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Abstract: Due to the relative ease of producing nanofibers with a core–shell structure, emulsion
electrospinning has been investigated intensively in making nanofibrous drug delivery systems for
controlled and sustained release. Predictions of drug release rates from the poly (D,L-lactic-co-glycolic
acid) (PLGA) produced via emulsion electrospinning can be a very difficult task due to the
complexity of the system. A computational finite element methodology was used to calculate
the diffusion mass transport of Rhodamine B (fluorescent drug model). Degradation effects and
hydrophobicity (partitioning phenomenon) at the fiber/surrounding interface were included in the
models. The results are validated by experiments where electrospun PLGA nanofiber mats with
different contents were used. A new approach to three-dimensional (3D) modeling of nanofibers
is presented in this work. The authors have introduced two original models for diffusive drug
release from nanofibers to the 3D surrounding medium discretized by continuum 3D finite elements:
(1) A model with simple radial one-dimensional (1D) finite elements, and (2) a model consisting
of composite smeared finite elements (CSFEs). Numerical solutions, compared to experiments,
demonstrate that both computational models provide accurate predictions of the diffusion process
and can therefore serve as efficient tools for describing transport inside a polymer fiber network and
drug release to the surrounding porous medium.

Keywords: computational modeling; radial finite element; composite smeared finite element;
diffusion; emulsion electrospinning; controlled drug release

1. Introduction

The encapsulation and controllable release of drugs, as well as achieving enhanced therapeutic
effects in drug delivery systems, were the subjects of investigation for a number of authors in the
past (e.g., [1–3]). Among these drug-delivery systems, electrospun nanofiber mats are promising
as drug carriers which offer site-specific delivery of drugs to the target in human body, and may
be used for wound healing and cancer therapy [4–8]. Electrospinning is a technique that utilizes
the electric force to drive the spinning process and to produce polymer fibers [9–11], and is capable
of producing fibers with diameters in the nanometer range (10–1000 nm). Nanofibers obtained
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by electrospining are structurally homogeneous and are unlikely to encapsulate bioactive agents
as nanoscaled particles. Recently, electrospinning of emulsions produced composite nanofibers
with nanoscaled drug particles surrounded/coated by emulsifiers/surfactants and impregnated
in biocompatible and/or biodegradable polymers [12]. Such types of composite nanofiber mats play
the role of a controllable drug encapsulation/release vehicle.

The most commonly used biodegradable synthetic polymers for three-dimensional (3D) scaffolds
in tissue engineering are saturated poly(α-hydroxy esters), including poly(lactic acid) (PLA) and
poly(glycolic acid) (PGA), as well as poly(lactic-co-glycolide) (PLGA) copolymers [13,14]. PLGA has
been well recognized for its suitability in drug delivery due to its good biocompatibility and ability to
achieve complete drug release as a result of degradation and erosion of the polymer matrix. PLGA is
a linear copolymer that can be prepared at different ratios between its constituent monomers, lactic
(LA) and glycolic acid (GA). Depending on the ratio of lactide to glycolide used for the polymerization,
different forms of PLGA can be obtained. The degradation of PLGA copolymer is the collective process
of bulk diffusion, surface diffusion, bulk erosion, and surface erosion. Since there are many variables
that influence the degradation process, the release rate pattern is often unpredictable. The release
of a drug from the homogeneously degrading matrix is more complicated. Polymer composition is
the most important factor for hydrophilicity and rate of degradation of a delivery matrix. Systematic
studies of polymer composition with its degradation [15,16] showed that an increase in glycolic acid
percentage accelerates the weight loss of polymer. It was shown that PLGA 50:50 (PLA/PGA) exhibited
a faster degradation than PLGA 65:35 due to preferential degradation of glycolic acid proportion
assigned by higher hydrophilicity. Subsequently, PLGA 65:35 shows faster degradation than PLGA
75:25, and so does PLGA 75:25 compared to PLGA 85:15 [17]. The absolute value of the degradation
rate increases with the glycolic acid proportion. The amount of glycolic acid is a critical parameter in
tuning the hydrophilicity of the matrix and, thus, the degradation and drug release rate [18].

Modeling the PLGA degradation and erosion is a prerequisite for drug release modeling,
and mechanistic approaches are most commonly employed [19,20]. Accompanied and facilitated
by PLGA degradation and erosion, drug release has a significant impact by changing the properties of
the polymer matrix (porosity and PLGA MW), and such factors need to be captured in the diffusion
drug transport models. The hydrophobicity of electrospun nanofiber mats could play an important
role in the overall performances as tissue engineering scaffolds. While macromolecular hydrophilic
drugs are limited by diffusion through the pore space, relatively smaller hydrophobic drugs could
diffuse through both the PLGA matrix and the pore space [21].

