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The concept of higher order frequency response functions (FRFs) is used for the
analysis of non-linear adsorption kinetics on a particle scale, for the case of non-iso-
thermal micropore diffusion with variable diffusivity. Six series of FRFs are defined for
the general non-isothermal case. Anon-linerar mathematical model is postulated and the
first and second order FRFs derived and simulated. A variable diffusivity influences the
shapes of the second order FRFs relating the sorbate concentration in the solid phase and
t he gas pressure significantly, but they still keep their characteristics which can be used
for discrimination of this from other kinetic mechanisms. It is also shown that first and
second order particle FRFs offter sufficient information for an easy and fast estimation
of all model parameters, including those defining the system non-linearity.

Keywords: non-isothermal adsorption, non-linear frequency response, higher order fre-
quency response functions, micropore diffusion, variable micropore diffusivity, param-
eter estimation.

INTRODUCTION

Understanding the interaction between a fluid an a solid phase is of fundamental
importance to the design of an adsorption process. In the literature, a variety of methods
for the investigation of adsorption kinetics are presented. Frequency response (FR),
which is in the scope of this paper, is based on the analysis of a quasi-stationary re-
sponse to a periodic input change for the identification of the kinetic model and the esti-
mation of the constants of the various rate processes involved.

The first paper on the application of frequency response in the investigation of the
kinetics of adsorption systems appeared in 1963.1 Subsequently, a number of research
groups were concerned with the theoretical and experimental aspects on this and related
topics.2–28 Frequency response has usually been investigated in batch systems with
forced periodic modulation of the reservoir volume, although FR in semi-batch18 and
continuous flow systems19 with periodic modulation of the inlet molar flow rate have
also been treated.
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Almost all investigators assume system linearity, although most adsorption systems
are significantly non-linear. As a result, very small amplitudes of input perturbations are re-
quired, which results in uncertainty of the measured data and loss of any information about
the non-linearity of the system and limits the applications of the obtained results to a range
very close to the conditions of the experimental investigation.

This paper is a continuation of investigations of adsorption kinetics by non-linear
FR, in which the FR method is extended to the analysis of non-linear adsorption sys-
tems.20–24,28 The concept of higher order frequency response functions for analysis of
the non-linear FR is used.

Some details about non-linear FR and the concept of higher order FRFs can be
found in previous papers.20,23,24,28 Here, only of a few basic facts will be summarized:

– Contrary to the FR of a linear system, which is a periodic function of the same
shape and frequency as the input, the FR of a non-linear system in addition to this first,
or basic harmonic also contains a DC (non-periodic) component and, theoretically, an
infinite number of higher harmonics.

– The concept of higher order frequency response functions29 (FRFs) is based on
Volterra series and generalized Fourier transform29 and can be applied for weakly
non-linear systems.29 It is applied by substituting the non-linear model of the system by
an infinite series of linear frequency response functions of the first, second, third, etc.
order. These functions are directly related to the components of the non-linear FR (the
first order FRF defines the most significant term of the first harmonic of the FR, the sec-
ond order FRFs define the most significant terms of the second harmonic and the DC
components, etc.) and can be estimated from them, using the procedure given by Lee.30

In our investigations of the FR of adsorption systems, the FRFs representing the
models on the adsorber and on the particle scale are distinguished.20,21,28 The adsorber
FRFs depend on both the adsorber type and the kinetic mechanism and can be estimated
directly from the experimentally measured FR, while the particle FRFs depend only on
the kinetic mechanism and have to be calculated from the adsorber ones. As the final
aim of FR investigations of adsorption systems is to reveal the kinetic mechanism and
to estimate the corresponding kinetic parameters, the particle FRFs are of most interest.
It has been shown23,24 that the non-linear FR gives additional information than that ob-
tained from the linear FR and can be used for model discrimination. On the other hand,
procedure for calculation of the paricle FRFs from the adsorber ones has been estab-
lished.20,28

In this paper, the higher order FRFs on the particle scale for non-isothermal ad-
sorption governed by micropore diffusion are investigated. This mechanism is com-
mon in zeolite type microporous sorbents. The zeolite particles are composed of a large
number of microporous microparticles with larger pores between them and with the
dominant mass transfer resistance usually arising in the microparticles. Arealistic case
of variable micropore diffusivity, which is generally a function of both concentration
and temperature, is treated. A simple convective heat transfer mechanism (gas film re-
sistance) is considered, which means that the particle temperature is treated as uniform.
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This work can be treated as a continuation of the compilation of a library of sets of FRFs
corresponding to different kinetic mechanism,23,24 which is one of the crucial steps in
the application of the method of non-lienear FR in the identification of the correct ki-
netic model.28

Earlier, it was shown that second order FRFs give additional information about
the kinetic mechanism.23,24 For this reason, together with the fact that the third and
higher order FRFs give very complicated mathematical expressions, only the first and
second order FRFs will be considered in this paper. Also, the FRFs will be derived only
for the case of slab microparticle geometry, for which analytical solutions can be found.

