US EPA, 2007. Method 3051: microwave assisted acid digestion of sediments, sludges,
soils, and oils. Test Methods Eval. Solid Waste, pp. 1–30.
Walna, B., Spychalski, W., Ibragimow, A., 2010. Fractionation of iron andmanganese in the
horizons of a nutrient-poor forest soil profile using the sequential extraction method.
Pol. J. Environ. Stud. 19, 1029–1037.

Yu, K.C., Chang, C.Y., Tsai, L.J., Ho, S.T., 2000. Multivariate analyses on heavy metal binding
fractions of river sediments in Southern Taiwan. Water Sci. Technol. 42, 193–199.

http://dx.doi.org/10.1080/03067310410001688444
http://dx.doi.org/10.1016/j.gexplo.2013.01.012
http://dx.doi.org/10.1016/j.gexplo.2013.01.012
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0250
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0250
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0255
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0255
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0255
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0260
http://refhub.elsevier.com/S0375-6742(16)30063-2/rf0260

	Chemical speciation of metals in unpolluted soils of different types: Correlation with soil characteristics and an ANN mode...
	1. Introduction
	2. Materials and methods
	2.1. Soil sampling and characterization
	2.2. Sequential extraction
	2.3. Analytical technique for the determination of the elements
	2.4. Statistical methods

	3. Results and discussion
	3.1. Relations between pseudo-total metal concentrations and soil physicochemical properties
	3.2. Relations between metal distribution and physicochemical properties of the soil
	3.3. ANN modelling of metal distribution in different soil types

	4. Conclusions
	Acknowledgement
	References