It is a challenge to adequately model through numerical methods the process of drug release
from fibers to the surrounding medium, with taking into account transport conditions within fibers
(including degradation), in the medium, and at the interface between fibers and the surroundings.
Using continuum elements for modeling fibers would require a huge effort for the finite element (FE)
model generation and lead to an enormous number of equations, therefore preventing implementation
to practical problems. In order to have a robust model, feasible for practical use, we have introduced
two approaches here: (1) The use of a radial 1D finite element which replaces a detailed modeling of
fibers by continuum elements [22], and (2) a model with fibers represented by a continuum according
to the smeared concept introduced in References [23–25]. The second model is particularly attractive,
since it does not need any 1D finite element meshing for fiber representation.

In the next section, Materials and Methods, electrospining methodology and the drug release
of RhB from PLGA1 (65:35) and PLGA2 (50:50) nanofiber mats are investigated. Next, we present
fundamental equations of the radial 1D element and the equation of degradation implemented into our
model, including the hydrophobic effects. This is followed by the formulation of the smeared model
for the fiber network. Finally, we demonstrate the applicability and accuracy of the computational
models by presenting both numerical and experimental results.
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2. Materials and Methods

Here are described the materials used for electrospining, as well as the electrospining procedure
and the design of simple experiments for drug release.

2.1. Materials

Poly(D,L-lactide-co-glycolide) PLGA1 (average molecular weight MW 40,000–75,000 g/mol) with
the mass ratio of lactide:glycolide units being (65:35), poly(D,L-lactide-co-glycolide) PLGA2 (average
molecular weight MW 30,000–60,000 g/mol), with the mass ratio of lactide:glycolide units being
(50:50), Rhodamine B (RhB), span-80, N,N-dimethylformamide (DMF) and chloroform (CHCl3),
were purchased from Sigma-Aldrich Co. (Milwaukee, WI, USA). The chemicals were used without
further purification. Phosphate buffered saline solution (PBS) was made by dissolving one tablet of
PBS, supplied by Fisher Scientific (Hampton, NH, USA) in 200 mL of distilled water.

2.1.1. Preparation of PLGA Nanofibers Produced via Emulsion Electrospinning

To prepare the emulsion containing 24 wt.% PLGA and 0.1 wt.% Rhodamine B, PLGA1 and
PLGA2 (3.0 g) were initially dissolved in the mixture of solvents chloroform/DMF (8.25/2.75 g) and
magnetically stirred at 200 rpm at room temperature for 24 h. After that, span-80 (50.0 mg) was
added to this polymer solutions, followed by the addition of 5 wt.% of RhB aqueous solution (60 µL).
The mixture was additionally stirred for 2 h.

The vertical electrospinning experimental setup (CH-01, Linari Engineering, Pisa, Italy) was used
as a method for the preparation of the nanofibers. In order to obtain fine nanofibers, the electrospinning
conditions were optimized as follows: Polymer solutions were ejected from a 20 mL plastic syringe
into a metallic needle (1 mm inner diameter) at a distance of 10 cm from collector, while flow rate was
3 mL/h and applied voltage 20 kV. SEM (scanning electron microscopy, Tescan Mira3 XMU (Brno,
Czech Republic)) images of nanofibers are shown on Figure 1.
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Figure 1. SEM images of drug loaded 24 wt.% 50:50 PLGA nanofibers (PLGA2).Images of same 
PLGA mat with different scale bars 100 µm (a), 50 µm (b), 10 µm (c) and 10 µm (d). 

As shown in Figure 1a–d, the PLGA2 nanofiber scaffold is highly porous and has a dense mesh 
structure with bead-free and randomly arranged nanofibers. For the determination of the implant 
porosity, the nanofiber sheet’s apparent density was firstly estimated by the measurement of 
volume and mass of samples [26]. The results showed that for PLGA1 and PLGA2, the porosities 
were ~59% and ~78%, respectively. A numerical investigation regarding the influence of porosity 
was carried out in our previous paper. There, a radial 1D finite element for drug release from drug 
loaded nanofibers was introduced, where we confirmed that our model can predict the drug release 
for different porosities of the model [22]. 

2.1.2. Drug Loading Efficiency 

Rhodamine B encapsulation efficiency (EE) and the percentage of drug loading (DL) were 
determined using a UV spectrophotometer (UV Shimadzu 1700, Shimadzu Corporation, Kyoto, 
Japan) at 554 nm. The RhB encapsulation efficiency and the RhB loading capacity of the process 
were calculated according to the methods described in References [27,28]. Based on the obtained 

Figure 1. SEM images of drug loaded 24 wt.% 50:50 PLGA nanofibers (PLGA2).Images of same PLGA
mat with different scale bars 100 µm (a), 50 µm (b), 10 µm (c) and 10 µm (d).

As shown in Figure 1a–d, the PLGA2 nanofiber scaffold is highly porous and has a dense mesh
structure with bead-free and randomly arranged nanofibers. For the determination of the implant
porosity, the nanofiber sheet’s apparent density was firstly estimated by the measurement of volume
and mass of samples [26]. The results showed that for PLGA1 and PLGA2, the porosities were ~59%
and ~78%, respectively. A numerical investigation regarding the influence of porosity was carried out
in our previous paper. There, a radial 1D finite element for drug release from drug loaded nanofibers
was introduced, where we confirmed that our model can predict the drug release for different porosities
of the model [22].
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2.1.2. Drug Loading Efficiency

Rhodamine B encapsulation efficiency (EE) and the percentage of drug loading (DL) were
determined using a UV spectrophotometer (UV Shimadzu 1700, Shimadzu Corporation, Kyoto,
Japan) at 554 nm. The RhB encapsulation efficiency and the RhB loading capacity of the process were
calculated according to the methods described in References [27,28]. Based on the obtained results,
it was determined that the EE and DL for both PLGA1 and PLGA2 were 99% and 0.09%, respectively.