Before the derivation of the FRFs, model equations on the particle scale will be
set up. Adsorption of a pure gas will be considered.

MATHEMATICAL MODEL FOR NON-ISOTHERMAL MICROPORE DIFFUSION

In order to derive the FRFs on the particle scale, model equations defining ad-
sorption in an adsorbent particle surrounded by a gas of uniform concentration and tem-
perature have to be defined. For the case under consideration, in which the mass transfer
is controlled by micropore diffusion, and heat transfer by gas film resistance, the fol-
lowing equations are obtained:

The microparticle material balance
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The boundary conditions for Eq. (1) are
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which means that the concentration profile in the microparticle is symmetrical and

rm = Rm: Q = f(P,Tp) (3)

which means that local equilibrium is established at the mouth of the micropore,
with the adsorption equilibrium relation f, which is generally a non-linear function
of the gas pressure and particle temperature.

The mean concentration in the microparticle is
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and the particle heat balance
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In Eqs. (1) to (5) t is time, rµ the microparticle space coordinate, Rµ the micro-
particle half-dimension, σ a shape factor (0 for slab, 1 for cylindrical and 2 for
spherical microparticle geometry), Q the adsorbate concentration in the solid phase,
Tp the particle temperature, P the gas pressure, Tg the gas temperature, Dµ the
micropore diffusivity, which is generally a non-linear function of Q and Tp

Dµ = g(Q,Tp) (6)

Vp, ρp and Cps, the particle volume, density and heat capacity, respectively, (– ∆Ha)
the differential heat of adsorption, h the particle to gas heat transfer coefficient and a
the corresponding surface area.

For analysis in the frequency domain, it is most convenient to define all depend-
ent variables as non-dimensional deviations from the steady state around which the sys-
tem oscillates. Their definitions are given in Table I.

TABLE I. Definitions of the non-dimensional variables and model parameters

The model equations (1) to (5) become
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In equation (7), the non-linear function g, defined in Eq. (6) is presented in the
form of a Taylor series, which is convenient - for the application of the concept of higher
order FRFs. In this equation Dms is the steady state value of the micropore diffusivity,
Dq

(1)is its first order concentration coefficient, DT
(1) its first order temperature coeffi-

cient, Dqq
(2) its second order concentration coefficient, etc. In a similar way, in Eq. (9),
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the Taylor series expansion of the adsorption equilibrium function f is used, with ap
representing the first order pressure coefficient, aT the first order temperature coeffi-
cient, bpp the second order pressure coefficient, bTT the second order temperature coef-
ficient and bpT the second order mixed coefficient. The new parameters in Eq. (11) ξ
and ζ, which are defined in Table I, represent the modified heat of adsorption and heat
transfer coefficients, respectively.

The obtained model relates the changes of the mean sorbate concentration in the
particle <Q> (or <q>) and particle temperature Tp (or θp) (the output variables) to the
changes of the pressure P (or p) and temperature of the surrounding gas Tg (or θg)(the
input variables).

This non-linear model has two sources of non-linearity: one is the non-linear
equilibrium relation, which makes the boundary condition at the microparticle surface
(Eq. (3) or (9)) non-linear, and the other is the variable diffusivity.

HIGHER ORDER FREQUENCY RESPONSE FUNCTIONS

Definitions

As described in a previous paper28, for the general non-isothermal, non-linear case,
six series of frequency response functions are needed to define adsorption on a particle
scale, four of them relating each output to each input, and two series of cross-functions re-
lating each output to both inputs. These series are defined in the block diagram presented
in Fig. 1. F is used to denote the FRFs corresponding to the output <q>, and H for those
corresponding to θp. The subscript represents the input variable (p for pressure, and T for
the gas temperature). In practice, for the estimation of all six series of particle FRFs, it is
necessary to measure the temperature, along with the pressure.28
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Also, in the mathematical derivations, the notation F* is used for the FRFs corre-
sponding to the local concentration in the microparticle q(rµ). The “F*” functions are
also functios of rµ.

Derivation of the first and second order FRFs

The general procedure for the derivation of the particle FRFs was given in Ref. 28
and illustrated on the example of non-isothermal adsorption governed by micropore
diffusion mass transfer with constant diffusivity and convective heat transport. The ba-
sic idea of this derivation is to define the inputs as harmonic functions of time, express
the outputs in the form of Volterra series,29 substitute them into the model equations and
apply the method of harmonic probing.31 As a result, a series of sets of linear equations
is obtained in which time as an independent variable is replaced by frequency, the out-
put variables are replaced by their corresponding series of FRFs, and the partial differ-
ential equations are transformed into ordinary differential equations. The mathematical
expressions for the FRFs are obtained by solving these sets of equations.