2.1.3. In Vitro Drug Release Studies

The RhB-loaded PLGA1 and PLGA2 nanofiber mats were cut into small pieces, and approximately
40 mg (2.5 cm × 2.5 cm) of each sample was immersed in 20 mL phosphate buffer solution (PBS,
pH = 7.4) at 37 ◦C. At certain time intervals, 1 mL of sample solution taken for the analysis was
replaced with 1 mL of fresh PBS solution. This frequent process lasted for 2 months. The amount
of RhB released in PBS at each time point was monitored by measuring the UV absorbance of the
maximum peak for RhB (at an optical wavelength of 554 nm). The accumulated release of RhB was
calculated based on a standard RhB absorbance-concentration calibration curve.

The release of RhB from PLGA1 and PLGA2 nanofiber mats was investigated and is presented
in Figure 2. Within the first 24 h, 0.3% was released from PLGA2, while release from PLGA1 was
not observed. After two weeks, the total of ~34% of RhB was released from PLGA2 and ~14% from
PLGA1. After 30 days, nearly 47% and 18% of the RhB was released from PLGA2 and PLGA1,
respectively. At the end of the observed profile release period, PLGA2 nanofiber mat released ~60%
and PLGA1 nanofiber mat released ~30% RhB. Based on the obtained release profiles, it can be
concluded that PLGA2 has a faster release profile when compared to PLGA1. The release kinetics of
incorporated RhB from PLGA electrospun nanofibers and the time required for hydrolytic degradation
of PLGA depend on a molecular weight and chemical composition of polymers, porosity, crystallinity,
hydrophobic/hydrophilic nature, as well as on a lactide/glycolide ratio. This is because low
molecular weight PLGA generally leads to faster polymer degradation and a more rapid drug release.
Additionally, as lactide is more hydrophobic than glycolide, an increase in lactide content in PLGA
copolymers decreases the polymer degradation rate, followed by a slower drug release. The PLGA
with 50:50 lactide to glycolide ratio had the fastest degradation rate (1–2 months), while the PLGA
with 65:35 lactide to glycolide ratio degraded after 3–4 months.
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3. Computational Models

In this section, we first summarize the basic equations for diffusion and degradation and
then present formulation of the 1D and composite smeared finite element used to model diffusion
within fibers.

3.1. Fundamental Equations

The diffusion domain model consists of fibers and surroundings filled with phenomenological
fluid. The surroundings are modeled using 3D continuum elements, while fibers are approximated by
radial 1D elements. The balance equation for diffusion in a 3D space, which is based on Fick’s law, can
be written as:

− ∂c
∂t

+
∂

∂xi

(
Dij

∂c
∂xj

)
+ q = 0, sum on i, j; i = 1, 2, 3, (1)

where c is concentration, Dij are diffusion tensor coefficients, and q is a source term. In the case of 1D
diffusion, this equation reduces to:

− ∂c
∂t

+
∂

∂x

(
D

∂c
∂x

)
+ q = 0, (2)

where D is diffusion coefficient for diffusion along the x-direction. This equation is used as the basic
equation for diffusion within nanofibers.

Often, nanofibers are designed with a degradation and erosion process occurring during drug
release. These effects can be taken into account by modifying the diffusion coefficient inside the fibers.
We will include these effects in accordance with Reference [21]. Now, the diffusion coefficient of drug
release through PLGA polymer is D = D(Mw, ϕ), where Mw is PLGA average molecular weight (MW)
and φ is porosity. The function D = D(Mw, ϕ) can be expressed as:

D =
(1 − φ)Ds + κφDl

1 − φ + κφ
, (3)

where Ds and Dl are diffusivities of the polymer phase and liquid filled pores, respectively, and κ

is partitioning (measure of hydrophobicity) between the liquid-filled pores and solid PLGA phase.
Diffusivity in is given by the expression:

Ds = Ds0

(
Mw

Mw,0

)−α

, (4)

where Ds0 is diffusivity for the initial molecular weight Mw,0 and α = 1.714 the experimentally
determined coefficient. The molecular weight Mw and porosity φ are functions of time t, described as:

Mw = Mw,0 e−kwt, (5)

and:
φ = φ0 + (1 − φ0)(1 + e−2kt − 2e−kt), (6)

where kw and k are degradation rate constants, taken as 2.5 × 10−7 s−1, and ϕ0(= 0) is the initial porosity.

3.2. Diffusion within Fibers

Two components of diffusion within a fiber can be distinguished: Axial, in the direction of the
fiber axis, and radial, within the fiber cross-section.
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3.2.1. Axial Diffusion

This diffusion process is described by Equation (2) in differential form, which can be transformed
into the finite element form by a standard Galerkin weighting procedure [29]. The FE balance equations
can be written for a time step of size ∆t and equilibrium iteration i as:(

1
∆t

M + K(i−1)
)

∆C(i) =
1

∆t
M
(

C(i−1) − Ct
)
− K(i−1)C(i−1), (7)

where matrices MI J and KI J are:

MI J =
∫
L

NI NJ AdL, KI J =
∫
L

DNI,x NJ,x AdL, (8)

where NI, NJ are the interpolation functions, A is fiber cross-sectional area, and L is element length;
C and Ct are nodal concentrations at the end and start of time step, respectively. Note that the balance
equation, Equation (7), can be written for the continuum, using Equation (1), with matrices:

MI J =
∫
V

NI NJdV, KI J =
∫
V

DijNI,i NJ,jdV, (9)

where V is the FE volume.

3.2.2. Radial Diffusion

In Reference [22], a radial 1D finite element was formulated and we summarize the basic equations
derived for this element here. A fiber is represented by a line composed of segments aligned on the
fiber axis, with common points (Figure 3). At each common point, we generate one radial 1D element
(fictitious in the FE mesh representation), which serves to represent radial diffusion within the fiber
volume belonging to the common point. This belonging volume is equal to πR2L, where R is the mean
radius of the length L belonging to the common point (it is (L1 + L2)/2 in Figure 3a).

With the above representation of the fibers, we are able to formulate a radial 1D finite element
for the radial diffusion. At each common point of fiber segments, we introduce a radial 1D element
which consists of two nodes, one in the middle of the fiber and another at the fiber surface. Hence,
node 1 is at the symmetry axis of the fiber, while node 2 is at the fiber surface. As an approximation,
it is considered that a node A of the 3D continuum (Figure 3b), closest to node 2 of the fiber, has the
same concentration as node 2.
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Now we can use the mass balance equations of the 2-node 1D FE element [23] as:(
1

∆t
MI J + KI J

)
∆C J = −KI JC J − 1

∆t
MI J

(
C J − C Jt

)
, (10)

where matrices MI J and KI J are:

MI J = 2πL
R∫

0

NI NJ xdx, KI J = 2πLD f iber

R∫
0

NI,x NJ,xxdx, (11)

Other details are given in Reference [22]. The accuracy of the solution is increased if we use more
than one radial element, as shown in Figure 3c, since the radial concentration profile is nonlinear. Then,
the matrices for the radial subelements can be derived in analytical form as:

M11 = 2πL
L∫

0
(Ri + x)N1N1dx = 2πLL

(
1
3 Ri +

1
12 L
)

M12 = 2πL
L∫

0
(Ri + x)N1N2dx = 2πLL

(
1
6 Ri +

1
12 L
)

M22 = 2πL
L∫

0
(Ri + x)N2N2dx = 2πLL

(
1
3 Ri +

1
4 L
)

(12)

K11 = K22 = −K12 = −K21 =
2πL
L2 D f iber

L∫
0

(Ri + x)dx =
2πL

L
D f iber

(
Ri +

L
2

)
, (13)

where Ri is the radius of node 1 of the current subelement (closer to the axis of symmetry) and L is
the element length. The value of Dfiber is the mean diffusivity for the element, calculated according
to Equation (4) in cases when degradation and erosion are present. An expression for the initial
concentration distribution in radial subelements is given in the Appendix A.

3.3. Fundamental Equations for CSFE

Here, we summarize the methodology which will be further used as the basis for the development
of the composite smeared finite element to model diffusion within a fiber network and the surrounding.
It has the analogy with our representation of mass transport within a capillary system and surrounding
tissue [23].

First, considering the axial diffusion in fibers, we transform the 1D diffusion along the fibers
directions to the corresponding equivalent continuum form. This is achieved by derivation of the
continuum diffusion tensor, which can be expressed in the following equation [23]:

Dij =
1

Atot
∑
K

DK AK
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where Ri is the radius of node 1 of the current subelement (closer to the axis of symmetry) and L is 
the element length. The value of Dfiber is the mean diffusivity for the element, calculated according to 
Equation (4) in cases when degradation and erosion are present. An expression for the initial 
concentration distribution in radial subelements is given in the Appendix. 
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Here, we summarize the methodology which will be further used as the basis for the 
development of the composite smeared finite element to model diffusion within a fiber network 
and the surrounding. It has the analogy with our representation of mass transport within a capillary 
system and surrounding tissue [23]. 

First, considering the axial diffusion in fibers, we transform the 1D diffusion along the fibers 
directions to the corresponding equivalent continuum form. This is achieved by derivation of the 
continuum diffusion tensor, which can be expressed in the following equation [23]: 
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ij K K Ki Kj

Ktot

D D A
A

=   
, 
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where summation includes all fibers in the neighborhood of a considered point (or within a finite 
element), KD  and KA are diffusion coefficients an cross-sectional areas, Ki  are directional 

cosines, and totA  is the total fiber cross-sectional area (sum of KA ). Fibers and finite element are 
schematically shown in Figure 4. Therefore, instead of using Equation (10) for each fiber, we can use 
continuum elements with the matrices given in Equation (9), with diffusion coefficients evaluated 
according to Equation (14). 