In order to reduce the number of equations in this paper, only the sets of equations
defining the first and second order FRFs corresponding to the model Eqs. (7) to (11),
and the resulting mathematical expressions obtained by their solution will be given.
Only the case of slab microparticle geometry (σ = 0), for which analytical solutions can
be obtained, is considered. For cylindrical and spherical geometry, the second order
FRFs can only be obtained numerically.

First order FRFs with respect to pressure (F1,p and H1,p)

The easiest way to derive these functions is to define the inputs as p = Aejωt, θg = 0.
When the outputs are expressed in the form of Volterra series, substituted into Eqs. (7) and
(11) and the terms with Aejωt collected, the following set of equations is obtained
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Equation (12) is a homogeneous ordinary linear differential equation which is eas-
ily solved. Its solution, subject to the boundary conditions (13) and (14), is
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Integration of this function over the microparticle volume, according to Eq. (15), to-
gether with Eq. (16), leads to the following final result
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First order FRFs with respect to gas temperature (F1,T and H1,T)

If the inputs are defined as p = 0, θg = Aejωt, the model Eqs. (7) to (11) are trans-
formed into
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Again, Eq. (21), with the boundary conditions (22) and (23), is easily solved giving
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which, after integration according to Eq. (24), results in the following expressions
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It should be noticed that the obtained first order FRFs are identical to the expres-
sions corresponding to constant micropore diffusivity.28 This is to be expected, as the
first order FRFs correspond to the linearized model, while the variable diffusivity is one
of the sources of the non-linearity of the system.

Second order FRFs with respect to pressure (F2,pp and H2,pp)

The best way to develop these functions is to set the inputs as: p = A1ejω1t +
A2ejω2t, θg = 0. Representing the outputs in the Volterra series form, substituting them
into Eqs. (7) to (11) and collecting the terms with A1A2ej(ω1+ ω2)t gives the following set
of equations:
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After substituting the previously derived expressions for F*
1p, F*

1T, H1p and H1T

(Eqs. (17), (26), (19) and (28)), into Eq. (30), the resulting equation, although very
complex, can still be solved analytically. The solution process involves some long
and tedious algebra, so it will be omitted here. Only the final expressions, which are
obtained after integration of function F*

2,pp according to Eq. (33), will be given
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In practice, the response to a single harmonic input is usually considered in that
case, only the second order FRFs corresponding to ω1 = ω2 = ωand ω1 = –ω2 = ωare
of interst. The first one corresponds to the most significant term of the second har-
monic, while the second one corresponds to the most significant term of the DC
component. It can easily be shown that
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and

F2,pp(ω, –ω) = ϕ1(ω, –ω) + 2 Re(ϕ2(ω, –ω) Φ(ω)) (39)

H2,pp(ω,–ω) = 0 (40)
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Second order FRFs with respect to gas temperature (F2,TT and H2,TT)

Similar to the previous case, if the inputs are defined as: p = 0, θg = A1ejω1t +
A2ejω2t, the set of Eqs. (7) to (11) is transformed into

d ( )

d

2
2, 1 2

2

F r

r

TT ω ω µ

µ

, ,
–

j

D sµ
(ω1 + ω2)F TT2,

* (ω1,ω2,rµ) =

− ω
ω

+ ω
µ

µ
µ

µ

D

r
F r

F r

r
F r

q

T
T

T

(1)

1,
*

1
1,
*

2
1,
*

2
2

d

d
( )

d ( )

d
(,

,
, µ

µ

µ

ω











)
d ( )

d

1,
*

1F r

r

T ,
+

− ω
ω

+ ω
µ

µ

µ

D

r
H

F r

r
H

F
T

T
T

T
T

(1)

1,
1,
*

2
1, 2

1,
*

2

d

d
( )

d ( )

d
( )

d (, ω











µ

µ

1 )

d

,r

r
(41)

r
F r

r

TT
µ

µ

µ
=

ω ω
=0:

d ( )

d
0

2,
*

1 2, ,
(42)

r R F r a H b b HTT T TT pp TT Tµ µ µ= ω ω = ω ω + +: ( ) ( ) (2,
*

1 2 2, 1 2 1,, , , ω ω1 1, 2) ( )H T (43)

F
R

F r rTT TT

R

2, 1 2 2,
*

0

1 2( )
1

( )dω ω = ω ω
µ

µ µ

µ

∫, , , (44)

H
j

j
FTT TT2, 1 2

1 2

1 2
2, 1 2( )

( )

( )
( )ω ω =

ξ ω +ω
ω +ω +ς

ω ω, , (45)

Again, the tedious solution procedure will be omitted and only the final expressions
given:
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F TT2, 1 2
1 1 2 1 2 2 1 2 1 2( )
( ) ( ) ( ) ( ) (

ω ω =
Ψ ω ω Φ ω +ω +Ψ ω ω Φ ω +Ψ ω

,
, , 2 1 2

1 2 1 2

) ( )

1 ( ) ( )

,ω Φ ω
− Λ ω +ω Φ ω +ωaT

(46)

H2,TT(ω1,ω2) = F2,TT (ω1,ω2)Λ(ω1 + ω2) (47)

where

Ψ1(ω1,ω2) = H1,T(ω1)H1,T(ω2)× (46a)

Ψ2(ω1,ω2) = H1,T(ω1)H1,T(ω1)
D a D a

T T q T
(1)

1

2

(2) 2

2 4

ω
ω

−












(46b)

For ω1 = ω2, this solution becomes

F
a

TT

T

2,
1 2( )
( ) (2 ) 2 ( ) ( )

1 (2 ) (2 )
ωω =

Ψ ωω Φ ω + Ψ ωω Φ ω
− Λ ω Φ ω

,
, , (48)

H2,TT(ω,ω) = F2,TT(ω,ω)Λ(2ω) (49)

with

Ψ ωω = ω + + −1 1,
2

(1)
(1)( ) ( )

2
, ( tanh ( ))H

D a
D aT

q T

T
b RTT 1 2 α ω µ T













(48a)

Ψ ωω = ω −












2 1,
2

(1) (2) 2

( ) ( )
2 4

, H
D a D a

T
T T q T (48b)

and for ω1 = –ω2

F2,TT(ω1, –ω2) = Ψ1(ω, –ω) + 2Re(Ψ2(ω, – ω)Φ(ω)) (50)

H2,TT (ω, –ω) = 0 (51)

with

| |Ψ ω −ω = ω + +












1 1,

2
(1) 2

(1)( ) ( )
2

, H b
D a

D a
T TT

q T

T T
(50a)

| |Ψ ω −ω =− ω +












2 1,

(1) (2) 2

( ) ( )
2 4

, H
D a D a

T
T T q T2 (50b)
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× b
D a

R RTT

q T+ + ω +ω
ω ω

α ω α ω



 µ µ

(1) 2

1 2

1 2
1 1

2
1

2
tanh( )tanh( )




 −

ω
ω

+ω
ω























D a
T T
(1)

1

2

2

12



Second order FRFs with respect to pressure and temperature (F2,pT and H2,pT)

Defining the inputs as p = A1ejω1t, θg = A2ejω2t transforms Eqs. (7) to (11) into the
following set of equations:

d ( )

d
( ) ( )

2
2,
*

1 2

2 1 2 2,
*

1 2

F r

r

j

D
F r

pT

s

pT

ω ω
− ω +ω ω ωµ

µ µ
µ

, ,
, , =

− ω
ω

+ ω
µ

µ
µ

µ
µD

r
F r

F r

r
F rq p

T
T

(1)
1,
*

1
1,
*

2
1,
*

2
d

d
( )

d ( )

d
(,

,
, )

d ( )

d

1,
*

1F r

r

p ω










−µ

µ

,

− ω
ω

+ ω
µ

µ

µ
D

r
H

F r

r
H

F

T p
T

T

p(1)
1, 1

1,
*

2
1, 2

1,
*

d

d
( )

d ( )

d
( )

d (, ω











µ

µ

1 )

d

,r

r
(52)

r
F r

r

pT

µ
µ

µ
=

ω ω
=0:

d ( )

d
0

2,
*

1 2, , (53)

rµ = Rµ: F pT2,
* (ω1, ω2, rµ) = aTH2,pT (ω1, ω2) + bpTH1,T(ω2)

+ bTTH1,p(ω1) H1,T(ω2)
(54)

F
R

F r rpT pT

R

2,
*

1 2 2,
*

0

1 2( )
1

( )dω ω = ω ω
µ

µ µ

µ

∫, , , (55)

H
j

j
FpT pT2, 1 2

1 2

1 2
2, 1 2( )

( )

( )
( )ω ω =

ξ ω +ω
ω +ω +ς

ω ω, , (56)

The final solution of the set of Eqs. (52) to (56) is:

F pT2, 1 2
1 1 2 1 2 2 1 2 1 3( )
( ) ( ) ( ) ( ) (

ω ω =
η ω ω Φ ω +ω +η ω ω Φ ω +η ω

,
, , 1 2 2

1 2 1 2

) ( )

1 ( ) ( )

,ω Φ ω
− Λ ω +ω Φ ω +ωaT

(57)

H2,pT (ω1, ω2) = F2,pT(ω1, ω2) Λ(ω1 + ω2) (58)

where

η1(ω1,ω2) = bpTH1,T(ω2)+bTTH1,p(ω1)H1,T(ω2)+Dq
(1)aT(ap+aTH1,p(ω1))H1,T(ω2)

× 1
2

tanh( )tanh( )1+ 2

1 2
1 1+ ω ω

ω ω
α ω α ω









µ µR R

+ ω + ω ω
ω

+ ω
ω









D H a a H a

T T p T p T
(1)

1, 2 1, 1
1

2

2

1

( ) ( ( )) (57a)
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η ω ω = ω
ω

−














+ ω2 1 2
(1) 1

2

(1)