Ki
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Kj, (14)

where summation includes all fibers in the neighborhood of a considered point (or within a finite
element), DK and AK are diffusion coefficients an cross-sectional areas,

Materials 2018, 11, x FOR PEER REVIEW  7 of 17 

 

0
, ,

0

2 ,      2
R

IJ I J

R

IJ I x J xfiberM L N N xdx K L N N xdxDπ π= =  , (11)

Other details are given in Reference [22]. The accuracy of the solution is increased if we use 
more than one radial element, as shown in Figure 3c, since the radial concentration profile is 
nonlinear. Then, the matrices for the radial subelements can be derived in analytical form as: 

( )11 1 1
0

1 12 2
3 12

L

i iM L R x N N dx LL R Lπ π  = + = + 
   

( )12 1 2
0

1 12 2
6 12

L

i iM L R x N N dx LL R Lπ π  = + = + 
 

 

( )22 2 2
0

1 12 2
3 4

L

i iM L R x N N dx LL R Lπ π  = + = + 
   

(12)

( )11 22 12 21 2
0

2 2
2

L

fiber i fiber i
L L LK K K K D R x dx D R

LL
π π  = = − = − = + = + 

 
, 

(13)

where Ri is the radius of node 1 of the current subelement (closer to the axis of symmetry) and L is 
the element length. The value of Dfiber is the mean diffusivity for the element, calculated according to 
Equation (4) in cases when degradation and erosion are present. An expression for the initial 
concentration distribution in radial subelements is given in the Appendix. 

3.3. Fundamental Equations for CSFE 

Here, we summarize the methodology which will be further used as the basis for the 
development of the composite smeared finite element to model diffusion within a fiber network 
and the surrounding. It has the analogy with our representation of mass transport within a capillary 
system and surrounding tissue [23]. 

First, considering the axial diffusion in fibers, we transform the 1D diffusion along the fibers 
directions to the corresponding equivalent continuum form. This is achieved by derivation of the 
continuum diffusion tensor, which can be expressed in the following equation [23]: 

1
ij K K Ki Kj

Ktot

D D A
A

=   
, 

(14)
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cosines, and totA  is the total fiber cross-sectional area (sum of KA ). Fibers and finite element are 
schematically shown in Figure 4. Therefore, instead of using Equation (10) for each fiber, we can use 
continuum elements with the matrices given in Equation (9), with diffusion coefficients evaluated 
according to Equation (14). 

Ki are directional cosines,
and Atot is the total fiber cross-sectional area (sum of AK). Fibers and finite element are schematically
shown in Figure 4. Therefore, instead of using Equation (10) for each fiber, we can use continuum
elements with the matrices given in Equation (9), with diffusion coefficients evaluated according to
Equation (14).



Materials 2018, 11, 2416 8 of 17Materials 2018, 11, x FOR PEER REVIEW  8 of 17 

 

 
Figure 4. Network of fibers and a domain of finite element with indicated fiber directions (domain is 
90 µm × 90 µm). 

Next, radial diffusion in the smeared concept can be formulated as follows. Consider diffusion 
through a fiber as schematically shown in Figure 5. First, the elementary area of the surface of the 
fiber wall fibdA  can be related to the elementary volume fibdV  and further to the elementary 

total volume dV , as follows: 

 
Figure 5. (a) Diffusion from fiber surface dAfib, which corresponds to the fiber volume dVfib and total 
volume dV; dVsur is the volume occupied by the surrounding medium; (b) Corresponding smeared 
model. 

VAV AVfib fibdA r dV r r dV= =
, 

(15)

where AVr  is the fiber area-to-volume ratio (called further surface ratio) and Vr  is the fibers’ 
volumetric ratio within the surrounding medium, or fiber density; the volume of surrounding is 

( )1 Vr dV− . Note that in the case of a straight fiber, the surface ratio is 4 /AV fibr D= , where fibD  

is the fiber diameter. Equation (15) can be considered the most fundamental in our smeared models, 
where the discrete fiber surface is smeared over the volume of the continuum. 

Figure 4. Network of fibers and a domain of finite element with indicated fiber directions (domain is
90 µm × 90 µm).