1, 1( )
2

( ( ), D
D a

a a H
T

q T

p T p ) ( )1, 2H T ω (57b)

η ω ω = ω
ω

− + ω












3 1 2

(1) 1

2

(1)

1, 1( )
2

( ( )), D
D

a a H a
T

q

p T p T TH1, 2( )ω
(57c)

For ω1 = ω2, Eqs. (57) to (58) become

F
a

pT

T

2,
1 2 3( )
( ) (2 ) ( ( ) ( )) ( )

1
ωω =

η ωω Φ ω + η ωω +η ωω Φ ω
− Λ

,
, , ,

(2 ) (2 )ω Φ ω
(59)

H2,pT(ω,ω) = Λ(2ω)Φ(2ω) (60)

with:

η1(ω, ω) = bpT H1,T(ω) + bTTH1,p(ω) H1,T(ω) + Dq
(1)aT (ap + aTH1,p (ω))

×H1,T(ω)(1 + tanh2 (α ωRµ)) – DT
(1) (ap + aT + aTH1,p (ω)) H1,T(ω) (59a)

η2 (ω, ω) + η3 (ω, ω) = – Dq
(1)aT (ap + aTH1,p (ω)) H1,T(ω)

– DT
(1) × (ap + aT + aTH1,p (ω)) H1,T(ω) (59bc)

and for ω1 = –ω2 = ω

F2,pT(ω, –ω) = η1(ω, –ω) + η2(ω, –ω)Φ(ω) + η3 (ω,–ω)Φ(–ω) (61)

H2,pT (ω, –ω2) = 0 (62)

with

η1(ω, –ω) = bpT H1,T(–ω) + bTTH1,p(ω) H1,T(–ω) + Dq
(1)aT (ap +

+ aTH1,p (ω)) H1,T(–ω) – DT
(1) (ap + aT + aTH1,p (ω)) H1,T(–ω)

(61a)

η2(ω, –ω) = – (DT
(1) + Dq

(1)aT/2) (ap + aTH1,p(ω)) H1,T(–ω) (61b)

η3(ω1, –ω2) = – (DT
(1) + Dq

(1)(ap + aTH1,p(ω1))/2) aTH1,T(–ω) (61c)

It should be noticed that, contrary to the second order FRFs F2,pp and F2,TT,
which are symmetrical (F2,pp(ω1, ω2) = F2,pp(ω2, ω1) and (F2,TT(ω1, ω2) = F2,TT(ω2,
ω1)), the crossfunction F2,pp(ω1, ω2) is asymmetrical (F2,pT(ω1, ω2) ≠F2,pp(ω2, ω1)).

Illustration - adsorption of CO2 on silicalite-1

As an illustration, some simulation results of the first and second order FRFs, us-
ing the expressions derived in the previous section, will be given. The simulation pa-
rameters are given in Table II. They correspond to literature data on the adsorption of
CO2 on silicalite-1,12 to steady state pressure and temperature Ps = 10 kPa and Ts = 298
K, and to moderate heat transfer resistances. The isotherm pressure and temperature co-
efficients (ap, aT, bpp, bTT and bpT) were obtained by expanding the Langmuir equilib-
rium relation
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Q
Q bP

bP
=

+
0

1
; b = b0 exp(k/Tp) (63)

into a Taylor series. The diffusivity concentration and temperature coefficients
Dq

(1) and DT
(1) were obtained from a Taylor series expansion of a function based on

the well known Darken equation for the concentration dependence and the Arrhe-
nius type relation for the temperature dependence of the micropore diffusivity

D D
P

Q
D D

E

R Tg p

µ = = −










0 0 0

*d(ln )

d(ln )
; exp (64)

TABLE II. Data for simulation (adsorption of CO2 on silicalite-1, Ps = 10 kPa, Ts = 298 K)12

Microparticle data σ = 0 (slab shape); Rµ = 15 µm

Equlibrium ap =0.911, aT = –7.1069

parameters bpp = –0.0811, bTT = 29.8932, bpT = –5.8415

Physical and Dµs = 2.7443×10-9 m2/s, Dq
( )1

= – 0.0977, DT
( )1

= 0.0037

transport
ξ = 3.01×10-2, ζ = 0.5 s-1

parameters

The simulation results are presented in Figs. 2a to 2d. The FRFs are complex
functions of frequency. They are represented in the form of amplitute and phase
characteristics, using the classical Bode plot representation (the amplitudes in log-log
and the phases in semi-log diagrams). The functions H2,pp (ω,–ω) and H2,TT (ω, –ω),
which are identically equal to zero, are not shown.

In Fig. 2a, the FRFs corresponding to the isothermal case (the parameter ζ very
large) are given. Notice that for this case the “Fp” FRFs describe the system completely.
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ANALYSIS AND DISCUSSION

Characteristic features of the frequency response functions

First, thecharacteristic featuresof thesecondorderFRFscorresponding tomicropore
diffusion with a variable diffusion coefficient will be considered. For comparison, the com-
plete set of FRFs for micropore diffusion with a constant diffusivity Dq

(1)= D
T
(1)= 0) are

given in Fig. 3. All the other simulation parameters are from Table II (the same as in Fig. 2).
Again, the FRFs obtained for the isothermal case are added in Fig. 3a.

NON-ISOTHERMAL ADSORPTION 953

Fig. 2. The simulated first and second order FRFs for adsorption of CO2 on silicalite-112 at 10 kPa
and 298 K: (a) “Fp” (q vs.p) functions + “Fp” functions for the isothermal case; (b) “Hp” (θp vs. p)
functions; (c) “FT” (q vs. θg) and “FpT” (q vs. p and θg) functions; (d) “HT” (θp vs. θg) and “HpT”

(θp vs. p and θg) functions.



Inspection of Figs. 2 and 3 shows that the only recognizable difference in the
shapes of the FRFs corresponding to variable and to constant diffusivities can be found
in the second “FP” functions, both for the isothermal and for the non-isothermal case.
The function F2,pp(ω, –ω) seems especially usuful in this sense: it has horizontal as-
ymptotes both for low and for high frequencies, which are equal for the case of constant
diffusivity and unequal for the case of variable diffusivity. It is also important to notice
that the functions F2,pp(ω, ω) and F2,pp(ω, –ω) still have shapes which enable the dis-
tinction of the micropore diffusion mechanism from other kinetic mechanisms (e.g., for
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Fig. 3. The simulated first and second order FRFs for the case of constant diffusivity Dq
(1) = DT

(1) =
0, the other simulation parameters the same as given in Fig. 2): (a) “Fp” (q vs.p) functions + “Fp”
functions for the isothermal case; (b) “Hp” (θp vs. p) functions; (c) “FT” (q vs. θg) and “FpT” (q vs.

p and θg) functions; (d) “HT” (θp vs. θg) and “HpT” (θp vs. p and θg) functions.



the macropore diffusion mechanism, the amplitude of F2,pp(ω, ω) changes the slope
several times, while the amplitude of F2,pp(ω, –ω) is a descending function ofω23,24).

The investigation of the influence of variable diffusivity on the functions F2,pp(ω,
ω) and F2,pp(ω, –ω) showed that it was mostly related to the concentration coefficient
Dq

(1). The amplitudes of F2,pp(ω, ω) and F2,pp(ω, –ω) obtained with four different val-
ues of Dq

(1): 0, –0.0977, –0.1954 and –0.4885 are shown in Fig. 4. The first value corre-
sponds to constant diffusivity (the same as in Fig. 3), the second is equal to the value in
Table II (the same as in Fig. 2), and the third and fourth value are multiples, by two and
by five, of the value in Table II. The influence of Dq

(1)on the high frequency asymptotes
is obvious, especially for the function F2,pp(ω, –ω).

The other FRFs will not be discussed, as they show the same patterns as for the
case of non-isothermal micropore diffusion with constant diffusivity.28

Estimation of model parameters

One of the advantages of the non-linear over the linear FR is that the second order
FRFs give valuable information for the identification of the correct mathematical
model. i.e., the most probable kinetic mechanism. Another advantage is that it enables
estimation of the model parameters, including the ones defining the system non-li-
nearity. A fast and easy way of estimating all the parameters of the defined model
(non-isothermal micropore diffusion with varialbe diffusivity and convective heat
transfer mechanism) will be shown here.

Estimation of the equilibrium parameters

The equilibrium parameters ap, aT, bpp, bTT and bpT can all be estimated from the
low frequency asymptotes of some of the FRFs. It is easily shown that

a Fp p= ω
ω→
lim ( )

0
1, (65)

a FT T= ω
ω→
lim ( )

0
1, (66)

NON-ISOTHERMAL ADSORPTION 955

Fig. 4. Influence of Dq
(1) on the second order “Fp” functions.



bpp = lim
ω→0

F2,pp(ω,ω) = lim
ω→0

F2,pp(ω, –ω) (67)

bTT = lim
ω→0

F2,TT(ω,ω) = lim
ω→0

F2,TT(ω, –ω) (68)

bpT = lim
ω→0

F2,pT(ω,ω) = lim
ω→0

F2,pT(ω, –ω) (69)

It is not surprising that the “linear” equilibrium parameters ap and aT are obtained
from the first order (linear) FRFs, while the “non-linear” parametersbpp, bTTand bpTcan be
estimated only from the second order FRFs. These five parameters actually represent the
first and second derivatives of the adsorption equilibrium relation in non-dimensional form
in the steady state point, so they give information about the form of this relation.