Next, radial diffusion in the smeared concept can be formulated as follows. Consider diffusion
through a fiber as schematically shown in Figure 5. First, the elementary area of the surface of the fiber
wall dA f ib can be related to the elementary volume dVf ib and further to the elementary total volume
dV, as follows:

dA f ib = rAVdVf ib = rAVrVdV, (15)

where rAV is the fiber area-to-volume ratio (called further surface ratio) and rV is the fibers’ volumetric
ratio within the surrounding medium, or fiber density; the volume of surrounding is (1 − rV)dV.
Note that in the case of a straight fiber, the surface ratio is rAV = 4/D f ib, where D f ib is the fiber
diameter. Equation (15) can be considered the most fundamental in our smeared models, where the
discrete fiber surface is smeared over the volume of the continuum.
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Next, we assume that the mass concentration is linearly distributed along the fiber radius (between
points 1 and 2 in Figure 5a). Then, the flux from the fiber at point 2, corresponding to the elementary
surface dA f ib, including partitioning P at the fiber surface, can be expressed as:
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dQ f ib =

[
D
(

C f ib − PCsur

)
− R

6∆t
(
C − Ct)

f ib −
R

3∆t
(

PC − Ct)
sur

]
rAVrVdV, (16)

where C f ib, Ct
f ib, Csur, and Ct

sur are the fiber and surrounding concentrations at the end and start of time
step, respectively, and R is radius of the fiber. Note that D represents the overall transport coefficient
through the fiber (with degradation and erosion). Therefore, considering the surrounding medium,
we have distributed mass source terms, according to Equation (16), which can be associated with the
integration points of the 3D finite elements. The nodal fluxes of a continuum finite element are:

Q f ibI =
∫
V

NIdQ f ib =
∫
V

NI(. . .)(1 − rV)dV, (17)

where terms within the parenthesis ( . . . ) follow from Equation (16), and NI is the continuum
interpolation functions of the element with the volume V. When evaluating the integral Equation (17),
C f ib and Csur are interpolated (from FE nodes) concentrations at the element integration point of fibers
and within the surrounding. Note that the factor (1 − rV) is used, since the volume of tissue is reduced
due to the presence of fibers.

Instead of using source terms at FE integration points, connectivity elements can be introduced
and assigned at each continuum node. Then, the balance equation for the connectivity element at
a continuum node I can be expressed in Equation (10), where C1 = C f ib, C2 = Csur at the node I,
and the matrices are:

M11 = 1
3 A f ibI RI , M12 = M21 = 1

6 PI A f ibI RI , M22 = PI M11

K11 = A f ibD f ibI , K22 = −K12 = −K21 = PI K11,
(18)

where (at node I) PI is partitioning coefficient as in Equation (16); D f ibI is the fiber diffusion coefficient;
RI is the fiber radius; and AcapI is the fiber surface area belonging to the node I, which is:

A f ibI = (rAVrV)IVI , (19)

with (rV)I , (rAV)I being the volumetric ratio and the area coefficient; and VI being the volume of the
continuum, which belongs to the node (schematically shown in Figure 5b). The volume VI can be
numerically evaluated as:

VI = ∑
elements

∫
V

NIdV, (20)

where summation includes all elements containing node I. It is important to note that nodes
representing one connectivity element have the same spatial position. We found that convergence was
improved by applying the concept of these connectivity elements instead of continuously distributed
source terms given by Equation (17).

It can be concluded from the above that diffusive transport between fibers and tissue can be
performed by discretizing the continuum only. The parameters of the model, assigned to each
continuum node I, include geometrical data (the volumetric ratio of fibers) (rV)I , the surface ratio
(rAV)I , mean radius of fibers (RI), and material data of fibers consisting of diffusion coefficient DI and
partition coefficient PI at the fiber surfaces.

Finally, we describe the composite smeared finite element, which includes the fiber domain and
the surrounding domain, coupled by the connectivity elements at each FE node. A schematic of this
element is shown in Figure 6. The volume V of the element is occupied by the fiber domain rVV and
by the surrounding medium (1 − rV)V. The model parameters are also given in the figure.
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Figure 6. Composite smeared finite element (CSFE) with fiber and surrounding domain and
connectivity elements at each node; a list of nodal parameters is given in the figure.

4. Numerical and Experimental Results of Drug Release

As mentioned in Section 2, a complete PLGA implant is with dimensions of 2.5 cm × 2.5 cm,
with thickness of 160 µm. The morphology of the nanofiber mats was examined by electron
microscopy (SEM) scanning, performed at the Faculty of Technology and Metallurgy, Figure 7.
The network of fibers is reconstructed from an SEM image of 90 µm × 90 µm using indoor software,
Figure 7b. Two different models are generated: (a) A detailed FE model with 1D radial elements
and (b) a composite smeared finite element model with two different domains: Fiber domain and
surrounding domain. Both numerical models are built in our FE program PAK (in Serbian: Program za
Analizu Konstrukcija—Program for Structural Alalysis) [30]. Conclusions regarding differences in the
hydrophobicity and degradation of PLGA1 and PLGA2 are taken from References [12–18]. We adopted
the following conditions in our FE models:

• Hydrophobicity (partitioning) of drug transport within PLGA1 is lower than for PLGA2;
• Degradation of PLGA1 is much slower than degradation of PLGA2.
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Figure 7. Configuration of the finite element (FE) model of PLGA implant, (a) SEM imaging of one
layer of PLFA fibers, (b) reconstructed 1D mesh of fibers (scan bar 20 µm), (c) reconstructed FE model,
(d) configuration and geometry of FE model [22]. Copyright 2017. Reproduced with permission from
the Journal of the Serbian Society for Computational Mechanics.
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4.1. Preparation and Numerical Simulation of Detailed FE Models