Estimation of the diffusion parameters

The problem of the estimation of the micropore diffusivity for the isothermal case
and constant diffusivity has been solved long ago.3 It can be calculated from the posi-
tion of the maximum of the so called out-of-phase characteristic function,3 which is ac-
tually another name for the absolute value of the imaginary part of the function F1,p.18

For micropore diffusion and slab microparticle geometry, it is proportional to fhe func-
tion Φ(ω), defined in Eq. (20) (notice that for the isothermal case, Eq. (18) reduces to
F1p(ω) = apΦ(ω)). The frequency at which this maximum is obtained satisfies the fol-
lowing condition

R

D

µ

µ
ω =

2

max 2.656
(70)

For the known microparticle size, the micropore diffusivity can be easily calculated
from Eq. (70). Nevertheless, for non-isothermal cases, the determination of the dif-
fusion coefficient becomes much more complex, as the out-of- phase function has
two maxima.7,9 The out-of-phase functions for the non-isothermal and for the iso-
thermal case presented in Fig. 2 are shown in Fig. 5.

956 PETKOVSKA

Fig. 5. Imaginary parts of F1,p for non-isothermal and isothermal case and F1,T/H1,T.



This problem can be solved if the whole set of FRF needed to describe the
non-isothermal micropore diffusion is available. If a new function is defined as the ratio
of F1,T and H1,T

G
F

H
a

T

T

T( )
( )

( )
( )

1,

1,

ω =
ω
ω

= Φ ω (71)

it has the same form as F1,p for the isothermal case (its imaginary part is also pre-
sented in Fig. 5). Using this result, the micropore diffusivity at steady state Dµs can
be defermined from the location of the maximum of Im(G).

The diffusivity concentration and temperature coefficients Dq
(1) and DT

(1) have
to be determined from the second order FRFs. The first one can be easily obtained from
the high frequency asymptote of the function F2,pp(ω, –ω) (see Fig. 4b)

lim
ω→0

F b
D a

pp pp

q p

2,

(1) 2

( )
2

ω −ω = +, (72)

The temperature coefficient DT
(1) cannot be estimated directly. However, a new

function can be defined

| |
W

F

H
b

D a
D a

TT

T

TT

q T

T T( )
( )

( ) 2

2,

1,
2

(1) 2
(1)ω =

ω −ω

ω
= + +








, 






−[ ]1 Re( ( ))F ω (73)

which has a horizontal high frequency asymptote from which DT
(1) can be calcu-

lated

lim
ω→∞

W b
D a

D aTT

q T

T T( )
2

(1) 2
(1)ω = + + (74)

Estimation of x and z

These parameters cannot be estimated directly from any of the particle FRFs.
However, if one defines

Z
H

F

j

j

p

p

( )
( )

( )
( )

1,

1,

ω =
ω

ω
=Λ ω = ξ ω

ς + ω
(75)

it is possible to estimate the parameter ξ from the high frequency asymptote

lim
ω→∞

Z(ω) = ξ (76)

On the other hand, the definition of another function

X
H

F

a

a

a

a
j

p

T

p

T

p

T

( )
( )

( )

( )

( )

1,

1,

ω =
ω

ω
= Λ ω

Ω ω
= ξ

ς
ω (77)

enables the estimation of the parameter ζ, from the slope of the imaginary part of X
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Im( ( ))X
a

a
K

a

a K

p

T

p

T

ω = ξ
ς

ω= ω ⇒ ς = ξ (78)

It should be recalled that the parameter ξ carries information on the heat of ad-
sorption, and ζ on the heat transfer coefficient (see Table I).

CONCLUSIONS

The investigated case: non-isothermal non-liear adsorption governed by micropore
diffusion with variable diffusivity is a highly realistic problem in a number of commercial
microporous adsorbers. The proposed method, analysis of non-linear FR using the con-
cept of higher order frequency response functions, although rather complex, can success-
fully treat suchproblems.Thedefinitionof theFRFson theparticle scaleenables theanal-
ysis to be focused on the kinetic mechanism in the particle, which is the final aim of the in-
vestigation. One of the important steps in the application of the method is the generation
of a certain library of sets of FRFs corresponding to different mechanisms and analyzing
their patterns which can be used for the discrimination between different mechanisms.
This work is part of the effort of compiling such a library.

The analysis of the FRFs for the investigated mechanism demonstrated three ma-
jor things:

1. The FRFs corresponding to micropore diffusion with variable diffusivity
maintain the main characteristics which distinguish the micropore diffusion mecha-
nism from other mechanisms.

2. The second order FRF F2,pp(ω, –ω), relating the sorbate concentration in the
solid phase and the gas pressure, gives enough information to make a decision on
whether in a particular case the micropore diffusivity in the system is variable or can be
treated as constant.

3. The first and second order FRFs offer enough information for the fast and easy
estimation of all the parameters defined in the model. Estimation of the parameters re-
lated to the non-linearity of the system is especially significant.

Considering all this, this work can be used as another proof of the superiority of
the non-linear FR method over the classical linear FR one.