By randomly duplicating and displacing the generated layer of 1D fibers into the longitudinal
direction of the modeling domain, we can generate a mat of fibers within any implant (Figure 7c,d).
Further, assuming symmetric conditions, we can model just one half of the implant. It is also
reasonable to adopt a homogenous distribution (or repetition) of one small domain of the fibers,
through which we can model just one part of the implant. Thus, the dimensions of our FE models are:
80 µm × 90 µm × 90 µm. By detailed analysis (not shown here), we found that under the conditions
considered for this implant, diffusion from the fibers is dominantly radial, and we consequently
included radial elements only in our model. The 3D FE mesh is composed of 64,512 nodes and
36,864 elements; the number of radial 1D elements is around 7580 for the considered examples.
Diffusion transport within the 3D FE mesh of the surrounding is affected by the position and orientation
of fibers. Since 3D mesh and 1D mesh are independent, it is assumed that the material point of the
3D domain which is geometrically within the fiber is not used in the FE calculation. That point is
considered the so-called “immersed” point.

We assume that the diffusion coefficient of Span 80/RhB in pore space (space between fibers) is
as in water, and the diffusion coefficient of Span 80/RhB within the fibers (fiber with impregnated
drug inside) is Dfiber = 4 × 10−10 cm2/s, which is taken from Reference [31], approximately 104 times
lower than in water. The time period of simulation was 75 days (15 time steps with 5 days each).
The boundary conditions of the model are: Prescribed concentration C0 in fibers and C = 0 at outer
boundary of implant (boundary where mass release is measured).

The model used for Span 80/RhB diffusion is shown in Figure 7. The parameters of the detailed
model are:

• Dimensions: 80 µm × 90 µm × 90 µm;
• FE mesh: 40 × 48 × 48 divisions;
• Diffusion coefficient within fibers: Dfiber = 0.04 µm2/s;

• Diffusion coefficient in between fibers: Dliquid = 0.04 µm2/s;

• Mean diameter: D = 2.5 µm.

4.2. Application of Smeared Modeling for Drug Transport in PLGA Implant

Using our recently introduced composite smeared finite element concept [23], we were able to
model the transport process of drug transport from fibers to borders of implant. The smeared model
consists of two domains:

• Fiber domain—equivalent domain of fibers;
• Surrounding domain—equivalent “pore” space surrounding fibers.

The input parameters of the model are:

• Volume fraction of fibers in PLGA layers;
• Diffusion coefficient within PLGA fiber, for either 24 wt.% 50:50 and 65:35 emulsion;
• Diffusion coefficient of drug within the surrounding domain. Coefficient of hydrophobicity

(partitioning);
• Mean diameter of PLGA fibers.

The detailed and corresponding smeared model we used for drug transport analysis of 24 wt.%
50:50 and 65:35 emulsion are shown on Figure 8.
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Figure 8. PLGA domain modeled using a smeared composite finite element or detailed model with the
mesh of fibers.

In order to determine the diffusion coefficient for the surrounding domain, a numerical
homogenization procedure was performed according to Reference [32]. It was found that diffusion
is reduced in the surrounding due to the attractive forces between fibers and diffusion molecules,
and also by the presence of fibers in the system. The equivalent diffusion coefficient in the surrounding
domain was found to be Dliquid = 0.004 µm2/s. The parameters used in our composite smeared finite
element (CSFE) model are:

• Volume fraction of fibers: rV= 0.4223;
• Mean diameter of fibers: D = 2.5 µm;
• Diffusion coefficient within fibers: Dwall = 0.04 µm2/s;
• Equivalent diffusion coefficient in surrounding domain: Dliquid = 0.004 µm2/s;

• Partitioning: P = 1.

4.3. Comparation of Numerical and Experimental Results

Concentrations for both detailed and smeared models of PLGA1 are shown in Figures 9 and 10,
for domains with fibers and the surrounding domain, in a period of 75 days. It can be seen that there
are small differences between the two models; hence, the smeared modeling concept can be used for
the prediction of drug transport from drug impregnated nanofibers.
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used for the prediction of drug transport from drug impregnated nanofibers. 

 
Figure 9. PLGA implant—concentration field for the detailed and smeared model, for the diffusion of
Span-80/RhB complex within the PLGA implant.
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A diagram of cumulative mass release obtained from an experiment conducted at the Faculty
of Technology and Metalurgy and an FE simulation of PLGA1 and PLGA2 (both detailed and
smeared model) are given in Figures 11 and 12. In a numerical simulation, for PLGA1, we used
partitioning coefficient P = 2 × 105 and degradation coefficient κw = 2.5 × 10−7 s−1, while for PLGA2,
the partitioning coefficient was P = 5 × 105 and degradation coefficient κw = 2.0 × 10−7 s−1. Coefficients
used in simulations are in accordance with experimental studies, where it is stated that PLGA 50:50
(PLA/PGA) exhibits a faster degradation than PLGA 65:35, and higher hydrophilicity (which means
a smaller partitioning coefficient).
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Figure 11. Cumulative Release vs. Time for Span-80/RhB complex impregnated and for 24 wt.% 65:35
PLGA. Experimental curve and computational results obtained using the true (detailed) and smeared
model of PLGA nanofibers.
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5. Discussion

The use of implants for drug delivery according to a desirable rate and over a long time period is
a promising approach in modern medicine. One attractive concept is to design implants composed of
drug loaded nanofibers immersed into the appropriate surrounding medium. There are technological
challenges with respect to electrospinning in producing biodegradable nanofibers with the needed
characteristics. Our experimental approach was presented in this work.

Computational models would be a very useful tool, which can help in implant drug delivery
systems overall. Since the process of drug release from nanofibers and implants is very complex,
the development of appropriate computational models which can capture this complexity also
represents a challenge. A most straightforward approach would be to generate a 3D finite element
model which, in detail, follows an irregular fiber network and the surrounding. It is not only very
demanding to generate such complex FE mesh, but the model will be huge with respect to number of
equations to be solved over time. To make a model feasible for practical applications, we introduced
1D (line segments) representation of fibers with the axial and radial diffusion. The radial diffusion is
modeled by specific 1D radial elements [22], summarized here, which connect diffusion from the fiber
axis of line elements and the 3D finite element model of the surrounding. This model, called a detailed
model, is computationally efficient, but still requires a detailed 1D mesh of the fiber network. The most
important novelty of this work is that we have formulated a smeared FE model which is analogous to
our smeared model for mass transport from a capillary network to the biological tissue [23]. The 1D
fiber axial diffusion is substituted by a 3D continuum representation with the appropriately derived
diffusion tensor for continuum. The radial diffusion is captured by connectivity elements at each FE
node, which connect concentrations within fibers and the surrounding and include partitioning at the
surface of fibers. The required geometrical data here consist only of the fiber volumetric fraction and
diameters at the FE nodes.

The selected examples showed that both detailed and smeared models give results which match
well with experimental findings. We found that radial diffusion from fibers is dominant.

Finally, we note that the presented methodology is applicable to other porosities, drugs and
diffusion coefficients, rate of degradation, and hydrophobicity (here, we used data for PLGA1).
The accuracy of our models is already shown in our references, for different material data sets [23–25].
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6. Conclusions

New computational modeling approaches using FEM are developed in order to simulate drug
transport from drug loaded nanofibers. Those approaches incorporate partitioning and degradation
effects, which are present and may dominate in drug delivery from commonly fabricated nanofibers
employed in the design of implants.

Both detailed and smeared modeling concepts offer an accurate prediction of drug release from
nanofibers. However, the computational model with smeared finite elements for axial drug diffusion
and connectivity elements for the radial diffusion, presented as a novel concept in in this work, offers
an efficient tool, which is accurate and simple for application. This model is particularly attractive
for drug transport within multilayered nanoimplants used in tissue engineering, cancer healing,
and postoperative therapy.
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Appendix A. Initial Concentrations for Radial Subelements

Here, we provide the equation for the determination of initial drug concentration at fiber nodes
in cases when the number of subelements is greater than 2, for the detailed FE model with 1D radial
finite elements [26]. The number of subelements affects the value of initial concentration that has to be
prescribed at fiber nodes at the start of FE simulation. The mass of drug within the fiber segment is:

m = 2πLc0

∫
R

x · dx = R2πLc0, (A.1)

where c0 is initial concentration of the impregnated drug. In a case with n subelements,
the concentration within first n − 1 elements can be considered constant, while in the last subelement,
it is in a range from cn

0 to 0, where cn
0 is the initial concentration which has to be determined. In such

cases, we determine that mass within a fiber segment, consisting of n subelements, is:

mn = mn1 + mn2 = 2πLcn
0

∫ Rn−1

0
xdx + 2πL

∫ R

Rn−1

cxxdx, (A.2)

where mn1 is mass within first n − 1 segments, mn2 is mass in the last nth segment, and:

Rn−1 =
n − 1

n
R, (A.3)

is the radius at the first node of the nth subelement. Concentration along the nth sub-element is linearly
changing according to the following equation:

cx = (1 − x − Rn−1

R − Rn−1
)cn

0 , (A.4)

Using Equation (A.3), it follows from Equation (A.4):

cx = cn
0

n
R
(R − x), (A.5)
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where x is changing from Rn−1 to R, with R − Rn−1 = R/n. Now we have the following equations:

mn1 =
(

n−1
n

)2
R2πLcn

0

mn2 = 2πLcn
0

n
R
∫ R

n−1
n R (R · x · dx − x2 · dx) =

(
3n−2
3n2

)
R2πLcn

0 ,
(A.6)

from which it follows:

mn = mn1 + mn2 =

(
3n2 − 3n + 1

3n2

)
R2πLcn

0 . (A.7)

Using Equations (A.1) and (A.7), we have, finally:

cn
0 =

3n2

3n2 − 3n + 1
c0. (A.8)

This is the value that has to be prescribed at each node of subelements as the initial concentration,
except at the node on the fiber surface, which is equal to zero.
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