NOTATION

a – particle to gas heat transfer surface area, m2

ap – first order pressure coefficient of the adsorption equilibrium function

aT – first order temperature coefficient of the adsorption equilibrium function

b – Langmiur isotherm parameter, Pa-1 (Equation 63)

b0 – pre-exponential factor of the Langmiur isotherm parameter b, Pa-1 (Equation (63))

bpp – second order pressure coefficient of the adsorption equilibrium function

bTT – second order temperature coefficient of the adsorption equilibrium function

bpT – mixed second order pressure and temperature coefficient of the adsorption equilibrium function
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Cps – particle heat capacity, j/g/K

Dµ – micropore diffusivity, cm2/s

Dµs – micropore diffusivity at steady state, cm2/s

D0 – the corrected diffusivity, cm2/s (Equation (64))

D0* – pre-exponential factor of the corrected diffusivity, cm2/s (Equation (64))

Dq
(1) – first order concentration coefficient of the micropore diffusivity

DT
(1) – first order temperature coefficient of the micropore diffusivity

E – activation energy for micropore diffusion, J/mol (Equation (64))

Fn,p...p (ω1, ..., ωn,) – n-th order <q> vs. p FRF

F*n,p...p (ω1 ..., ωn, rµ) – n-th order q(rµ) vs. p FRF

Fn,T...T (ω1, ..., ωn) – n-th order <q> vs. θg FRF

F*n,T...T (ω1, ..., ωn, rµ) – n-th order q(rµ) vs. θg FRF

Fn,p...p,T...T (ω1, ..., ωn) – n-th order <q> vs. p and θg FRF

F*n,p...p,T...T (ω1, ..., ωn, rµ) – n-th order q(rµ) vs. p and θg FRF

h – particle to gas heat transfer coefficient, J/m2/K/s

Hn,p...p (ω1, ..., ωn) – n-th order θp vs. p FRF

Hn,T...T (ω1, ..., ωn) – n-th order θp vs. θg FRF

Hn,p...pT...T (ω1, ..., ωn) – n-th order θp vs. p and θg FRF

j – imaginary unit ( −1)

k – temperature coefficient of the Langmiur isotherm parameter, K–1 (Equation (63))

P – pressure, kPa

p – non-dimensional pressure

Q – concentration in the adsorbent particle, mol/cm3

q – non-dimensional concentration in the adsorbent particle

Q0 – concentration in the adsorbent particle at maximal coverage, mol/cm3 (Equation 63)

Rg – gas constant, J/mol/K

Rµ – microparticle half-dimension, cm

rµ – microparticle spatial coordinate, cm

t – time, s

Tg – gas temperature, K

Tp – particle temperature, K

Vp – particle volume, cm3

Greek letters

θg – non-dimensional gas temperature

θp – non-dimensional particle temperature

ρp – particle density, g/cm3

σ – shape factor

ξ – modified heat of adsorption coefficient (Table I)

ζ – modified particle to gas heat transfer coefficient, s–1 (Table I)

ω – frequency, rad/s
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Abbreviations

FR – frequency response

FRF – frequency response function

< > – mean value
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NELINEARNI FREKVENTNI ODZIV NEIZOTERMNOG ADSORPCIONOG SISTEMA

^IJA JE KINETIKA KONTROLISANA DIFUZIJOM KROZ MIKROPORE SA

PROMENQIVOM DIFUZIVNO[]U

MENKA PETKOVSKA

Katedra za hemijsko in`ewerstvo, Tehnolo{ko-metalur{ki fakultet, Univerzitet u Beogradu,

Karnegijeva 4, 11000 Beograd

Kori{}ewem koncepta frekventnih prenosnih funkcija vi{eg reda, izvr{ena

je analiza kinetike nelinearne adsorpcije na nivou ~estice sorbenta, za slu~aj

neizotermne difuzije kroz mikropore sa promenqivom difuzivno{}u, kao ograni-

~avaju}eg mehanizma. Definisano je {est serija frekventnih prenosnih funkcija

koje su potrebne da opi{u sistem za op{ti neizotermni slu~aj. Po{av{i od mate-

mati~kog modela na nivou ~estice, izvedeni su izrazi za frekventne prenosne funk-

cije prvog i drugog reda. Izvr{ena je simulacija ovih funkcija sa parametrima

odre|enim iz literaturnih podatka koji odgovaraju adsorpciji CO2 na silicalitu-1.

Na|eno je da promenqiva difuzivnost zna~ajno uti~e na oblik frekventnih preno-

snih funkcija drugog reda koje povezuju promenu koncentracije u ~vrstoj fazi i

promenu pritiska. Me|utim, ove funkcije i daqe zadr`avaju svoje karakteristike na

osnovu kojih se adsorpcija dirigovana difuzijom kroz mikropore mo`e razlikovati

od drugih kineti~kih mehanizama. Tako|e je pokazano da se iz frekventnih prenosnih

funkcija prvog i drugog reda dobija dovoqno informacija na osnovu kojih se brzo i

jednostavno mogu odrediti svi parametri modela, ukqu~uju}i i one koji defini{u

nelinearnost sistema.
(Primqeno 1. avgusta 2000)
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